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After proving the known result that the homeomorphism group X(H) of the reals has a free 

subgroup of rank equal to the cardinality of the continuum, we apply similar techniques to give 

criteria for the existence of many (a comeager set in a natural complete metric topology) 

homeomorphisms independent of a given subgroup of X(H). 
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In this note we give a short self-contained proof of a result attributed to Ehren- 

feucht by Mycielski [3] that the homeomorphism group of the real line, Z(W), 

contains a subgroup which is free of rank 2K0 (Theorem 1). Our methods allow us 

to show that, in many cases, a subgroup G of X(lR) can be enlarged by the choice 

of an independent generator h to get a subgroup of X(1w) isomorphic to the free 

product G * Z (Theorem 2). In fact ‘most’ (in the sense of Baire category) choices 

of h will work. 

Our interest in the problem began with trying (and failing) to exhibit just two 

explicit elements of %‘(Iw) which generate a free subgroup. H. Friedman has asked 

whether the homeomorphisms g(x) = x + 1 and h(x) = x3 are such generators, and 

we suggest (for the intrepid) the following conjecture. 

Conjecture. If h, : (0, 1) + (0, 1) is the homeomorphism given by the quadraticfunction 

h,(x)=x+~(x2-x),foreacha~(O,1),then{h,~a~(O,1)}isafreesetofgenerators 

of a subgroup of SY((O, 1)). 

Here we have substituted the interval (0, 1) as a homeomorphic copy of [w in 

order to easily describe a set of homeomorphisms. We shall use (0,l) again in the 

rest of this paper in order to describe a complete metric, which goes back to [4], 

on the space of homeomorphisms. Then we use a Baire category argument and an 

idea of Mycielski to obtain Theorem 1. We have learned that D. Mauldin and R. 
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Kallman also obtained the same result by a different method. M. Freedman has 

pointed out to us that, by lifting to R two Schottky homeomorphisms of the circle, 

one gets two explicit free generators, but this method does not produce more than 

a countable number of generators.’ 

Let $2 be the group of all homeomorphisms of I = [0, l] leaving each endpoint 

fixed. This is easily seen to be isomorphic to the subgroup of %!(R) consisting of 

orientation-preserving homeomorphisms. Define a metric d on 99 by: 

d(g, h) = ;~~ls(x) - h(x)1 +;:4g-‘(x) - h-‘(x)1, 

where g and h are in 3. It is an easy exercise in uniform convergence to check that 

this is a complete metric for 9. The metric topology makes 3 a topological group. 

Let F be the free group generated by the countable set { yl, y2, . . .}. Then any 

reduced word, w, in F has a finite number of distinct yi appearing in it, and we 

write w=w(yil,..., yik) to indicate that the y’s shown are precisely the ones that 

occur in w. If g,, . . . , g, E 9, we write w(g, , . . . , gk) for the homeomorphism in 3 

obtained by substituting each gj for the corresponding yi, in the word w. For example, 

if w = w( y2, y,) = y;’ y+y2 and g E 9, then w(g, id) = g-’ id3 g = id, but w(id, g) = g3. 

Denote the k-fold Cartesian product of ‘3 by ‘3’ and, for any w E F, let 9,,, E Sk be 

the subset defined by 

Lemma 1. For any reduced word w involving k > 0 of the generators yi, the set 9, is 

closed and nowhere dense in gk. 

Proof. To see that I,,, is closed,.simply observe that the function from 9’ to 93 

sending (8,) g2, . . . , gk) to 43, a, . . . , gk) is continuous, since 9 is a topological 

group. 9a, is the preimage of the closed set {id} under this function. To show that 

1, is nowhere dense, we prove the following stronger result; a similar but non-local 

construction was given, for other purposes, in [l]. 

Lemma 2. For any reduced word w = W( yi,, . . . , yi,) E F with k > 0, any (gl , . . . , gk) E 

Sk, any x E (0, l), and any E > 0, there exists (g;, . . . , g;) E 59’ such that d(g,, g:) < E 

for i = 1,2,. . . , k, and w(g:, . . . , g;)(x) f x. 

Proof. We first introduce some more notation. If (g:, . . . , g;) E Sk where the g: are 

distinct and if w(gi, . . . , gk) = h, 0 h,_, 0 * . .o h,, where each hi is gj or (gj)-’ for 

some j and adjacent hi’s are not inverses of each other, then we let x,,= x and 

I A. Ehrenfeucht asked (cf. [3, p. 471) whether the automorphism group of a linear order must have 

a free subgroup of rank 2Ko provided it has one of rank 2. This question has recently been answered 
affirmatively by W. Charles Holland (Varieties of automorphism groups of orders, Trans. Amer. Math. 

