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Abstract-In this work, we establish several new exact solutions to boundary value problems in 
non-linear elasticity. We show that in the case of the torsion of a slab, in addition to the classic 
torsion solution, there exist an infinity of solutions which are not symmetric. We study several 
associated boundary value problems. We also show that a nonlinearly elastic slab can exhibit non- 
uniform uniaxial extension solutions, in addition to the classic uniform uniaxial extension solution. 

1. INTRODUCTION 

SINCE the pioneering work of Rivlin, Green, Adkins and other co-workers in the non- 
linear theory of elasticity (cf. Green and Adkins [ 11) there have been few new solutions 
which have been exhibited. In this work, we establish solutions to several new associated 
boundary value problems in the theory of non-linear elasticity. An astonishing feature in 
all the problems dealt with is the possibility of an infinite class of exact solutions. The 
most interesting of the problems studied is that of the slab in pure torsion, where in 
addition to the classic torsion solution we exhibit the possibility of an infinity of non- 
symmetric solutions. Since all the problems considered involve infinite domains, a 
stability analysis based on energy is not readily available. We do not study the stability 
problem, but leave this to a later date. The questions of stability notwithstanding, the 
exact solutions in themselves are so simple that they are worth recording. 

Our analysis here is an outgrowth of a recent study by Rajagopal and Wineman [2], 
who considered the deformation of a non-linearly elastic material which is sandwiched 
between two infinite parallel plates, a distance ‘h’ apart, rotated by the same angular 
displacement Q about two non-coincident axes perpendicular to the plates. The form 
which they assumed for the deformation corresponded to a shear (which is dependent on 
the coordinate normal to the plates) followed by a rigid rotation. They established exact 
solutions in the case of a neo-Hookean and Mooney-Rivlin material. They also studied 
the consequence of the non-linearly elastic material being characterized by a non-convex 
stored energy function. In this case they found that it is possible that the solution possess 
discontinuous deformation gradients and exhibit the phenomena of phase change. 

In this work, we wish to study an associated, but different, class of problems. All the 
problems are concerned with the deformation of a slab of thickness ‘h’ whose other 
dimensions are infinite, the top and the bottom surfaces of the sandwich being bonded 
to rigid plates. Also, in all the following work, the non-linearly elastic material between 
the plates is either neo-Hookean or a Mooney-Rivlin material. First, it is our aim to 
investigate the consequences of rotating the top and the bottom plates by constant, but 
differing amounts, about non-coincident axes perpendicular to the plates (cf. Fig. 1). For 
the nonlinearly elastic materials in question, we are in a position to establish an infinity 
of exact solutions. We first exhibit exact solutions in the special case of a neo-Hookean 
material. It is found that a two parameter family of solutions is possible. We investigate 
in detail the solution which, when the offset between the axes ‘u’ vanishes, reduces to the 
classic torsion solution. However, this solution is by no means the only solution to the 
problem under consideration. We also compute the tractions on the upper and lower 
surface and find that they are not the same. It is also found that the local contribution 
to the resultant moment is different at the upper and lower surfaces for fixed values of 
the coordinates in the plane normal to the axes of the plates. 

In the case of a Mooney-Rivlin material, for the kind of motion under consideration 
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Fig. I. Domain of deformation. 

the equations of equilibrium lead to a coupled system of linear ordinary differential 
equations (these equations uncouple in the neo-Hookean case). The problem can be 
easily reduced to that of solving a single linear ordinary differential equation for a 
complex function. The problem is straightforward and one can determine the solution 

with ease. Once again an infinite class of solutions is possible. 
Next, we study the problem of rotating the top and the bottom plates by different 

amounts about a common axis, namely the torsion problem.? Most interestingly, we 
once again exhibit an infinite one parameter family of solutions for the problem in 
question. The classic torsion solution belongs to this class. While it is the only symmetric 
solution to the problem, there are infinitely many non-symmetric solutions which are 
arbitrarily close to the classic torsion solution. 

We also study the problem of the material being subject to finite axial stretching 
followed by torsion. In the case of a Mooney-Rivlin material it turns out that the 
equations of equilibrium simplify, after lengthy manipulations, to a coupled system of 
ordinary differential equations which have an amazingly simple solution. Once again, the 
problem exhibits the peculiar characteristic of possessing an infinity of solutions. Of 
course, when there is no stretching, the solutions reduce to those obtained for the pure 
torsion problem. 

