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ABSTRACT 

Changes in BET surface area and morphology of Ti02 (anatase) were studied as a 
function of temperature and level of chlorine contamination. The objective was to 
study the behavior of TiO2 supports under typical catalyst preparation and reaction 
conditions, using adsorption, wide angle X-ray diffraction and scanning electron 
microscopy. Chlorinated samples had lower surface areas compared to blank Ti02 and 
showed a significant loss of resistance to sintering. Chlorine also retarded the 
phase transformation of anatase to rutile. 

INTRODUCTION 

Catalyst preparation by impregnation techniques often results in incorporation of 

chlorine onto the support. Chlorine comes mainly from the precursor metal salt 

solutions used to impregnate the support. Another source for chlorine contamination 

is HCl that is added in order to adjust the pH of the precursor metal salt solutions. 

Furthermore, the addition of HCl is of importance to achieve appropriate control 

over the surface concentration of acidic sites on the support and to facilitate 

metal deposition. Part of the chlorine is subsequently lost depending on the 

drying and reduction conditions during catalyst preparation. The residual chlorine 

content influences the acidity of the support and has an important bearing on the 

catalytic properties as shown for naphtha reforming Pt/A1203 catalysts [l-3]. For 

some support materials, chlorine also influences the BET surface area and pore 

structure. This has been observed previously for MgO [4] which is known to exhibit 

support effects on Ru, Au and bimetallic Ru-Au catalysts [5-71. MgO undergoes bulk 

hydration to Mg(OH)2 during the impregnation step in aqueous phase. Subsequent 

heating to 673°K restores the oxide, resulting in the formation of small pores and 

an increase in surface area from 15 to 350 m2/gm. This surface area increase was 

found to be strongly dependent on the amount of chlorine remaining on the support. 

Chlorine contaminations up to 1 wt% resulted in steep reductions in MgO surface 

area. On samples containing more than 1 wt% chlorine, the surface area remained 

(Q 25 m*/g) irrespective of the thermal treatment. Chlorine seemed to cause an 
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earlier release of water and a decrease in the dehydration temperature of Mg(OH)2 [4]. 

The influence of chlorine, even though not fully understood, is of importance for 

catalyst preparation, in particular when both acidic support sites as well as high 

metal dispersions are desired. The latter goal might be difficult to achieve in 

cases where the support surface area is sensitive to chlorine content. 

The objective of this study was to examine the role of chlorine on the surface 

area of Ti02. Ti02 is an interesting catalyst support material because of SMSI 

effects reported for Group VIII noble metals, resulting in high metal dispersions 

that are stable at high temperatures [8,9]. Previous work showed that on Ti02 

supports even a metal with low Tamman temperature, such as gold, can be maintained 

in high dispersion up to a temperature of 700°C [lo]. However, these results were 

obtained on a catalyst that was virtually free of chlorine. The behavior of Ti02 

catalyst supports as a function of chlorine contamination is not well understood, 

and the results of this study are important for the design and preparation of 

highly dispersed TiO2 supported catalysts. 

EXPERIMENTAL 

The Glidden TiO2 used for this study was prepared by hydrolysis of titanium 

isopropylate, followed by washing and drying at 105°C under vacuum. Aliquots of the 

support were impregnated with four different hydrochloric acid solutions (1.44, 2.4, 

2.88 and 3.36 moles/l), followed by drying in air in a dessicator for 48 hrs. In 

our previous work on MgO, it was found that it did not matter whether the chlorine 

was derived from aqueous HCl or a chlorine containing metal precursor salt solution 

of comparable pH (1.7 - 2.0) [4]. Thus, this investigation was restricted to 

samples treated in aqueous HCl only. Chlorine remaining on the support after 

completion of impregnation and drying was determined by neutron activation analysis. 

Aliquots of Ti02 samples having different chlorine contents were subjected to the 

following thermal treatment routine: 

Each sample was placed into a Pyrex glass reactor loop and gradually heated in a 

stream of flowing N2 gas to the treatment temperature. The temperature was kept 

constant for 2 hrs followed by a slow cooling to room temperature. The samples so 

obtained were then used for further experimentation. 

BET surface areas were determined by the single point method using a Quantachrome 

Monosorb surface area analyzer. A mixture of 30% N2 in He gas was used, with N2 as 

adsorbent at a temperature of -195.8"C. CIAXS experiments were performed after each 

thermal treatment in a Philips X-ray powder diffractometer. CuKo radiation was used 

with a crystal monochromator. Electron microscopy studies were carried out using a 

JEOL JEM-100CX microscope. The ASID-4D scanning device was employed to generate 

secondary electron images at magnifications up to 100,000 using 100 kV electrons. 