Sot. 288 (1985) 755-763). Combined with Freedman’s observation, this result provides another proof 
that the homeomorphism group of the real line has a free subgroup of rank 2K~. 
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Xi=hi(Xi_r) for i=1,2,. . . , p. To prove Lemma 2, we shall show, by induction on 

p, that the gi can be chosen close to the gj and so that the xi will all be distinct. 

The case p = 0 is vacuous. Now assume that p > 0 and that we have found distinct 

g;, . . ., g; such that d(gj, g$ <ia for j = 1, . . . , k and x0, . . . , x~-~ are all distinct. 

We shall show that, if hP = gk or h = g&l, then we can alter gk slightly so that, 

when we replace gA by the alteration and recompute the xi, then x0,. . . , xp are all 

distinct. Of course the previously computed xi (for i <p) might be altered by this 

process if gk or its inverse occurs as hi for some i <p. We shall, however, take 

precautions to ensure that our alteration of gk does not affect the values of Xi for i < p. 

We assume that h, = gA; the case of g, ‘-’ can be reduced to the case we consider 

by interchanging yiyi, and its inverse wherever they occur in w and replacing gk 

with its inverse. 

We wish to find g”E 93 near gk such that 

(a) if hi = gh for some i <p, then g”(xi_i) = gh(x,_r) = xi, 

(b) if hi = g:’ for some i <p, then g”-‘(x,-i) = gz’(xi_r) = xi, and 

(c) g”(x,_,) is distinct from x0,. . . , xp-, . 

First note that the image of xP_, under g” is not specified by (a) or (b), for this 

could happen only if (b) applied to i =p - 1, which means that hP_l = gzl. This 

cannot occur since hP = gL and w is a reduced word. 

Now let P={O=z,<z,<. . . <z, = 1) be a fine partition of I containing 

{x0,. . . , xp-,}. Choose y close to gL(x,-i) but not in {x,, . . . , x,-,}, and define g” 

to be the unique map which is linear on each subinterval [zi_,, zi], agrees with gk 

on P - {x~_~}, and sends xPP1 to y. It is not hard to see that if P is sufficiently fine 

and y is sufficiently close to gk(x,_,) then g” is a homeomorphism satisfying 

d(gk, g”)<ie and conditions (a), (b), and (c). We complete the induction by 

replacing gk with g”. This finishes the proof of Lemma 2 and hence the proof of 

Lemma 1. 0 

Before turning to our main application of Lemma 1, we mention, at the referee’s 

suggestion, an immediate consequence of this lemma. Most, in the sense of Baire 

category, k-tuples in gk freely generate free subgroups of 9 of rank k. Indeed, 

those that do not constitute the union of the countably many nowhere dense sets 

9,,,, where w ranges over words involving k generators. 

Theorem 1. Let 3 have the complete metric topology dejned above. There exists a 
Cantor set C G 93 whose elements satisfy no non-trivial group relations. Hence the 
subgroup of 9 generated by C is a free group of rank 2N0. 

Proof. Let wl, w2, . . . be a listing of all the non-trivial reduced words in the free 

group F generated by { y, , y2, . . .}. We use an idea of Mycielski [2] and recursively 

define open subsets V(a) of 59, indexed by all finite sequences of zeros and ones, 

and satisfying: 
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(a) if u and T are distinct sequences of the same length, then V(a) and V( 7) 
are disjoint, 

(b) if (T is a proper initial segment of 7, then cl( V(7)) c V(a), 
(c) if u has length n > 0, then 0 < diam( V(a)) < l/n, and 

(d) ifgi,.. . , gk are taken from k > 0 distinct sets of the form V(a) with (+‘s of 

length n, and if, for some j < n, wj has exactly k variables, then wj( g, , . . . , &) Z 

id in 3. 

To start the recursion, let V(0), where 0 is the empty sequence, be any open 

subset of 23 not containing the identity. Condition (d) is easily verified, and the 

other three conditions are vacuous in this case. 