All the solutions in the case of the common axis problem and the non-coincident axes 
problem considered, except the last class of problems, correspond to deformations in 
which any plane parallel to the plates, remains in the same plane, but rotates by an 
amount L?(z) which depends on the coordinate normal to the plates. That such deformations 
could possibly lead to non-unique solutions is motivated by Berker’s investigation into 
the classical Newtonian fluid [3]. That a similar situation obtains in more general fluids 
was established by Rajagopal [4, 51 and Rajagopal and Gupta [6]. 

In the treatment of the uniaxial extension problem one assumes apriori that the axial 
stretch ratio does not vary along the direction in which the force is applied. Recently, 
Cm-tie and Hayes [8] established the interesting possibility of non-uniform extension in 
the case of compressible non-linearly elastic materials. We present an example in which 
axial variation of the stretch ratio is possible in the case of incompressible non-linearly 
elastic materials. In the case of the neo-Hookean material it turns out that an equation 
which at first glance seems an exceedingly complicated non-linear ordinary differential 
equation possesses a simple elegant solution. 

After a brief review of the necessary kinematics in the next section, we derive the 
appropriate form of the equations of equilibrium for the problems under consideration 
in Section 3. In Section 4, we study the problem of a neo-Hookean material sandwiched 
between two infinite parallel plates which are rotated about non-coincident axes by 
differing amounts. The problem and solution procedure in the case of a Mooney-Rivlin 
material is considered in Section 5. In the next section we study the torsion problem in 
the case of the neo-Hookean and the Mooney-Rivlin material. In Section 7 we study the 
problem of the material being subject to axial stretching followed by torsion (cf. Rajagopal 
and Wineman [9]). In the final section we study the non-uniform uniaxial extension of 
a layer.$ 

t we have received a personal communication from Prof. R. T. Shield [7] that the above problem and other 
exact solutions are being studied independently by J. M. Hill and R. T. Shield and the work is to be submitted 
for publication. However, at this time we have not seen the manuscript and hence do not know the exact nature 
of their work. 

4 It would be appropriate to point out that several interesting exact solutions have been established recently 
for dynamical problems in non-linear elasticity by M. M. Carroll (cf. Refs. [ 10-121). 
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2. KINEMATICS 
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For the problem of rotation of the plates about differing axes and a common axis, it 
would be natural to assume a motion of the form? 

x = [X-f(Z)] cos Q(Z) - [Y - f(Z)] sin Q(Z) +,fiZ) (2.l)l 

y = [X -,7(Z)] sin Q(Z) + [Y - S(Z)] cos Q(Z) + j(Z) (2.1)2 

z=% (2. I)3 

where X, Y, Z and x, y, z represent the reference and the current coordinates of the same 
material point, respectively. The above motion represents a deformation in which material 
points which lie in any plane parallel to the plates continue to remain in the plane, the 
plane rotating about a point by an amount Q(z). The locus of these centers of rotations 
is in general a curve in space passing through the centers of rotation of the top and 
bottom plate, the locus being defined by 

x = f(Z) and Y = K(Z). (2.2h.2 

The representation (2. l),.2,3 unfortunately leads to certain singularities in the solution. 
It is easy to see the physical basis for this difficulty when one considers that different 
angular displacements of the top and bottom plate could lead to some plane parallel to 
these plates which has zero rotation, in which case there are difficulties associated with 
the notion of the center of rotation. To avoid such difficulties, in this work we choose to 
express the motion in the form 

x = X cos Q(Z) - Y sin Q(Z) + j(Z) (2.3)1 

y = X sin Q(Z) + Y cos Q(Z) + g(Z) (2.3)~ 

z = z. (2.3)~ 

It follows from (2.3)1,2,3 that the deformation gradient F has the following matrix 
representation: 

! 

c -s -XSQ’ - YCO’ + f’ 
F= S c XCU- Yso’+g’ (2.4) 

