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Near-tip stress and strain fields for power-law hardening orthotropic materials under plane-strain conditions are presented. 
Plastic orthotropy is described by Hill's quadratic yield function. The angular variations of these HRR-type fields depend on a 
single parameter which specifies the state of plastic orthotropy. Near-tip fields for highly orthotropic materials differ 
substantially from the fields for isotropic materials. Mode I (symmetric) and mode II (anti-symmetric) solutions for different 
degrees of plastic orthotropy are given. The angular stress distributions for the low-hardening material agree remarkably well 
with the plane-strain slip-line fields. Based on the singularity fields, effective stress contours are constructed. The applicability 
of these fields in the context of a fiber-reinforced composite containing a macroscopic flaw is discussed. 

1. Introduction 

Plastic anisotropy in crystalline materials arises 
from preferred crystallographic orientation of 
grains a n d / o r  the development of  texture due to 
prior plastic deformation. Composite materials 
may be treated as macroscopically homogeneous 
but anisotropic if the characteristic size of the 
fiber, such as the fiber diameter as well as fiber 
spacing, is small compared with the relevant mac- 
roscopic dimension of the composite system e.g., 
the plastic zone size, physical dimensions of the 
component,  and other characteristic macroscopic 
lengths. 

A phenomenological plasticity theory for ortho- 
tropic material has been proposed by ttill (1948). 
The yield function is a quadratic function of the 
stresses. In a later study Hill (1979) suggests non- 
quadratic yield functions to account for the so- 
called anomalous behavior of some materials. 

In this study we adopt the simpler quadratic 
yield function in conjunction with power-law 
hardening as descriptive of the orthotropic plastic 
behavior at ' large '  plastic strains in the vicinity of 

a stationary crack tip. Deformation-induced finite 
geometry changes associated with blunting at the 
crack tip are neglected in the formulation of the 
equations governing plane-strain defonrtation. A 
systematic examination of the effect of plastic 
anisotropy on Mode I and Mode II singular crack- 
tip fields is carried out. The size and shape of 
effective stress contours are also shown. Stress 
fields for perfectly plastic materials are discussed. 
Singular crack-tip fields for orthotropic power-law 
hardening solids have been discussed by Hayashi 
(1979); however the angular variation of the fields 
was detailed for mildly orthotropic materials, and 
only for the case of plane stress. 

Strain hardening and non-hardening plasticity 
solutions which elucidate the behavior at the tip of 
a stationary crack in an isotropic material have 
been obtained by Hutchinson (1968a,b) and Rice 
and Rosengren (1968). The amplitude of the H R R  
singularity fields is given by the path-independent 
J-integral (Rice, 1968a). To the extent that the 
singularity fields dominate over a region which is 
larger than the fracture process zone, the onset of 
fracture and possibly limited amounts of crack 
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growth can be phrased in terms of the attainment 
of a critical value of J and the J-resistance curve. 
These developments, including an excellent dis- 
cussion of the conditions which validate the J-  
based nonlinear fracture mechanics methodology, 
can be found in the review article by Hutchinson 
(1983). 

2. Ortho~,opic plasticity 

We consider the case where the pronounced 
preferred crystallographic orientation is already 
firmly established and restrict the discussion to a 
range of plastic straining such that further changes 
in crystallographic orientation is negligible. With 
these assumptions the state of plastic orthotropy 
remains constant and is specified by the initial 
value of the tensile yield stresses in the three 
principal directions of orthotropy and the three 
yield stresses in shear with respect to the principal 
axes of orthotropy. Since the state of plastic or- 
thotropy is unchanging, the hardening behavior is 
completely described by a single tensile (or shear) 
stress versus plastic strain curve. We choose the 
axes of the orthogonal Cartesian coordinate sys- 
tem x~, x 2, x 3 to be coincident with the axes of 
orthotropic symmetry X~, X 2, X 3. Hill's (!948) 
yield criterion can be written in the form 

~(o , j )  - F(022 - o33) 2 + G(033 - oH) 2 

+ H ( o n  - o22)5 

+ 2Lo23 + 2Mo~, + 2No22=Q 2 (2.1) 

where q~(a,j) represents the current yield surface 
in stress space, and F, G, H, L, M and N are 
dimensionless constants which describe the state 
of plastic orthotropy. Without loss of generality, 
an effective yield strength parameter Q can be 
defined to represent the characteristic size of the 
elastic domain at the current stress state. The 
characteristic stress Q can be taken to depend 
upon the plastic work WP. If q~ is also the plastic 
potential, the increment of the plastic strain, dcP, 
is determined to within a constant of proportion- 
ality (Hill, 1950). Then Q can be made to depend 
upon f d ~  where the definition for the increment 

of the effective plastic strain, dc~, follows from 
the statement that dW p = oijdc ~ = Qd%P/vt3 - (the 
factor v~ arises in deference to the isotropic plas- 
ticity convention and the identification of Q as 
the shear stress parameter as defined below). 

Let X0, Yo and Z 0 be the initial yield stresses 
along the axes of orthotropic symmetry and R0, 
So, To be the corresponding shear yield stresses. 
With no loss of generality, and for reasons that 
will become clear in the later sections where tLe 
plane slrain analysis is discussed, we identify Q 
with the shear yield stress T. With this normaliza- 
tion, these relations follow (Hill, 1948, 1950). 