Now assume that V(a) has been defined for every u of length n in such a way 

that conditions (a) through (d) hold. In each such V(a) choose two disjoint open 

balls U,, and U, whose closures are contained in V(u) and whose diameters are 

smaller than l/(n + 1). This is possible because 9 has no isolated points. View these 

Ui as preliminary values of V(T) for the two one-term extensions 7 of the sequence 

c. Then (a), (b) and (c) continue to hold, but we must shrink the Ui further to 

achieve (d). This takes a finite number of steps, one step for each tuple (w, pi, . . . , Tk) 

where w = wj for some j < n + 1, k is the number of variables in w, and the 7i are 

distinct dyadic sequences of length n + 1. Such a step is taken to ensure that (d) 

holds for this wj when each gi is chosen from the corresponding V(Ti). 

At the step corresponding to (w, T,, . . . , Tk), suppose the balls which served as 

the preliminary values of the V(Ti) have already been shrunk to balls T,. Since 9, 

is closed and nowhere dense, by Lemma 1, we can find open balls S,, . . . , Sk such 

that 

St x s* x . ..XS,r(T,XT,x...xT,)-$,. 

Replace each of the balls T, by the corresponding Si; clearly this makes (d) true 

for the cases being treated at this step. Thus, when all the steps have been completed, 

we have all four of the induction hypotheses satisfied for all sequences of length at 

most n + 1. This completes the inductive construction of the V(a)‘s. 

If we set C = n, (Ucoflength n V(u)), then requirements (a), (b) and (c) together 

with the completeness of 9 imply that C is a Cantor set. Every k-tuple of distinct 

elements of C satisfies the hypothesis of(d) for all sufficiently large n and therefore, 

by virtue of (d), is not sent to id by any non-trivial word w. This completes the 

proof of Theorem 1. Cl 

We now take up the problem of enlarging a prescribed subgroup G of homeo- 

morphisms by finding an independent generator h, i.e., a homeomorphism such that 

the subgroup generated by G and h is isomorphic to the free product G * Z, the 

isomorphism being the identity on G and sending h to the generator 1 of Z. An 

equivalent condition on h is that it satisfy no non-trivial group-theoretic equations 

with coefficients in G. We begin with some examples showing that, even when G 
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is cyclic, finding an independent generator is not as easy as one might think; in 

particular, the set of independent generators need not be dense. 

Example 1. Let k be a non-trivial homeomorphism in 9 that fixes pointwise a 

neighborhood of 0 and a neighborhood of 1, and let G be the subgroup of 9? that 

it generates. Let [a, b], with 0 < a < b < 1, contain all the points moved by g. Choose 

h, E ‘3 with h,[a, b] disjoint from [a, b]. (A piecewise linear h, will do.) Since there 

is a positive distance between [a, b] and h,[ a, b], every h E 9 sufficiently near h, 

will have the property that h[a, b] is disjoint from [a, b]. Since all points moved 

by g are in [a, b], all points moved by hgh-’ must be in h[u, b], and it follows from 

the disjointness of these intervals that g commutes with hgh-‘. Thus, we have a 

neighborhood of h, none of whose members h is independent of G. 

Example 2. Again let g be a non-trivial homeomorphism in 3, but assume only that 

it fixes pointwise a neighborhood of 0, so all the points it moves lie in [a, l] for 

some a > 0. Let h, be an orientation-reversing element of %‘= X([O, 11) whose 

unique fixed point is <a. Then the same is true of every h E SY sufficiently close to 

h,,. For such h, all the points moved by hgh-’ are in h[u, l] = [0, h(u)] which is 

disjoint from [a, 11. So, as in Example 1, g commutes with hgh-‘, and therefore no 

h near h, is independent of the subgroup G generated by g. 

Remark. If the g in Example 2 does not fix any neighborhood of 1 pointwise (so 

it is not covered by Example 1) then Theorem 2(a) below shows that the homeo- 

morphisms h independent of g are dense in 9, so the use of an orientation-reversing 

h in Example 2 is essential. 

A subset of 3Z= X([O, 11) or Ce (or indeed any complete metric space) is called 

comeuger if it includes the intersection of some countable collection of dense open 

sets; equivalently, a set is comeager if its complement is of first category. In particular, 

the Baire category theorem asserts that comeager sets are dense. 

Theorem 2. (a) Ifg E Ce then {h E 52 1 g and h are free generators} is comeuger in 9 if 

and only if g has non-fixed points arbitrarily close to at least one endpoint of I. 

(b) Ifg E %’ then {h E 2’1 g and h are free generators} is comeuger in X ifund only 

if g2 has non-fixed points arbitrarily close to each endpoint of I. 