0 0 1 

where 

c = cos Q(Z) = cos n(z) (2S)l 

S = sin Q(Z) = sin Q(z) (2.5)2 

and the primes denote differentiation with respect to the argument. One can now rewrite 
matrix (2.4) in terms of the current coordinates x, y, and z as 

c -s -n'(y-g)+f' 
c P(x-.1‘)+g’ (2.6) 

1 

For the sake of simplicity let us introduce functions (~(y, z) and P(x, z) through 

Q(Y, z) =S’- WY-g) (2.7) 

t The above form of the motion is a generalization of the motion assumed by Rajagopal and Wineman [2] 
when both the top and bottom plate rotate by the same amount R. The form of the motion assumed in Ref. [2] 
is the counterpart in solid mechanics of the structure assumed by Berker [3] and Rajagopal [4) in the case of 
fluids. 
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0(x, 2) = g’ + Q’(x -f). 

It follows from (2X$-(2.8) that the left Cauchy green strain tensor B is given by 

( 

1 + iX2 (Yp 
6 = FF= = ~$3 f+j32 ; . 

a! P 1 i 

A simple computation shows that the matrix representation for B-’ is given by 

B-r= 

t 

’ ‘: 
-o! 

0 -P ’ 
-ff -p 1+ (Y2 f p* 1 

It follows from (2.9) and (2.10) that the principal invariants of B are 

Is = tr B = 3 + ((-u* + p2) 

and 

IIu = 3 + (a* + p*). 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

The Cauchy stress 1 in the Mooney-Rivli~ theory of elasticity is given by (cf. Truesdell 
and No11 [4]) 

T = -pl + p($ + 6))s - p($ - &B-l (2.13) 

where p and /? are constants and -pl denotes the indeterminate spherical stress due to 
the constraint of incompressibility. If one requires that the strain-energy function in the 
Mooney-Rivlin theory be positive for all B it is both necessary and sufficient that (cf. 
Truesdell and No11 [4]) 

iu > 0, -$IpI$. (2.14) 

When p = 4, (2.13) reduces to the neo-Hookean case 

T = -pl -k /LB. (2.15) 

As we mentioned earlier, we shall first consider the neo-Hookean problem. The results 
for the general Mooney-Rivlin theory follows as a simple extension. ’ 

3. EQLJATIONS OF EQUILIBRIUM 

In the case of a neo-Hookean material, the equation of ~~lib~urn 

reduces to 

div T + pb = 0 (3.1) 

(3.2) 

(3.3) 

(3.4) 

by virtue of (2.9). In Eq. (3.1) div denotes the divergence operator, p the density, and b 
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the specific body force field. In deriving (3.2)-(3.4), we have assumed that the body force 
field is conservative and hence derivable from a potential, i.e. b = -grad 9. 

It follows from (2.7) and (2.8) that (3.2)-(3.4) simplify to 

- ; g (p + p$) = 0. 

It follows from (3.5), (3.6), (2.7), and (2.8) that 

d2cY aq3 -=- 
ayaz axaz . 

Equations (3.9), (2.7) and (2.8) imply that 

and thus 

-p = Q” 

Q(z) = Gz + $0 

where $ and $0 are constants. The conditions that 

and 

then imply that 

iI(-h) = R, 

Q(h) = n2 

Ql + 02 
$0 = 2 and 

Q2 - 521 $=_ 
2h ’ 

Next, Eqs. (3.5)-(3.7) imply that 

and 

(3.5) 

(3.6) 

(3.7) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

It then follows from (2.7), (2.Q (3.10), (3.14), and (3.15) that7 

f”’ $ pj-l = 0 (3.16) 

g”’ + l//‘g’ = 0. (3.17) 

The boundary conditions which are appropriate for the problem of rotation of the top 
and bottom plates about non-coincidents axes, are (cf. Fig. 1) 

t In our’analysis we shall restrict ourselves to the case when $J # 0. When $ = 0, Q, = Q2 and this case has 
been studied in detail for a much more genera1 class of materials (materials with non-convex stored energy 
functions) and the Mooney material in Ref. [2]. 
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f(h) = a sin Q2, 
2 

f(-h) = - a sin Q, 
2 

(3.18) 

g(h)=;(l -cosQz), g(-h) = - ; (1 - cos Q,). (3.19) 

The above boundary conditions are however insufficient to determine the solutions of 
Eqs. (3.16) and (3.17). We now proceed to obtain the additional boundary conditions. 