Infrared spectra were recorded using a Digilab FTS-20 Fourier Transform Infrared 

Spectrometer. 
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RESULTS AND DISCUSSION 

The BET surface are;,the morphology and phase transformation of titania as a 

function of temperature and chlorine content are reported and discussed in this 

section. These results are evaluated in terms of possible formation of surface 

compounds, or bulk reaction with HCl under simulated catalyst preparation conditions. 

The BET rtsults on blank Ti32 showed a high surface area of 118 m2/g at llO"C, 

which increased slightly on heating to 300°C followed by a sharp decrease at 600°C 

to less than 8 m2/g. Ti02 samples containing chlorine showed a lower surface area 

than blank TiO2 upon similar thermal treatment. Increasing the chlorine content 

resulted in systematic reduction of surface area (Fig. 1). The slight difference 

in surface area between blank Ti02 and the sample that had been soaked in H20 might 

be due to compaction of Ti02 particles that have undergone surface hydroxylation in 

the presence of water. Similar interparticle aggregation and compaction has been 

explained on the basis of surface tension effects during drying of Si02 [ll]. 

FIGURE 1 BET surface area as a function of thermal pretreatment and chlorine 

content of the fresh samples (before thermal treatment). Points obtained at 

600°C are spread out on the graph for clarity. Treatment at indicated temper- 

ature for 2 hrs. @Blank Ti02; A Ti02 soaked in distilled water;*Ti02 soaked 

in aq. HCl (2.06 wt% chlorine); n TiD2 soaked in aq. HCl (2.40 wt% chlorine); 

OTi02 soaked in aq, HCl (2.55 wt% chlorine); OTi02 soaked in aq. soaked in 

aq. HCl (3.30 wt% chlorine). 
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WAXS patterns of blank Ti02 after various thermal treatments are shown in Figure 

2. At llO"C, the blank Ti02 was X-ray amorphous. Only after heating to 300°C did 

peaks characteristic of anatase appear. These peaks became sharper after treatment 

at 600°C indicating an increased degree of crystallinity (Fig. 2), 

FIGURE 2 Wide angle X-ray scattering patterns of chlorine free Ti02 obtained after 

thermal treatments at indicated temperature for 2 hrs. Corresponding surface areas 

are also indicated. 

While the Ti02 treated in distilled water was X-ray amorphous after drying at 110°C 

for 2 hrs, WAXS peaks characteristic for anatase were visible in the chlorinated 

samples after similar thermal treatment at 110°C for 2 hrs (Fig. 3). WAXS failed to 

detect any bulk compound formation such as Ti(OH)2C12, a compound that can form with 

aqueous HCl at low temperatures [12]. This points to an increased crystallinity of 

Ti02 in the presence of chlorine. A similar effect was observed by Dolmatov et al. 

[133. Ti02 precipitated from aqueous Ti4+ salt solutions was X-ray amorphous, while 

TiD2 precipitated from H2S04 solutions was already in the form of anatase with lower 

surface area. 

In an aqueous medium, H20 dipoles are likely to be attracted by Ti4+ ions due to 

the 63% ionic character of the Ti-0 bond according to Pauling's electronegativity 

values [143. Based on energetic considerations, formation of hydroxyl groups is 

favored on the Ti02 surface. Presence of hydroxyl groups on Ti02 surfaces has been 

convincingly proved by infrared spectroscopy [16-201. IR bands in the 3700 cm-' 

region are generally assigned to OH stretching vibrations on the anatase surface. 

The band at 1605-1615 CIII” is due to the OH bending vibration of residual adsorbed 
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water. After adsorbing HCl on Ti02, Primet et al. [ZO] observed a new, sharp band 
-1 

at 3540 cm . On our own samples which were exposed to aqueous HCl during 

preparation, there was no difference in the IR spectrum of blank vs. HCl treated 

Ti02. We suspect that the band at 3540 cm 
-1 

was due to adsorption of molecular HCl 

from the gas phase, while the aqueous medium used in our case would certainly lead 

to complete dissociation of HC: and thus adsorptio;? of chloride ions. In view of 

the ionic bonding of OH- groups on Ti02 surfaces [15], one would expect ionic 

exchange with the chloride ions. 