(c) If G is a countable subgroup of YJ and if the only element of G that pointwise 

jixes a non-degenerate interval is the identity, then {h E 31 h is independent of G} is 

comeuger in 9. The same is true with SY in place of 9. 

Proof.‘Example 1 gives the ‘only if’ part of (a), and Example 2, with g replaced 

by g2, gives the ‘only if’ part of (b). Indeed, the examples show that {h 1 g and h 
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are free generators} will not even be dense, let alone corneager, in % or Z unless 

the condition in (a) or (b) (respectively) is met. 

To prove the ‘if’ part of (a), let ge 3 have non-fixed points arbitrarily near 1. 

Let w = w( yl, -yJ be a non-trivial reduced word in the free group generated by y, 

and y2. It suffices to show that 

N,,, = {h E 31 w(g, h) # id} 

is open and dense in 3, since 

{h E 931 g and h are free generators} = n J,,,. 
w 

.JY,,, is open because its complement is a section of the closed set 9, of Lemma 1. 

To see that X,+ is dense, let h E 59 and E > 0. We must find h”~ JV,,, such that 

d(h, h”) < E. We use an argument similar to that in Lemma 2, except that this time 

we are not allowed to alter g, so we must choose x judiciously. 

As a preliminary step, we modify the given h slightly (by <$E) to an h’ that is 

the identity on a neighborhood of 1. To do this, first find, since h preserves 

orientation, a point (p, h(p)) on the graph of h such that both p and h(p) are 

within $E of 1. Then choose c smaller than 1 but larger than both p and h(p). 

Replace the part of the graph of h from (p, h(p)) to (1,1) with the broken line 

segment from (p, h(p)) to (c, c) to (1,l). The result is the graph of the desired h’. 

We note, for use in the proof of (b) later, that if h had been orientation-reversing, 

we could have modified it slightly to agree with the function 1 -x near both endpoints 

of I. Furthermore, there is nothing special about the identity or 1 -x here; any 

orientation-preserving (resp. orientation-reversing) homeomorphismfcould be used 

instead. Indeed, if we modify f’h slightly (how slightly depends on the modulus 

of continuity off) to get a k that is the identity near the endpoints, then j7z is a 

slight modification of h that agrees with f near the endpoints. 

Returning to the proof of (a), we seek an h”, within ;E of our h’ (that fixes [c, 1) 

pointwise), such that w(g, h”) # id for a certain specified word w. We consider two 

cases. 

Case 1. 1 is a limit of fixed points of g. 

Since 1 is also, by hypothesis, a limit of non-fixed points of g, we can find, 

successively, points a, x0, b such that c < a < x0 < b < 1, a and b are fixed by g and 

x0 is not. As the fixed point set is closed, we can increase a and decrease b, if 

necessary, to arrange in addition that g has no fixed points in the open interval 

(a, b). Note that (Q, b) is invariant under both g and h’. We shall alter h’ only on 

(a, b) to obtain an h” with d(h’, !r”) <$E and w(g, h”) #id and in fact w(g, h”)(x,) f 

x0. 
To construct h” we proceed as in the proof of Lemma 2 with minor modifications. 

To make the notation agree with that lemma, let g, and g, be g and h’ and let (0,l) 

there be replaced by (a, b) here. For g; near g,, let w(g,, g;) = h, 0 h,_, 0 * . .Q h, 

and Xi = hi(xi_,) as before. We intend to modify g; slightly SO as to make all the Xi 
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distinct. As before, we use induction on p, but we need to carry along a stronger 

induction hypothesis to compensate for our inability to modify g,. In addition to 

requiring the xi to be distinct, we require that, whenever hi = g; or gi-‘, then 

xi = hi(xi_i) is in a different g,-orbit from x0, x1,. . . , xi-I. Thus, if the next few 

functions h,+i , . . . , hi+k in the composition defining w(g,, g;) are g, (or g;‘), then 

the resulting x~+~, . . . , x~+~ will be distinct from x0, . . . , xi-l. They will also be 

distinct from Xi and from each other because g, acts freely on the interval (a, b) in 

which we are working. Thus, there will be no need to modify g, as in the proof of 

Lemma 2. 