Integration of (3.16) and (3.17) yields 

f" + gf= q (3.20) 

g” + *‘g = r (3.21) 

where q and r are constant. We shall proceed to seek a solution in which q = r = 0 
which when the offset between the axes tends to zero tends to the classic torsion problem. 
Thus 

f"+ tpf= 0 (3.22) 

g” + $‘g = 0. (3.23) 

Equations (3.22) and (3.23) imply that 

2 

f “(-h) = -ti2f(-h) = a $ sin Q, 

2 

g”(-h) = -ti2g(-h) = a $- (1 - cos L?,). 

(3.24) 

(3.25) 

In the next sub-section we shall exhibit exact solutions to (3.16) and (3.17), subject to 
the boundary condition (3.18) (3.19), (3.24), and (3.25). 

4. EXACT SOLUTION FOR A NEO-HOOKEAN MATERIAL IN THE CASE OF 

ROTATION ABOUT NON-COINCIDENT AXES 

For the sake of convenience and without loss of generality, we shall set Q, = 0 and Q2 
= Q,. In this case it is fairly straightforward to verify that the solution to the problem 
under consideration is 

f(z) = i sin [ +? (q)] (4.1) 

and 

g(z) = f 
11 

cosec + - cos $ cot 2 1 sin +z + sin T tan ? cos $z 1 (4.2) 

where $ = Qo/2h. It is interesting to note that 

QO 
f(0) = ff sin - 

2 2 

and 

g(0) = i sin 9 tan 4 

(4.3) 

(4.4) 

and hence the functions f(z) and g(z) do not pass through the origin. It is also worth 
noting that when a = 0, the above solutions (4.1) and (4.2) reduce to the classic torsion 
solution. 
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When q and r are non-zero, one could proceed in a similar manner to establish exact 
solutions. The functions f(z) and g(z) have the structure 

fl~)=A~sin#z+B~cos$z+~ 
lk2 

(4.5) 

g(z) = Az sin #z + B2 cos +z + L 
ti2 

(4.6) 

where the constants A1, A2, B,, B2 are determined from the boundary conditions. Thus, 
there is an infinity of solutions possible, the solutions being parameterized by q and r. 
The determination of the solutions is straightforward and we shall not provide the details 
of the same. 

Next, we determine the scalar field p. It follows from Eqs. (3.5)-(3.7), (3.20), and 
(3.21) and the definitions of cx and /3, that 

Thus 

; (p + pg5) = qx + ry - ; (x2 + y2) + c. (4.10) 

Hence the scalar field p is independent of z if 4 is independent of z. 
We now compute the tractions on the top and bottom plate associated with the above 

deformation. It follows from the above solutions (4.1) (4.2), and (2.19, that 

(4.11) 

(4.12) 

Thus, the resultant shear T = (Tz, + T&)“’ on the upper and lower surface is given by 

T(h) = p + [; + + sec2 $J - (; + f tan $?)]“’ (4.13) 

(4.14) 

Note that the resultant shear traction on the upper and lower plates differ. Also, when a 
= 0 
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T&c*,, = -$py = - ;; y (4.15) 

(4.16) 

which corresponds to the ‘regular torsion’ problem. However, when q # 0, r # 0, the 
problem will not reduce to the regular torsion problem (cf. Section 6). 

The local contribution to the resultant moment is 

M(fh) = (XT,, - yT,)k + (yTzz T hT,)i + (+hT, - xT,,)j. 

Thus, if M, denotes the z-component of the local moment M 

(4.17) 

CJo a2 r2 1Y x 
[ ( 00 --- =phT a2 2;+;tan-j- >I . (4.18) 

The first term on the right-hand side is the term corresponding to the usual torsion 
problem and when a = 0, the expression reduces to the classic one. It is also interesting 
to note that 

MZ(+h) f MA-h) when a f 0. (4.19) 

5. MOONEY-RIVLIN MATERIAL 

In the case of the Mooney-Rivlin material, the equations of equilibrium reduce to 

- $ (P + P4) + A; + ~ww) + P g = 0 

- & (p + pc#J) + p(f + p)n’cY + /.l g = 0 

- ; (P + P&J) - /.4i - a, & (a2 + P2) = 0 

by virtue of (2.9), (2.10), and (3.1). It follows from (5.1) and (5.2) that 

a2a a*p -=- 
ayaz axa. a 

This in turn implies, by virtue of (2.7) and (2.8), that 

s-2” = 0. 