FIGURE 3 Wide angle X-ray scattering patterns of TiO2 treated in aqueous HCl with 

a final content of 3.3 wt% chlorine as determined by neutron activation. Thermal 

treatments were carried out at indicated temperature for 2 hrs. Corresponding 

surface areas are also indicated. 

If we assume that the chlorine detected by neutron activation analysis on the 

fresh samples before any thermal treatment was present in the form of surface Cl- 

groups, surface densities of approximately 3x10 l4 to 7x1014 Cl-/cm2 are obtained, 

in agreement with previous work carried out under similar treatment conditions 

[20,211. The surface Cl- seems to be weakly bound and can be removed by heating. 

After heating to 400°C or higher a significant decrease in chlorine content to 

less than 0.17 wt% was observed in all four chlorinated samples. 

These results suggest that surface chlorination rather than bulk chloride 

formation took place under our experimental conditions. Bulk reactions between HCl 

and Ti02 such as: 
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TiD2 + 4HCl e Ti Cl2 + 2 H20 + Cl2 

are thermodynamically unfavorable at room temperature. For example, the equilibrium 

constant Kl has a value of 10 -54 at 24°C [22]. 

If one attempts to dissolve Ti02 (Illmenite ore) it is necessary to use 

concentrated hydrochloric acid (11.3 to 11.6 mole/l) to obtain a reasonable 

dissolution rate [23]. In fact, formation of a Ti02 layer on Ti metal is known to 

prevent metal attack by HCl acid solutions [24-261. To verify the absence of bulk 

dissolution, a sample of Ti02 was slurried in an excess of 3.6M HCl for 48 hrs at 

room temperature. The supernatant liquid was then analyzed by atomic absorption 

spectroscopy. No evidence of dissolution of Ti02 was found. Thus any significant 

bulk dissolution of titania under typical catalyst preparation conditions can be 

ruled out. 

CHLORINE UPTAKE ON TiOzat 25% 

FIGURE 4 Equilibrium characteristics of chlorine uptake on Ti02 in an aqueous 

medium. Plot indicates the number of chloride ions on the support as determined by 

neutron activation vs. equilibrium concentration of supernatant HCl. 
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At this point the question arises why the presence of surface chloride causes a 

decrease in BET surface area and an increase in crystallinity of anatase. It has 

been previously suggested that chloride impurities are responsible for a relatively 

easy loss of hydroxyl groups from anatase (Degussa P-25) [18]. A similar phenomenon 

has been reported for the Mg(OH)*-MgO system where chlorine led to an earlier 

release of water from the bulk hydroxide anL accelerated the nucleation of Fig0 and 

loss of porosity during the dehydration process [4]. In the case of Ti08, there was 

no bulk hydroxide formation, but surface hydroxyl groups were present. These 

surface hydroxyl groups could easily be exchanged with chloride ions. The relative 

concentration of surface Cl- groups depends on the nature of ionic equilibrium in 

aqueous phase. This is illustrated in Fig. 4 which shows the surface chloride 

concentration on anatase as a function of the concentration of chloride ions in the 

supernatant aqueous phase under equilibrium conditions. It is plausible that 

increased Cl- uptake by the support could lead to a gradual replacement of surface 

OH- groups and consequently to partial dehydration of the sample. The loss of 

surface area due to chlorine is irreversible. Neither the removal of chlorine by 

outgassing at higher temperatures nor subsequent rehydration in aqueous medium can 

restore the high surface area. The surface area loss seems not to be due to bulk 

digestion of TiOZ1, but rather due to morphological changes. To study the 

morphology, scanning electron microscopy was carried out on blank and chlorinated 

anatase samples at different stages of thermal treatment. Fig. 5 shows the 

morphology of blank Ti02 without thermal treatment. The sample has a high degree of 

porosity. The corresponding chlorinated sample resembles closely the blank Ti02 and 

has the same high degree of porosity (Fig. 6). After treatment at 400°C for 22 hrs, 

the blank Ti02 does not show any significant change in porosity (Fig. 7) in 

agreement with the BET results. All the chlorinated samples irrespective of the 

chlorine content, show after treatment at 400°C a formation of platelike structures 