To show that this stronger induction hypothesis can be maintained, consider, as 

in Lemma 2, the case that h, = g; and that g; satisfies the induction hypothesis that 

x0,*.., xP-i are distinct and that each hi = g; or g;-’ among h,, . . . , !I~-~ leads to 

a new g, -orbit. We modify g; slightly so that Xi is unaltered for i c p - 1 but g;(x,_,) 

is in a different gl-orbit from x0,. . . , x~-~. This is done exactly as in the proof 

Lemma 2, except that the point y in that proof must be chosen outside the g,-orbits 

ofxg,..., xP-, . This new requirement excludes only countably many possible values 

of y, so there is no difficulty in finding an appropriate y. 

Case 2. 1 is not a limit of fixed points of g. 

In this case, we have an interval (d, 1) on which g acts freely; d is either the 

largest fixed point of g or 0 if g has no fixed point. We assume, without loss of 

generality, that c > d (where c is still the left end of the interval [c, 1) pointwise 

fixed by h’). We would like to proceed as in Case 1, using the fixed-point-free 

invariant interval (d, 1) for g as we used (a, b) there. Unfortunately, if some xi is 

too close to the left end, d, of this interval, and h,,, = g:, we may find that x~+~, 

which is near h’(xi), is outside (d, 1). (This problem did not arise in Case 1, since 

the interval (a, b) was pointwise fixed by h’.) To be safe from this difficulty, we 

work in (c, l), where h’ is the identity. But this interval is not invariant under g, so 

again the Xi sequence may escape from it. To avoid this, we choose x0 (which in 

Case 1 could be any element of (a, b)) to be so close to 1 that there is no danger 

of the Xi’s getting smaller than c. Specifically, if there are N occurrences of g or 

g -’ in w(g, h’), we require x0 to be so close to 1 that all of g-N(xo), 

g -N+‘(xo), . . . 3 gN-‘(XoL gN(xo) are larger than c. (This is achievable since g is 

continuous and order-preserving.) Now proceed as in Case 1, making the 

modifications of h’ so slight that all x, remain in (c, 1) at all stages of the induction. 

This completes the proof of (a). 

Before turning to (b), we point out that the proof of (a) differs from Lemma 2 

in essentially two respects. One is the strengthened induction hypothesis, which, as 

we saw, is not difficult to satisfy since it excludes only countably many potential 

values of y at each stage of the induction. The second difference is the need to work 

in a region where g has no fixed points; this is essential for keeping xi distinct from 

xi+l 9.. . > Xi+k when hi+, =. . . = hi+k = g,, since we cannot modify g,. Most of the 

work in the proof of (a) was needed in order to keep the x,-sequence within such 

a fixed-point-free region. The same will be true in the proof of (b), and a bit more 
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work will be needed. Instead of presenting the proof of (b) in detail, we indicate 

only the additional arguments needed to avoid fixed points of g; the rest of the 

proof is as in (a). 

For orientation-preserving g, a point x not fixed by g will not be fixed by any 

power of g (for if x < g(x), say, then as g preserves order g(x) < g’(x) < g3(x) <. * s), 

but this is not so for orientation-reversing g. Indeed, such a g has a unique fixed 

point, which is also the unique fixed point of each of its odd powers, but the even 

powers may have more fixed points, and we must avoid these points as well. Of 

course, as g2 preserves orientation, it suffices to avoid the fixed points of g2. 

We turn now to the proof of the ‘if’ part of (b). We are given g E X such that g* 

has non-fixed points arbitrarily close to each endpoint of Z, we are given a non-trivial 

reduced word w, and we are given h E X. We seek an h” near h such that w(g, Zt”) 

moves some x0. If g and h are both orientation-preserving, we use the proof of part 

(a). We consider the remaining cases, subdividing them according to how many 

endpoints of Z are limits of fixed points of g2. 

Case 1. g reverses orientation, and g2 has fixed points arbitrarily near both 0 

and 1. 

As in the preliminary step in part (a), modify h slightly to get an h’ that agrees, 

on little intervals (0, c,-,) and (c, , 1) with id if h preserves orientation and with g if 

h reverses orientation. Then, as in Case 1 of part (a), find an invariant fixed-point- 

free interval I, of g* so close to 1 that I1 c_ ( c1 , 1) and Z0 = g( Z,) E (0, co>. Then Z,u I, 

is invariant under both g and h’ and contains no fixed points of g*, hence no fixed 

points of any power of g. So we can proceed as in Case 1 of part (a), modifying h’ 

only within this set. 