Thus as before 

Q(z) = +z + $0 

with tie = Qo/2, \L = flo/2h. Next, requiring that 

& (P + P@) = -& (P + Pd) 

implies from (5.1) and (5.3) that 

-l/q& + s> g + p 2 + p<; - a> & (a* + ,a*) = 0. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
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I& - 3B)g” +f”’ - $‘(i - 3&P = 0. (5.9) 

Using Eqs. (5.2) and (5.3) one can similarly establish that 

$/<__; + 3@))f” + g”’ - #(4 - 3&g = 0. (5.10) 

Note that in the case of a neo-Hookean material p = $ and hence (5.9) and (5.10) reduce 
to (3.20) and (3.21), thus uncoupling the equations. In general however, the equations 
are a coupled system of linear ordinary differential equations. 

Introducing a complex valued function F(z) through 

I;(z) = f(z) + i g(z) (5.11) 

we can re-write the coupled system (5.9) and (5.10) as 

jV _ i $($ - 3a>F’ - +“($ - 3/j))F’ = 0. (5.12) 

The appropriate boundary conditions are 

F(h) = 4 [sin Q2 + i( 1 - cos Q,)] = $sin O0 + i( 1 - cos Q,)] (5.13) 

F(-h) = - i [sin Q, + i(1 - cos Q,)] = 0. (5.14) 

As before, we can determine the additional boundary conditions by integrating (5.12). It 
follows from (5.12) that 

I;” - i I/(; - 3@)F’ - #‘(f - 3p)F = k (5.15) 

where k is a complex constant. Again, as before, we can obtain an infinite set of solutions 
parameterized by k, to the above problem. 

The solution to (5.15) is of the form 

F(z) = A es” + B en2 - k 
+‘ct - 3P) 

where sI and ~2 are given by 

(5.16) 

sr=irC, and sz=$(l -66). (5.17) 

The constants A and B can be obtained by using the boundary conditions (5.13) and 
(5.14). 

6. THE TORSION PROBLEM 

In this section we consider the classic torsion problem and show that an additional 
infinite class of solutions is possible for this problem. We shall consider the problem of 
an elastic layer of a neo-Hookean material contained between two infinite parallel plates. 
The top plate is rotated by an amount &,, while the bottom plate is held fixed (cf. Fig. 
2). For the problem in question, we once again seek a motion of the form (2.3)1_3. The 
well-known torsion solution corresponds to f(Z) = 0 and g(Z) = 0, with Q(Z) = +rz 

+ $0. 
In the case of a neo-Hookean material, the equations of equilibrium once again reduce 

to 
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1, 
Fig. 2. Domain of deformation. 

and 

f” + #“f’ = 0 

g”’ + @g’ = 0. 

(6.1) 

(6.2) 

The appropriate boundary conditions for the problem under consideration are 

_#I4 = 0, .ft-4 = 0, g(h) = 0, g(-h) = 0. (6.3) 

As before, the above boundary conditions are not sufficient to determine the solution to 
(6.1) and (6.2). The additional conditions which can be employed aret 

s(O) = 4, g(0) = 0. (6.4) 

While the above boundary conditions can be viewed as a kind of a normalization of the 
function f(z), the @eve conditions have a physical significance when the corresponding 
functionsf(Z) and g(Z) (cf. Eq. (2.2)) are considered as defining the locus of rotations. 

It is straightfo~ard to show that when $h # 2n7r, the solution to (6.1) and (6.2), 
subject to (6.3) and (6.4), is 

f(z) = 
Qcos $2 - cos $h) 

(1 - cos+h) 

g(z) = 0. (6.5) 

When 4 = 0, we obtain the classic solution for the torsion problem. When $h = 2n7r, 
one can easily show that f(z) = z) sin $z, g(z) = 0 where 2 E R. Once again, when C 
= 0, we once again obtain the torsion solution. 