G + H = ( T o / X o ) ~ ,  

F +  C = (To /Zo)  ~, 

2 M  = (To/So)  2, 

H + F = ( T o / Y o )  2, 

2L = (To/Ro) ?', 

2 N =  1. (2.2) 

We introduce generalized effective 'shear" and 
'tensile" yield stresses defined by 

1 . 2 = 1  2 ~2 
3tlt e = F ( 0 2 2  - -  033 ) + G ( 0 3 3  - -  011) 2 

+ too , : -o22)  + L(o , 

+ M(o~, +o23)+N(o22+o2,) .  (2.3) 

For clarity of manipulations all nine stresses are 
distinguished in (2.3) and are regarded as distinct 
(independent) variables. The yield criterion (2.1) 
can be restated as 

% = Oe/¢~" = T ( W  p) (2.4) 

and the stress Sij directed along the normal to the 
yield surface is given by 

s,j = a , / a o ,  j = a  /ao, j (2.5) 

Most plasticity analyses of near-tip behavior 
employ stress -strain characterization taken from a 
Ramberg-Osgood uniaxial stress-strain relation. 
For our analysis, a more convenient form is the 
Ramberg-Osgood shear strain-shear stress rela- 
tion 

~'/Yo = r/~'o + a( ~/'r o )" (2.6) 

where n is the strain hardening exponent, a is a 
material constant, % is a reference shear stress 
and ~'o = % / G  is the associated reference strain 
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with G being a representative shear modulus. We 
use (2.3) and (2.5) to generalize the relation be- 
tween the shear stress and the plastic strain (2.6) 
to multiaxial states in a manner that will be useful 
for subsequent development. The resulting defor- 
mation theory relation between the plastic strains 
and the stresses is 

cP ' [ % ~" - '  S°  (2.7) 
700 =  t7o) 
Since y and ~" in (2.6) are the shear strain and 
stress with respect to the X 1- and X2-axes (2.7) 
can be restated as 

Too (2.8) 

where Y0 = To/G and a is the material constant 
particular to the present stress-strain curve. Rela- 
tion (2.8) together with the dimeusionless con- 
stants F, G, H, L, M and N defined by (2.2) 
describe the plastic behavior of the material. 

Some comments are in order. A~ :_replied by the 
yield function (2.1) (and the plastic potential), 
plastic strains are volume preserving, hence S,  = 0 
(see (2.7)). In this sense Sij may be thought of as 
the generalized deviatoric stress. If the material is 
isotropic then F = G = H = ~ and L = M = N = ½, 
and (2.3) and (2.7) reduce to the standard J2 
deformation theory relations with S~j (2.5) being 
the deviatoric stress 

3. Plane-strain specialization 

We suppose that elastic strains are negligible 
compared to plastic strains (this is certainly the 
case in the immediate vicinity of the crack tip). 
Invoking plane-strain condition then leads to the 
relation 

oa3 = (Go u + F0.22)/(G + F).  (3.1) 

Using (3.1) in (2.3) and requiring that 0"23 = 0.31 = 0 ,  

we have 

= L , , ( o , ,  - 022 )  2 + 4 (3.2) 

where 

~p = FG/(  F + G) + H. (3.3) 

Furthermore 

S,, = ½p(o~ - o=) ,  S:2 = " p ( o ~  - o , , ) ,  

S,2 = °,2 (3.4) 

and $33 vanishes identically. The plastic s)rain- 
stress relations are given by 

= ) Sll/~ro, ch/Vo ½a( o/ 0 " - '  

ClP2 1 n - - I  / 
- -  = s , v  ,o  ( 3 . 5 )  
Yo 

with c~1 = -c~a, and c3P3 = 0. 
We emphasize that the simple forms for (3.1), 

(3.2), and (3.4) only hold when the principal axes 
of orthotropy X 1, X 2, X 3 coincide with the axes of 
reference x~, xz, x3 and the plane of plastic flow 
is normal to x 3 (and A3). If the X,-axis is arbi- 
trarily inclined from the x,-axis (x  3 and )(3 are 
still coincident) then the expressions for % and S,j 
can be found by transforming the stress compo- 
nents. Let the X,-axis be rotated (counter-clock- 
wise) by an angle ¢ from the x,-axis. Applying 
the standard transformations we get 

.;2 = ~ p [ ( o n _  02:) cos 2 ¢ -  2o,2 sin 26]  2 

+ ~ [ ( O l l -  022 ) sin 26  + 2oi2 cos 26] 2. 
(3.6) 

A similar expression can be written for 033. The 
stresses Sij obtained by substituting (3.6) in (2.5) 
and carrying out the partial differentiation (the 
t e rm 20.,2 in (3.6) must be treated as two distinct 
independent variables or2 + o2~ in the differentia- 
tion) are, 

S , i  = - - 8 2 2  = 1 ( O , 1  - -  022)( P COS22~ + sin226) 

--%2(P-- 1) cos 2tp sin 26~ (3.7) 

S,2 = - ½(%, - o22)( p - 1) cos 2~ sin 26 

+ o,2 ( P sin226 + cos226).  