Case 2. g reverses orientation and neither 0 nor 1 is a limit of fixed points of 

Modify h slightly to agree near 0 and 1 with id or with 1 -x (according as h 

preserves or reverses orientation), and let (0, 1 - d) and (d, 1) contain no fixed points 

of g*. Then (0,l -d) u (d, 1) contains no fixed points of g, and we keep the xi 

sequence within this set by choosing x0 close enough to 1 (or to 0), as in Case 2 of 

part (a). 
The two cases just discussed cover all the possibilities for orientation-reversing 

g, since if one endpoint is a limit of fixed points, ai of g*, then the other endpoint 

is the limit of the fixed points g(ai) of g2. It remains, therefore, to consider the 

cases where g preserves orientation and h reverses it. Note that in these cases, the 

fixed points of g* are the same as those of g, so we omit the squaring. 

Case 3. g preserves orientation and has fixed points arbitrarily near each endpoint 

of I; h reverses orientation. 

As in Case 1 of part (a), there are invariant fixed-point free intervals I,, (resp. Z,) 

arbitrarily near 0 (resp. 1). Modify h slightly (as before) to get an h’ that interchanges 

one of the intervals I, with one of the intervals I,. Then proceed, as in Case 1 of 

part (a), to modify h’ within the set I, u I,, which is invariant under both g and h’ 

and contains no fixed points of g. 
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Case 4. g preserves orientation and neither 0 nor 1 is a limit of fixed points; h 

reverses orientation. 

Arrange for h’(x) to be 1 -x for x near the endpoints, and proceed as in Case 2 

of part (a). 

Case 5. g preserves orientation and has 0 but not 1 as a limit of fixed points; h 

reverses orientation. 

We assume that g(x) > x for x near 1; otherwise work with g-‘. Choose a and 

b near 1 (nearer than any fixed point) so that a < b<g(a). Then the interval 

I,, = [a, b] and its images I, = g[a, b], I2 = g2[ a, b], . . . are disjoint and approach 1 

monotonically. (They approach 1 because otherwise the supremum of their union 

would be a fixed point closer to 1 than a and b are.) At the other end of the interval, 

where g has fixed points, choose a sequence Jo, J, , . . . of disjoint invariant intervals 

whose interiors are fixed-point-free for g, approaching 0 monotonically. Then modify 

h to get an h’ that interchanges each I, with J,,; this is a slight modification provided 

all these intervals are close enough to the endpoints of I. Now work in the union 

of all the 1,‘s and Jn’s. This union contains no fixed points of g, is invariant under 

h’, and is mapped into itself by g, though not by gP1 . To avoid having the Xi sequence 

leave the union, start with X,,E IN (or JN) for N larger than the length of the word 

w, essentially as in Case 2 of part (a). 

These cases, and the symmetric one to Case 5 with 0 and 1 interchanged, exhaust 

the possibilities, so (b) is established. 

Finally, we prove (c). Let G satisfy the hypothesis of (c). For each element 

w E G * Z and each h E ‘3, let w(h) be the result of replacing in w each n E Z with 

h”, i.e. the image of w under the unique homomorphism G * Z+ $3 that is the 

identity on G and sends 1 to h. Let JV~ = {h E 92) w(h) # id}. We must show that the 

set 

{hE??[forall wfl, w(h)#id}= n .IY~ 
Wfl 

is comeager, so we show that each JY~ is open and dense. Openess is immediate, 

as before, since w(h) is a continuous function of h. The proof of density is exactly 

as in the preceding parts of the proof. We view w(h) as a composite hP 0 hP_l 0 . - .o hl 

where each hi is h or h-’ or an element of G. We wish to choose x0 and slightly 

modify h so that the points Xi defined by Xi = h,(x,_,) are all distinct and, whenever 

hi = h or hi = h-l, Xi lies in a different G-orbit from x0,. . . , Xi-1 and is not fixed by 

any non-identity element of G. As before, this is done by induction on p. At each 

stage, the new value (called y in previous proofs) of h’ must be chosen to avoid 

finitely many G-orbits and the fixed point set of every g E G-{id}. But G is 

countable, so finitely many G-orbits contain only countably many points. And each 

g E G - {id} has a fixed-point-set that is closed and nowhere dense, so the union of 

the fixed-point-sets is of first category. That leaves a comeager set of y’s that can 

be used, so the induction can proceed and the proof is complete. 0 
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The referee has pointed out that the group generated by the lifts to R of two 

Schottky homeomorphisms of the circle satisfies the hypotheses of Theorem 2(c). 
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