In the case of a Mooney-Rivlin material, the equation of equilibrium governing the 
torsion problem is (5.15). The appropriate boundary conditions are 

F(h) = 0, F(-h) = 0 and F(0) = e. 

7. THE PROBLEM OF FINITE EXTENSION AND TORSION 

in this section we consider the problem of a finite extension of X of the infinite 
sandwich followed by a twisting of the top plate by an amount Q. In this case, we shall 
study a deformation of the following kind: 

x = -!- [Xcos Q(hZ) - Y sin Q@Z)] +f(XZ) 
dh 

(7.1) 

y = i [X sin Q@Z) -I- Y cos Q@Z)] + g(XZ) (7.2) 

z = xz. (7.3) 

When X = 1, the above deformation reduces to the expressions (2.3)1-S which we have 
already studied in detail. A simple computation yields the defo~ation gradient F: 

t We can always pick the axis in such a manner that the above is possible (cf. Refs. [3, 41). 
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where now 

c = cos Q(U) and S = sin Q(xZ). 

We can now express F in terms of the present co-ordinates as 

As before, we shall define 

(Y(Y, 2) -f’ - Q’(Y - g) 

p(x, 2) = g’ + Q’(x -f). 

Thus 

F= 

and the left Cauchy-Green strain tensor B is given by 

B= 

and 

(7.4) 

(7.5)~ 

(7.6) 

(7.7)1 

(7.7)~ 

(7.8) 

(7.9) 

(7.10) 

It then follows that the first invariant is 

IB = f + X2(a2 + $) + x2. (7.11) 

It follows from the constitutive expression (2.13) for the Mooney-Rivlin material and the 
equations of equilibrium (3.1) that 
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+-$(;+i3)x2u+~(~-~)~~]=0 (7.12) 

-5+$[e(~+B)hlnp]+~[~(f+8)(~+h2P’)] 

+t[e(f+8)h2a+p(~-~)~~]=0 (7.13) 

-~+~[~(~+B)hia+p(f-~)hu]+~[p(f+B)h2B 

+P(;-+3]--$(;-8)(~+Xa2+xB)]=o. (7.14) 

It follows from (7.12)-(7.14) and the definitions (7.7)I and (7.7)~ for (Y(Y, z) and /3(x, z), 
that 

- 2 + p(+ + &?/3(--Q’) + /.&[(f + @))x’ + (; - &)x] 2 = 0 (7.15) 

- 2 + & + ,@)h2aS2’ + ,u[($ + pp2 + (; - ,@A] g = 0 (7.16) 

- g - & - @A $ (a2 + ,B2) = 0. 

It follows from Eqs. (7.15) and (7.16) that 

d2a a28 -=- 
ayaz azax ’ 

(7.17) 

(7.18) 

Thus, on using the definitions (7.7), and (7.7)2 for CY and /3, and (7.18) 

Thus, as before 

V = 0. (7.19) 

Q(z) = +z + $0. (7.20) 

Note that the above expression for 52 is in terms of the current coordinate. 
Next, it follows from (7.15) and (7.17) that 

-& (CY’ + P2) = 0. (7.21) 

By virtue of (7.7), and (7.7)2, (7.21) can be expressed as 

[+(X2 + X) + /C?((x’ - h)]j-‘” - @[(x - ;) - &2X + X2) ] f’ + (; - 3@B)x$g” = 0. (7.22) 

Similarly, (7.16) and (7.17) imply that 

& (C-Y’ + 8’). (7.23) 
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Equations (7.71, and (7.7)~ now imply that 

229 

&x2 + A) -I- $(A” - X)]g”’ + #2[$A2 - X + /?(A” + 2X&’ +f”J/A(-4 + 38) = 0. (7.24) 

When X = 1, Eqs. (7.22) and (7.24) reduce to (5.9) and (5.10) for the simple torsion 
problem. Once again we introduce a complex valued function F(z) through 

F(z) = f(z) + i g(z). 