For p = 1, (3.6) and (3.7) reduce to the usual 
definitions for shear effective stress and deviatoric 

stress. 
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Suppose 1/, = ½m~r (m = 1, 2, 3). For these par- 
ticular orieetations of the axes of orthotropy, (3.6) 
and (3.7) are identical to (3.2) and (3.4) respec- 
tively. Suppose Lk = -~,n + ½rn,n (m = 0, 1, 2, 3) 
then we have 

= ¼(o,, - o,_,) (3 .8 )  

s .  = - o 2 . ) ,  = - 

S12 = polz. (3.9) 

The preceeding restilts together with the plastic 
strain-stres~ relations given by (2.7) demonstrate 
that under pla,le-strain conditions (X3-axis nor- 
mal to planes of plastic flow) the axes of or- 
thotropy as well as axes inclined at ~,rr + ~rn~r 
(m = 0, 1, 2, 3) to the X:axis  are axes of symme- 
try. It is also evident that the state of plastic 
orthotropy is specified by the single parameter p 
(see (3.2) and (3.8)). The connection between the 
forms (3.2) and (3.8) will be made in Section 7. 

If the material is isotropic, p = 1. We also note 
that various values of F, G and H can result in 
p = 1. For example, if the mate~al is rotationally 
symmetrical about the x3-axis so that F +  2 H  = G 
+ 2 H = ½  ( F C H ) ,  then p = i .  We emphasize 
that with p = 1, (3.2), (3.4), (3.8) and (3.9) dictate 
isotropic plastic flow. It is obvious from (3.3) that 
a given value of p (including p = 1) can be at- 
tained by different values of F, G and H. Never- 
theless the state of plane-strain plastic orthotropy 
is specified by the single parameter p. As the 
value of p deviates from unity, the plastic re- 
sponse of the material becomes increasingly aniso- 
tropic. The plane-strain plastic behavior of an 
orthotropic material which is weak in shear (com- 
pared to the tensile/compressive yield stress) is 
characterized by p < 1. A material with high shear 
yield stress is characterized by p > 1. These aspects 
are elaborated upon in Sections 5 and 7. Hill 
(1950) has noted that p and T can be experimen- 
tally determined by two compression tests (under 
conditions of plane strain) at 0 ° and 45 ° to the 
axes of orthotropy; this can be easily deduced by 
using (2.4) with (3.2) and (3.8). When it is required 
to calculate o33 all four parameters F, G, H and 
N (or X 0, Y0, Z0, To) must be known. 

4. Dominant  singularity an_a!ysi~ 

We consider the planar crack problem as de- 
picted in Fig. 1, where the rectangular Cartesian 
coordinates x 1 and x2 are centered at the crack 
tip, and x3 is perpendicular to the x~ - x  2 plane. 
In this section and in Sections 5 and 6 we will 
confine the discussion to the case where the axes 
of reference coincide with symmetry axes of or- 
thotropy (i.e. 1/, -- 0). The polar coordinates in the 
xl - x 2 plane are shown in Fig. 1. 

The arguments leading to the HRR singularity 
fields have been detailed by Hutchinson (1968a, b), 
Rice and Rosengren (1968) for pure-mode fields, 
and by Shih (1974) for mixed-mode fields. In 
exactly the same fashion, application of the j_m. 
tegral (Rice, 1968a) to the present boundary valae 
problem shows that the dominant singularity 
governing the asymptotic behavior of the stresses, 
strains and displacements can be written as 

j 
o i /= o  o ~ j  ~,,(0; n, p .  M) ,  

e P = a ¢ o [ ~ ]  ~-u(O; n, p .  M) ,  (4.1) 

J 
u , - f l , = a % r  a°o%IrJ / ~i(O; n, p, M). 

Written in the above form, the fields reduce pre- 
cisely to the H RR singularity fields for p = 1 
(Hutchinson, 1983). For all values of p, o 0, and ¢0 
in (4.1) are identified with the material parameters 
in (2.8) through the relations o 0 = v~-¢0 (% - To) 
and % = y0/vr3. Thus all material parameters in 
(4.1) including ,~ and n are defined by the plastic 
shear strain-shear stress relation (2.8) while the 
plane-strain plastic orthotropy parameter p is de- 
fined by (3.3). The (plane-strain) dimensionless 
constant I and the 0-variations of the (plane- 
strain) dimensionless functions ~o, g,J and ~ de- 
pend on the strain hardening exponent n, on the 
state of plastic orthotropy p, and on the mode 
parameter M (Mode I or II or mixed mode); the 
constants ~ allow for a possible translation of the 
crack tip itself. The angular functions are normal- 
ized by setting the maximum value of the 0-vari- 
ation of 0 e to unity (or equivalently the maximum 
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Crock 

x, ,(y) 

/ 
J 

Fig. 1. Convent;ons at crack tip. 

x~(x) 

value of the effective shear stress, ~ ,  to 1/V~-). 
With  this normalizat ion the present angular func- 
tions for p = 1 are exactly the functions given by 
Hutchinson (1968a, b) and Shih (1974, 1983) for 
isotropic plasticity. For  completeness we list these 
relations 

= ~ P [ ( O r r -  000) COS 20 -- 2~rO sin 20] 2 

+ ~ [(at, - 600) sin 20  + 2~,0 cos 20]  2, (4.2)  