(Fig. 8a,b). Such platelike morphologies were observed only after treatment at 

600°C in the case of chlorine free, blank TiOp (Fig. 9). At 6OO"C, on both the 

blank and the chlorinated sample a complete transformation to platelike morphologies 

is observed (Fig. 9 and 10) which is consistent with the low BET surface area 

results (Fig. 1). The micrographs shown are typical examples drawn from a large 

number of micrographs of different sample areas. Thus it can be concluded that 

chlorine favors the formation of platelike morphologies at lower temperatures and 

an earlier collapse of the pore structure. Once the platelike morphology has been 

reached, neither exposure to Hz0 nor to aqueous HCl has an effect on the BET surface 

area and morphology of both the blank and chlorine treated titania. Since 

outgassing at 400°C removed most of the chloride, any pore mouth blockage by surface 

chloride compounds can be ruled out. 
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FIGURE-5 Scanning electron micrograph (SEM) of blank Ti02 treated at 110°C for 

2 hrs (?licroporous). 

FIGURE 6 SEN of 3.3 wt% chlorine containing Ti02 treated at 110°C for 2 hrs 

(microporous), 

FIGURE 7 SEM of blank Ti02 treated at 400°C for 2 hrs (porous). 
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FIGURE 8a SEM of 3.3 wt% chlorine containing Ti02 treated a,t 400°C ? 

(formation of platelike morphology can be seen). 

h!X 

FIGURE 8b SEM of 2.55 wt% chlorine containing TiO2 treated at 

(formation of platelike mor;thcIagy as Sean in Fig. 3a). 

400°C for 2 hrs 
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FIGURE 9 SEM of blank Ti02 treated at 600°C for 2 hrs (plate1 ike morp~~oloyy). 

FIGURE 10 SEM of 3.3 wt% chlorine containing Ti02 treated at 600°C for 2 hrs 

(platelike morphology). 
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It appears that the partial replacement of surface hydroxyl groups by chloride 

ions facilitates the recrystallization of anatase at lower temperatures. After 2 

hrs at 700°C in air, the blank Ti02 underwent a complete phase transformation from 

anatase to rutile. The chlorine treated samples showed under identical conditions 

X-ray peaks characteristic for both anatase as well as rutile (Fig. lla,b). This 

indicates lhat chlorine exerts a Iretarding zffect c.1 the phase trar,;formation of 

Ti02. 

FIGURE 11 Influence of chlorine on kinetics of phase transformation from anatase 

to rutile observed by wide angle X-ray scattering experiments. a) Ti02 with 3.3 

wt% chlorine after treatment at 700°C for 2 hrs. Presence of both anatase and 

rutile phases. Relative intensities show that anatase is predominant. b) Chlorine 

free Ti02: transformation from anatase to r-utile. 

The nature and concentration of impurities is known to control the defect 

structure of Ti02 which in turn governs the kinetics of the phase transformation. 

Interstitial ions inhibit the transformation whereas substitutional ions can inhibit 

or accelerate the phase transofrmation to rutile [27]. Rao et al. reported that 

5 at % Cl- inhibited the anatase/rutile phase transformation at 708°C [28]. Our 

experimental observations are in agreement. 

CONCLUSIONS 

The role of chlorine impurities on surface area and crystallinity of the anatase 

phase of Ti02 was investigated as a function of pretreatment temperature. The 

concentrations of chlorine were similar to those encountered under typical catalyst 
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preparation conditions. Chlorine had a detrimental effect on the BET surface area 

and favored the formation of platelike morphologies with sharply reduced porosity at 

a temperature as low as 400°C. At this temperature, chlorine free Ti02 maintained 

high surface area due to microporosity. While chlorine accelerated the 

crystallization process of anatase, it retarded the phase transformation to rutile. 

These effects were not due to bulk dissolution of TiO2 by the aqueous HCl used in 

our sample treatment, Apparently, a surface chloride formation via an exchange 

with surface OH- groups is the possible mechanism of chlorine uptake. The surface 

chloride is weakly bound and can be removed by heating to 400°C or higher. Although 

temperature is the dominant variable influencing surface area and morphology, 

chlorine has a clear-cut accelerating effect on the recrystallization of anatase 

resulting in an enhancement of crystallite growth and lower surface area. Such 

massive changes in morphology of TiO2 manifested by the formation of platelike 

support patches and the associated high mobility of ions might contribute to the 

postulated transport of titania species onto metal particles which is invoked by one 

school of thought to explain the SMSI effect. If one attempts to prepare 

high-surface-area Ti02 supported cata7ysts with adequate thermal stability for 

typical catalytic reaction conditions (up to 5OO"C), care has to be taken to 

minimize the chlorine content of the catalysts. 
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