It then follows from (7.22) and (7.24) that 

[$(X2 + X) + /3(X2 - X)]F” - 4 X - G - &X2 + 2X) 1 F’ - i $A($ - 3a)F” = 0, (7.25) 

The appropriate boundary conditions are 

and 

F(Xh) = 0, I;(-Ah) = 0 (7.26)~ 

F(0) = t. (7.27) 

In choosing the boundary conditions (7.26),,2 and the condition (7.27) we are basically 
choosing to interpret x = f(z) and y = g(z) as dete~ining the locus of the centers of 
rotation. However, we have indicated before, there is no need to make such an 
interpretation (and indeed such an interpretation leads to difficulties if at a plane 
z = const., Q(z) = 0). One could in fact replace the condition (7.27) by 

F(0) = k = x0 f i y. (7.27) 

where k is a complex constant, and in this case one obtains a two parameter family of 
solutions. It is lengthy but straightforward to determine the solution to (7.25) subject to 
the boundary conditions (7.26),,2 and (7.27). The solution is of the form 

F(z) = A es” + B es2’ + C 

where Sr,2 are the roots of the quadratic equation 

[$(A2 + A) + &A” - X)]S2 - i $A(; - 3a>S - $2 X - z - &A2 + 2X) 1 = 0. (7.28) 

Thus 

i $A($ - 3$) k 
i 

-$*A’($ - 3@)2 + 4[$(X2 + X) + @((x2 - A)] 

x 
[ 

x - ; - $(P + 2X) 11 
112 

$2 

51.2 = 
2[@ + A) -t /!?(A2 - A)] 

I (7.29) 

Interestingly, the above expression for S1,2 simplifies to 

and 

S,=i$ 

&=i$X 
2 - x - 2&2 + X) 

A2 + x + 2&P - X) 1 * 

(7.30), 

(7.31) 
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It then follows that 
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f(XZ) = i [sin #hAA cos $XZ - sin 3/Xh cos $MAZ + A] (7.32) 

and 

g(XZ) = i [sin $hAAcf sin $XZ - sin $Ah sin $mZ] (7.33) 

where 

and 

A = sin #hX(f - M), 
,=2+2&2+X) 

1 +X+2&- 1) 

A = 4 sin $hX 
(1 - M) . $hX lClhm - sm - sin - 2 

2 2 ’ 

(7.34) 

(7.35) 

We conclude this section by studying the problem of the infinite sandwich being 
extended by a finite amount and then being twisted by Qi and Q2 about non-coincident 
axes. For this problem, we once again seek a deformation of form (7.1)-(7.3). Thus we 
obtain the same equilib~um Eq. (7.25). The only difference is in the boundary condition, 
and for the above problem, the boundary conditions are (for the sake of convenience we 
shall set 0, = 0 and Q2 = f&) 

f(Xh) = a sin Q2 = -.!- sin Q0 
2Vx 2\/x 

f(--Ah) = - Q sin Q, = 0 
2dX 

(7.36) 

(7.37) 

g(Xh) = a (1 - cos Q2) = -it- (1 - cos i&,) 
2Vx 21x 

(7.38) 

and 

g(-Ah) = a (1 - cos 9,) = 0. 
2dX 

Thus 

F(Xh) = --$ [sin R,, + i( 1 - cos St,)] 

F(-Ah) = 0. 

Since Q1 = 0 and Qn2 = Oa, it follows that 

Then 

QO 
#==. 

FL-25 
46dX 

[eit(~/2)(~/h)+~-(~o/2)Ml _ ei[(oo/2Xrlh)-(no12)Nl + ei[(no/2)M(z/h)-(no/2)1 

(7.39) 

(7.40) 

(7.41) 

(7.42) 

‘c&f sin - e iWolWz/h) _ sin % ei(~o/GWz/h) 

_ ei[(~/2)~z/~)+(~/2)l + ~~ 2 1 _ 2 

6 1 (7.43) 
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where 

6=sin($m/z-$Xh)=sin$(M- 1). 