O~,r'  Soo = Oaoo' = 2 0(~,o" 
(4.3) 

(4.4) - = - = ~ a - - t #  £o  ~ - . - 1 . r  
f'rr --CO0 e --rr, = 20e "3tO, 

~r rl 
I = f /  ~.+1 J - , A ~  ~ cos 0 

- [sin O ( # , r ( ~  o -- ~ ; )  -- ~,0( ~r + f ~ ) )  

+ - -  (er,~,+~rOr~o) cosO dO (4.5) 
n + l -  

where ( ) ' d e n o t e  differentiation with respect to 0. 
The values o f  I for five values of  p and three 
values of  n are tabulated in Table 1 for fields 
symmetric and anti-symmetric with l'espect to the 
crack plane. 

We  outfine the solution procedure employed to 
determine the dependence of  the stresses on 0. An  
Airy stress function is introduced and a partial 
differential equation governing the stress function 
is derived from the compatibil i ty equation, the 
latter equation being written in terms of  the 
stresses by using the constitutive relation (2.7). A 
separable form (see (4.1)) can be obtained thereby 
reducing the problem to a fourth order nonlinear 
ordinary differential equation with 0 as the inde- 
pendent  variable. A shooting method based on a 
combined  fourth-fifth order  R u n g e - K u t t a  scheme 
with error and step-size control  is employed to 
generate the solution. Similar solution procedures 
have been employed by Shih (1973, 1974) and the 
details are given in Appendix I of  the 1973 pub- 
lication. 

5. Mode ! and Mode il  singularity, fields 

To examine the effect of  plastic orthotropy on 
the angular variation of the singularity fields, the 
dimensionless stresses t/e and °ij and strains /',j 
are graphically presented for p = 10, 2, 1, 0.5 and 
0.1, where p = 0.5 and 2 represent mildly ortho- 
tropic materials, and p = 0.1 and 10 represent 
highly orthotropic materials. The Mode I fields 
(symmetric with respect to the x 2 = 0 plane) are 
discussed first. Figs. 2 and 3 show the angular 
variations of  %, art , O00 , at8 and /',, (note that 

Table 1 
Plane-strain values of I 

Mode I Mode II 

n = 3 n = 10 n = 20 n = 3 n = 10 , = 20 

10 4.23 3.09 2.89 1.93 1.54 1.47 
2 5.63 4.27 3.90 1.28 0.97 0.90 
1 5.51 4.54 4.21 0.95 0.74 0.69 
0.5 4.96 4.42 4.22 0.69 0.55 0.52 
0.1 4.10 4.04 4.03 0.33 0.27 0.25 

The Mode II values of I (for p = 1) in Hutchinson's 1968b paper are incorrect. The correct values are given here and in Shih's 1974 
paper. 
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E~O = --~rr)  and Z,0 for n---3 and 20. The five 
cases are arranged in order of decreasing p values. 
The middle plot for p = 1.0 is precisely the angu- 
lar distribution obtained by Hutchinson (1968a, b) 
and Rice and Rosengren (1968) for isotropic 
material. (We point out that fields identified by 
p = 1 are associated with isotropic materials as 
well as orthotropic materials with plastic proper- 
ties such that F G / ( F  + G)  + H = ~). 

Since the fields are symmetrical with respect to 
the x I axis, we will confine our attention to the 
interval 0 ° ~< 0 ~< 180 °. The effective stress ~e for 
p = 10 and 2 falls off rather rapidly at 0 < 45 ° 
and 0 > 135 ° (see plots (a) and (b)). This behavior 
is more clearly seen in the strain plots where the 
shear strain Z,e peaks at 0 of about 45 o and 135 o 
For a low-hardening material, n = 20, the peak at 
135 ° is the larger of the two peaks. For p > 1 the 
dimensionless stresses ahead of the crack are lower 
than the stresses for the p = 1 case. In subsequent 
discussions the angular distributions for p > 1, 
which include two zones of rapid variation of ~'r0, 
will be called type-B fields. For p = 0.5 and 0.1 it 
can be seen that 0e peaks very rapidly at 0 -= 90 °. 
Again this behavior is more clearly revealed by the 
angular variation of ~m in the strain plots. Our 
numerical calculations indicate that as p becomes 
increasingly small, the angular sector where ~'r0 is 
about unity becomes increasingly narrow. Fur- 
thermore the dimensionless stresses t~rr and 6e0 
are rather large. The possible implications of these 
fields on fracture toughness are discussed in Sec- 
tion 7. The normalized stresses in plots (d) and (e) 
have been scaled by lfP-, i.e., 8~s = ltrp~ij. The 
strains in plots (d) and (e) are scaled by l / f  p ,  
i.e., i~s -  ~'~Jl/~. The rescaled strain plots reveal 
the trend that "the shear strain peaks over an 
increasingly narrow angular sector as the value of 
p decreases from unity (note that the maximum 
value o~ Zr0 is about unity for p ~< 1). The angular 
distributions for p < 1 will be called type-A fields. 

For the purpose of explaining the angular dis- 
tributions in Figs. 2 and 3, we consider a rather 
special orthotropic material with equal tensile yield 
stresses, i.e., X = Y = Z. The parameter p is then 
given by 

P = 3 ( T / X )  2. (5.1) 

Thus p < 1 characterizes a material which yields 
more easily in shear (compared to the tensile yield 
stresses). As the shear yield stress becomes vanish- 
ingly small, p << 1, the behavior of the material 
becomes pathological and it is not surprising that 
the angular variation of the shear strain peaks 
very rapidly at 0 --- 90 o. At the other limit where 
the shear yield stress becomes infinitely large 
(compared to the tensile yield stresses), p >> 1, the 
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shear strain concentrates in the vicinity of O ---- 45 o 
and 135 °. We define a parameter fl to be equal to 
~/-3T/X. For example, fl---1 represents an iso- 
tropic material, and fl less/greater than 1 is the 
reduced/increased value of T from the isotropic 
value accorded by the J2 theory of plasticity. With 
p defined by (5.1) we obtain the connection fl 
= vtp. Thus p = 10, 2, 1, 0.5 and 0.I correspond 
to fl = 3.16, 1.41, 1, 0.707, and 0.316, i.e., when 
p = 0.1, the shear yield stress of the orthotropic 
material is slightly less tha~.: a third of the iso- 
tropic value. 

Of course the behavior noted above is not 
confined to material of nearly equal tensile yield 
stresses and relatively small shear yield stress. I t  is 
evident from (2.2) and (3.3) that a small value of p 
can result from a small value for T or the "right' 
combination of the tensile yield stresses ~ ,  Y and 
Z. To make this point, we consider a material 
where the anisotropy is rotationally symmetrical 
about the principal axis X 3. Then 

p = 4 T 2 (  Ix 2 4 Z  21 ). (5.2) 

Thus a small value of p can arise if T Js small 
(relative to X and Z )  or if X is nearly equal to 
2Z.  Similarly p will assume a large value if T is 
large compared to X and Z. 

The effective stress contours for the five cases 
are plotted in Fig. 4 for n = 3 and in Fig. 5 for 
n = 20 using the dimensionless similarity coordi- 
nates (~'ruTo/sJ)x and (a%'to/sJ)y where s =  
(%/%),+1.  Contours for p = 2 and 10, or type-B 
fields, are drawn in Figs. 4(a) and 5(a); the con- 
tours for p = 1 are also included. The characteris- 
tics of the type-B fields can be seen. Contours for 
p = 0.5 and 0.1, or type-A field~, are plotted in 
Figs. 4(b) and 5(b). Here the shape of the contour 
becomes increasingly elongated as p becomes small 
and appear like narrow vertical strips above and 
below the crack tip for p = 0.1. If  the singularity 
fields (4.1) are the full solution everywhere in the 
plastic zone, then the contours in Figs. 4 and 5 are 
the actual shapes of the elastic-plastic boundaries. 
Since (4.1) dominates over a region well within the 
plastic zone, these contours suggest a possible 
trend of the plastic zone size and shape as the 
degree of plastic orthotropy increases. Thus the 
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shape and size of the effective stress contours in 
Figs. 4 and 5 could be quite different from the 
actual elastic-plastic boundaries. 

The angular variations of the stresses and strains 
corresponding to Mode II loading are shown in 
Figs. 6 and 7 ior n = 3 and n = 20 respectively. 
Again the five cases are arranged in the order of 
decreasing p values. For p > 1, the shear strain 
peaks at 0 --- 45 ° and 135 °. The shear strain peak. 
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at 0 ~ 45 ° is the dominant peak for the n = 20 
material. As in the Mode I cases, angular distribu- 
tions with two peaks ( p  > 1) will be called type-B 
fields. For p < 1, fro peaks at 0 - 0 °. The normal- 
ized stresses and strains in the plots (d) and (e) are 
defined by O--ij = ~Oij and iiy = i i j /  yFp. For n = 
20 and p = 0.1 the shear strain distriI~ation resem- 
bles a delta-function. Angular distributions for 
p < 1 will be called type-A fields. Effective stress 

contours for the type-B and type-A fields are 
plotted in the similarity coordinates (a'roYo/SJ)x 
and (a~o%/sJ)y, where s = (To~%) "+t, in Figs. 8 
and 9 for n---3 and 20 respectively; note that a 
different scale has been used for the ordinate. The 
characteristics of the type-B and type-A fields are 
clearly distinguishable in these plots. In particular, 
we call attention to the substantial increase of the 
radial distance (along the plane of the crack) of 
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the effective stress contour as the value of p 
decreases from unity. 

6. Mode ! and Mode II perfect plasticity solutions 

A plane-strain slip-line theory for rigid/plastic 
incompressible materials with anisotropic convex 
yield surfaces has been developed by Rice (1973). 
Subsequently, Rice (1984) presented a general for- 
mulation of two-dimensional elastic-perfectly- 
plastic anti-plane straining for materials with arbi- 
trary anisotropic convex yield surfaces and ob- 
tained anti-plane crack-tip slip-line fields under 
contained yielding. Based on the formulations in 
Rice (1982, 1984), crack-tip solutions for sta- 
tionary and quasi-statically growing cracks in 

(o) 

B 

C 

(b) ~ E 

D 

C 

Fig. 10. Mode I and II slip-line fields for perfectly-plastic 
orthotropic materials. 

single crystals have been presented by Rice and 
Nikolic (1985). We use Rice's 1973 method to 
construct Mode I and Mode II plane-strain slip- 
line solutions for the ideally-plastic material with 
yield surface specified by (3.2). Details of the 
construction are given by Pan (1986) and will not 
be discussed here. 