This then implies that 
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(7.44) 

f(XZ) = -$ [cos (+; + $a() - + M 1 ( - cos + f - 2 M 1 ( + cos +;_: 1 

and 

. QOM 
cos---sin-cos-MMZ 

Qo z QO QO sin - 
2h 2 2h 

l- 
2 

A 1 (7.45) 

520 z QOM 
Zh-- 

2 

(7.46) 

Note that the above yield a one parameter family of solutions in terms of the constant 
A3, and this is to be expected, as we have not imposed an additional condition as before, 
e.g. the location where the locus of the centers of the rotations cuts the z = 0 plane. 

8. NON-UNIFORM UNIAXIAL EXTENSION 

Consider an infinite layer of an incompressible nonlinear elastic material. Let X = (X, 
Y, Z) denote the position of the particle in its reference configuration and let x = (x, y, 
z) denote the position of the particle in its current configuration. Let the layer be bounded 
by the planes Z = h and Z = 0. Consider the deformation 

x=&xP 

1 

Y = V(Xf(Z)) yy 
z = X(Z) (8.1)1,2,3 

where prime denotes differentiation with respect to the argument. In the usual assumption 
for uni-axial extension X(Z) = XZ, where X is a constant. The deformation gradient F is 
given by 

where 

and 

(8.2) 

(8.3) 

(8.4) p = -g~‘)-3/2~~y. 
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Thus, the Cauchy-Green strain tensor B = FFT has the following matrix representation 

Also, the tensor F-’ has the form 

F-1 = (8.6) 

For the purposes of illustration of the possibility of non-uniform solutions for the 
stretch, we shall assume that the nonlinearly elastic material is neo-Hookean. The Cauchy 
stress T in such a material is given by (2.15), 

In view of the assumed form of the deformation, we find that it is ~ompu~tionally 
more convenient to express the equations of equilibrium in terms of the reference 
configuration. In the absence of body forces, the equations of equilibrium take the form 

aTi, 8Tij ax, dTijF_,’ = o 
-_=--- 

dxj ax, l&j ax, pJ ’ (8.7) 

A straightforward but lengthy calculation yields the following equations of equilibrium 
(here we have replaced p/p by p for convenience): 

Let us define 

Then 

&ddp__ A” 

A’ az z(x)* ( xap axfYFy =o. 1 

$ = Xf(Z) 

Fy= Y&z) 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

and 

(8.14) 
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We eliminate the scalar p by the standard procedure of cross-diffe~ntiation to fmd that 

d_f q(Z). z=-h’ 

Thus, a simple integration yields 

x[f= const. = c,. 

It follows from (8.11) and (8.16) that 

where 

Let 

then 

c = -2c,. 

X’(Z) = a(Z) (8.19) 

which reduces to the form 

It follows that 

_!$ (a-‘/2) + ; (p = 0 

Thus, when C > 0, 

and 

1 

“(z)S~,sin d(g)Z+Brcos 1/(F)Zr’ 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

(8.20) 

(8.2 1) 

(8.22) 

(8.23) 

(8.24) 

Let us consider the case of a layer which is of thickness H, fixed at the bottom. The 
appropriate conditions at the bottom and top layer would be 

z(0) = 0 (8.25) 

z(H) = h (8.26) 

where the coordinate Z = H is at present at the coordinate z = h. Let us define a function 

g(A,, & , C -9 through 

Then 

X’(Z) = g(A 1, B, , C, Z). (8.27) 

.$Z) = lz &Ii, BI , C, -z) dz. (8.28) 
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Equations (8.26) and (8.28) define a relationship between the constants Al, B, , and C. A 
restriction on the possible values of Al, B,, and C arises from the fact that X(Z) be 
bounded. 

When C < 0, then eqn (8.22) exhibits solutions of the form 

a-l/2 = (x’)-w = Aze f 
-cz 
2 + Bze- d- fz 

and 

Once again the comments 
Note that, when C = 0 

following eqn (8.24) apply in this case. 

X’(Z) = const. 

which corresponds to the classical homogeneous solution. However, as we have seen this 
is by no means the only solution. In fact, there exists a one parameter family (say C) of 
solutions to the problem. By appropriate choices of the constants, one can make X’(Z) as 
close to the classical constant solution, as desired. 

~C~~uwf~~ge~e~r-K. R. Rajagopal would like to acknowledge the solid mechanics program of the National 
Science Foundation and the Mathematics Research Center at the University of Wisconsin, Madison for their 
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