The Mode I plane-strain slip-line field for an 
orthotropic material is shown in Fig. 10(a). The 
included angles of the constant stress zones and 
the fan sectors are precisely equal to the angles for 
the Prandtl slip-line field for isotropic material. 
While the angular span of the various sectors do 
not depend on p, the stresses are strongly depen- 
dent on p. The left column of plots in Fig. 11 
show the angular variations of orr, o0e and o,o for 
the five cases p = 10, 2, 1, 0.5 and 0.1. In the plots 
(a), (b) and (c) the stresses have been normalized 
by the effective tensile yield stress o o, defined by 
o0 = v~¢0, where ¢0 is the effective shear yield 
stress (see (2.4)). The normalized stresses in plots 
(d) and (e), i.e. the type-A fields, have been scaled 
by 1/~, i.e. #,.j = ¢tp-oi,/o o. A comparison of the 
angular variations of the stresses in Fig. 3 with the 
Mode I stresses in Fig. 11 reveal remarkably close 
agreement between the low-hardening solution (n 
= 20) and the perfect plasticity solution. This 
close agreement strongly suggests that the non- 
hardening limit of the stresses of the dominant 
singularity solution is the perfect plasticity solu- 
tion. 

The Mode II slip-line field for an orthotropic 
material governed by (2.1) is shown in Fig. 10(b). 
The general features of the slip-line field are simi- 
lar to those for the isotropic material. However 
the angular span of the fan sector directly ahead 
of the crack 01 increases/decreases as the value of 
p increases/decreases from unity; the angular span 
of the other two fan sectors 02 are determined 
from the condition 01 + 202 = ~,rr. The right col- 
umn of plots in Fig. 11 show the angular varia- 
tions of the stresses for p = 10, 2, 1, 0.5 and 0.1. 
Again we note the remarkable resemblance be- 
tween the stress distribution for the low-hardening 
material (n = 20) in Fig. 7 and the perfect plas- 
ticity solution. 

The strains at the tip of the crack in perfect 
plasticity cannot be obtained by any elementary 
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analysis. However it may be noted that the 1 / r  

singularity in strains can occur only in the fan 
sectors where the only non-zero component is cP 0. 
These features are reflected in the low-hardening 
strain fields of Figs. 3 and 7. 

It is known that the solution near a stationary 
crack tip in perfectly plastic materials is not 
unique. Nemat-Nasser and Obata (1984) compare 
various solutions obtained for Mode I and II 
stress fields near a stationary crack tip on the 
basis of various assumptions. They show that, as 
far as the field equations are concerned, one may 
admit solutions with elastic sectors. They con- 
clude, however, that Prandtl's solution seems most 
reasonable for Mode I. Also, they conclude that, 
for Mode II, Hutchinson's solution (1968b) is one 
out of other possibilities and that, in this case, a 
solution with elastic sector may be more reasona- 
ble, by considering a limiting case of the dynamic 
solution. Nevertheless, Hutchinson (1968b) and 
Shih (1983) show that the stresses of Hutchinson's 
Mode II solution (with no elastic sector) agree 
with the stresses of the nonhardening limit of the 
corresponding power-law solutions. Our numerical 
investigations strongly indicate that the non- 
hardening limit of the stresses of our power-law 
hardening solutions for anisotropic materials is 
our slip-line solution. Our slip-line solutions, how- 
ever, do not contain any elastic sectors. Nemat- 
Nasser and Obata (1984) also show that by allow- 
ing the existence of elastic sectors, one obtains 
continuous stress field for mixed Mode I and If, 
whereas the solutions by Shih (1974), guided by 
the nonhardening limit of the power-law harden- 
ing solutions, contain no elastic sector and have 
radial stress discontinuity when Mode I loading is 
dominant. 

For a power-law material, Gao and Nemat- 
Nasser (1983) obtained a dynamic solution which 
involves no elastic unloading for Mode I. The 
angular distribution is the same as that for elastic 
perfectly plastic case: i.e., no elastic unloading, 
whereas the corresponding quasi-static solution 
involves an elastic unloading sector (see Rice 
(1982) for many references on this subject). For 
the Mode II solution, Gao and Nemat-Nasser 
(1983) obtained elastic unloading close to the crack 
surfaces; the quasi-static solution for elastic per- 

fectly plastic case also involves elastic unloading 
but at different locations. For the mixed Mode I 
and II dynamic cases, Nemat-Nasser (1986) indi- 
cates that the presence of any amount of Mode I 
loading dominates the stress field and may com- 
pletely eliminate the elastic sector. 

7. D i s c u s s i o n  

Thus far we have confined the discussion to the 
case where the material Xl-axis coincides with the 
x :axis .  By the results of Section 3, p remains 
unchanged when the Xl-axis is rotated from the 
x : ax i s  by ½m~ ( m =  1, 2, 3); furthermore, the 
symmetric angular distributions in Figs. 2, 3 and 
1 l ( a )  and the anti-symmetric angular distributions 
in Figs. 6, 7 and l l (b )  are also unchanged, and the 
values of I in Table 1 are preserved. For discus- 
sion purposes we refer to these as group-0 fields. 
Suppose that the X:axis is rotated from the x :ax i s  
by ~ + -~m~ (m = 0, 1, 2, 3). By the results of 
Section 3, x~, x 2 and x 3 remain axes of symmetry 
and the angular variations of the near-tip fields do 
not depend on m; these fields are referred to as 
group-45 fields. For the purpose of making the 
connection between group-0 and group-45 fields, 
the yield criterion (2.4) is specialized to plane- 
strain conditions and restated in the form 

$~ _ )2 + o 2  = # 2 .  ( 7 . 1 )  = ¼P(oH o22 

Group-0 fields are associated with (3.2) where- 
upon we make the identifications 

?~ = %, T = T, /3 = p .  (7 .2 )  

Group-45 fields are associated with (3.8) where- 
upon these identifications are made 

% ~ =  T 1 (7.3) 

¢7' 
Thus group-0 angular distributions for p = 10, 2, 
1, 0.5 and 0.1 as shown in Figs. 2, 3, 6, 7 and 11 
are identical to group-45 angular distributions for 
p = 0.1, 0.5, 1, 2 and 10. In other words, while 
group-0 type-A fields are characterized by p < 1, 
group-45 type-A fields are characterized by p > 1. 
Group-0 and group-45 type-B fields are char- 
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acterized by p > 1 and p < 1 respectively. Simi- 
larly the value of the integration constant for the 
group-45 fields, 14s(n, p) is equal to l(n, I /p) .  
It also follows from (7.3) that the form of the 
group-45 near-tip fields is still given by (4.1) with 
las replacing I and %/1/-P and Y0/1/-P replacing 
% and Y0 respectively. 

If the orientations of the axes of orthotropy do 
not fall into any of the two groups under discus- 
sion, the fields in general do not possess the 
symmetries (Mode I or Mode II) discussed. In 
other words remote tensile stress or remote shear 
stress will induce near-tip fields whose angular 
variations are neither symmetric nor anti-symmet- 
ric. These fields will depend implicitly on an ad- 
ditional parameter which measures the angular 
separation of the material Xt-a×is from the crack 
plane (or the xl-axis). Mixed-mode near-tip fields 
for plastically deforming isotropic materials have 
been discussed by Shih (1973, 1974). 

It can be seen from Figs. 2 and 3 that the 
dimensionless Mode I stresses Oss and 8 ,  are 
substantially elevated above 8¢ (or ~ )  as the value 
of p decreases from unity (note that ~s = 1/~-0,s). 
These distributions indicate that the (tensile) hoop 
and radial stresses (and the hydrostatic stress) will 
be substantially elevated above the effective 
shear/tensile yield stress defined by (2.4) for p < 1. 
To gauge this effect of orthotropic plasticity we 
consider materials whose response under shear 
with respect to the Xt-X2-axes can be described by 
the identical shear strain-shear stress relation. 
However, these materials respond differently un- 
der tensile stressing along the principal axes. For 
example the materials under consideratiota will 
have the same a, %, T0 and n values if their 
behavior can be represented by the Ramberg-  
Osgood relation (2.6). At a fixed radial distance r 
from the crack tip, and for the same value of J,  
the stresses and strains at the near-tip regions of 
these various materials vary as 

% ec ~,s(O)l-t/(.+, 
(ijcc Zij( O ) I -"/tn+ t~ (7.4) 

where it has been noted that the dimensionless 
angular functions ~j  and ~'~s and the constant I 
depend implicitly on n and p. Using the values of 

I in Table 1 and 6is in Figs. 2 and 3, it can be 
easily checked that for p = 0.1 and n = 20 the 
tensile stresses are at least a factor of  two larger 
than the corresponding values for p = 1.0. 

The tensile hoop stress o00 ahead of the crack 
(0 = 0) appears to have an important role in frac- 
ture initiation. Within the zone dominated by 
(4.1), the ratio of  the tensile stress for the p 4:1 
material to that for the p = 1 material is 

Ooo(p~l)  = 8oo(P~l)[l(p=l______))] '/t '÷t;, 
a0,(p = 1 ) a, , (p = I)  t ( p *  I)  

(7.5) 

This ratio for Mode I is plotted in Fig. 12 as a 
function of p for n = 3, 10, 20 and Qo; the n = oo 
curve is obtained from the perfect plasticity analy- 
sis. The elevation of the tensile stress above the 
isotropic value for p < 1 is very large for the 
iow-hardening material. The hydrostatic stress be- 
haves in a similar manner. This elevation of the 
tensile stresses warrants attention since experi- 
ments and model calculations have shown that 
high te~lsile and hydrostatic stresses are detrimen- 
tal to fracture toughness. 

The ratio of the peak strains (within the zone 
dominated by (4.1)) can be expressed by a similar 
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Fig. 12. Ratio of Mode I hoop stress ahead of the crack in an 
orthotropic material to hoop stress in an isotropie material for 
ta = 3, 10, 20 and oo. 
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relation, e.g., the shear strain ratio is given by 

, , e ( p  * 1) _ -  1) [ I (  p = 1)]  °/'n+'' 
%a(P =1) c,.a(P 1 ) [ l ( p * l )  ] 

(7.6) 

Using the Mode I ~',e from Figs. 2 and 3 and the I 
values of Table 1 in (7.6), it is apparent that the 
shear strain ratio is larger than unity for p > 1.0. 
It may be noted that plastic deformation within 
the near-tip region of highly orthotropic materials 
(as characterized by p << 1 or p >> 1) consists 
primarily of intense shear emanating from the 
crack tip along certain orientations (see Figs. 2, 3, 
6, and 7). Such intense deformation patterns could 
be favorable to the development of localized shear 
bands. 

We also want to draw attention to another 
aspect of the near-tip fields. At the same value of 
J the magnitude of the near-tip stresses due to 
Mode I loading is larger than the magnitude of 
stresses caused by Mode II loading on the identi- 
cal cracked body. The difference is very substan- 
tial for the low hardening material (n = 20). This 
is an effect of plasticity since the difference be- 
tween Mode ! and II stress magnitudes is negligi- 
ble for the elastic body (n = 1). On the other 
hand, the near-tip strain magnitude under Mode 
II loading is much larger than that under Mode I 
loading especially at small values of p. This can be 
easily checked by using the tabulated I values for 
Mode I and II (in Table 1), the angular functions 
in Figs. 2, 3, 6 and 7 and equation (7.4). 

We have discussed at some length plane-strain 
near-tip fields for a wide range of p values. Many 
engineering materials have deformation character- 
istics which may be broadly characterized as or- 
thotropie, e.g., highly textured crystalline materi- 
als and composites. Consider a fiber reinforced 
composite with fibers aligned in the x2-direction 
and suppose that the nonlinear macroscopic de- 
formation characteristics of the composite can be 
approximated by the orthotropic plasticity model 
of Section 2. The composite has a crack oriented 
along the Xl-direction. Suppose the crack length 
and the size of the plane-strain region are large 
compared to the fiber diameter and spacing, and 
that the plastic zone size is of the order of ten 

fiber spacings or more. We can then expect (4.1) 
to be an adequate representation of the macro- 
scopic fields within the plastic zone. These outer 
macroscopic fields could presumably set the 
boundary conditions for a more precise model of 
the crack-tip region which takes into account the 
heterogeneity at the scale of tibet" spacings. The 
viability of such an approach remains to be in- 
vestigated. We also point out that under plane- 
strain conditions, the orthotropic plasticity formu- 
lation adopted in this study predicts no difference 
in the angular distribution of the macroscopic 
stresses and plastic strains between two limiting 
cases: the crack parallel to many fibers ar, d the 
crack cutting across (perpendicular to) many 
fibers. Nevertheless on the scale of fiber spacing 
the str~ gses and strains will depend on the orienta- 
tion of the crack relative to the fibers. 

Small scale yielding analysis based on a piece- 
wise-power law representation of material behav- 
ior and generalized by Hill's yield criterion (2.1) is 
being carried out by Barsoum (1985). The incre- 
mental plasticity plane-strain finite element calcu- 
lations employed a rather refined near-tip mesh 
which can accommodate the high stress and strain 
gradients expected at the crack tip; the pertinent 
plasticity parameters are n = 3 and p = 0.1, and 
the strong material axis is perpendicular to the 
crack plane. Barsoum finds that the plastic zone is 
more elongated than the corresponding plastic 
zone for an isotropic material and that the 
elastic-plastic boundary for the orthotropic 
material is quite similar to the con!our for p = 0.I 
in Fig. 4. The angular variations of the stresses 
and strains computed at Gauss points well within 
the plastic zone are similar to the distributions 
shown in Fig. 2. Nevertheless he observes that the 
details of the stress and strain distributions ahead 
(0 ° < 0 ~< 30 ° ) and behind (150 o < 0 ~< 180 o ) the 
crack differed somewhat from the singularity 
fields. The discrepancy is not surprising since, for 
highly orthotropic material, the extent of the plas- 
tic zone ahead and behind the crack tip is rather 
small compared to the overall size of the plastic 
zone (these features are indeed suggested by Figs. 
4 and 5). In the zones in question the Gauss points 
are relatively close to the elastic-plastic boundary. 
In other words the Gauss points could be too 
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remote from the zone dominated by the singular- 
ity fields to be suitable for detecting the details of 
the singularity fields. Since the failure processes 
are generally activated in a region ahead of the 
crack tip, the detailed distributions of the stresses 
and strains ahead of the crack tip deserve further 
investigation. 

Under small scale yielding and for isotropic 
elasticity J and the elastic stress intensity factor 
K~ are related by 

d _ (1 - v 2) 
E K~ (7.7) 

For orthotropic elasticity, a similar relation be- 
tween K t and J can be derived using the elasticity 
solutions catalogued by Sih and Chen (1981) and 
Irwin's crack closure procedure for the energy 
release rate. The value of J can also be determined 
directly using strength of material type analysis 
and energy procedures. Such procedures have been 
discussed by Rice (1968a, b), Rice, Paris and 
Merkle (1973), and have been reviewed in recent 
literature (e.g., Kanninen and Popelar, 1985). 
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