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Chronic amphetamine treatment increases striatal calmodulin in rats 

JILL M. ROBERTS-LEWIS I*, MICHAEL J. WELSH z and MARGARET E. GNEGY ) 

Departments of 1psychology, -'Anatomy and Cell Biology, and ~Pharmacology, 
The Universi O' of Michigan, Ann Arbor, M148109 (U.S.A. ) 

(Accepted 24 June 1986) 

Key words: Amphetamine - -  Calcium - -  Calmodulin - -  Dopamine - -  Sensitization - -  Striatum - -  Radioimmunoassay 

A radioimmunoassav was developed to measure calmodulin in striatum from rats treated with one dose or repeated injections of 
amphetamine. Chronic, but not acute, amphetamine treatment resulted in a significant increase in total calmodulin levels in striatal 
homogenates. This effect may be linked to the behavioral sensitization which develops after chronic amphetamine treatments. 

When rats are adminis tered a single dose or re- 

peated injections of amphetamine  ( A M P H ) ,  they ex- 

hibit a marked behavioral  potent ia t ion to subsequent 

challenges with A M P H  which persists several weeks 

after the initial exposure to the drug la. This pharma-  

cological sensitization is corre la ted with an increase 

in the amount  of dopamine  which is re leased from 

striatal tissue in vitro in response to A M P H  infu- 

sion 91). The molecular  events underlying these 

changes are unknown. The present  study was de- 

signed to explore the possible involvement  of the cal- 

cium binding protein,  calmodulin (CAM), which af- 

fects a number  of critical enzyme activities in the 

CNS, including calc ium-dependent  adenylate  cy- 

clase, phosphodies terase ,  and protein  kinase activi- 

ties ~°. This neuromodula to r  protein  is part icularly 

enriched in synaptic fractions of the brain,  where it is 

associated with the nuclear matrix,  cytosol,  vesicles, 

and postsynaptic density R°. CaM appears  to be in- 

volved in the synthesis and release of many neuro- 

transmitters,  as well as o ther  possible cell functions s. 

CaM is also abundant  in s tr iatum 19, where it has a 

demonst ra ted  role in modulat ing dopaminergic  activ- 

ity through the dopamine-sensi t ive  adenylate  cyclase 

system ~7. Treatments  which up- or down-regulate  

dopaminergic activity result in a redistr ibut ion of 

CaM between membrane  and soluble subcellular 

fractions 6'7. Therefore ,  CaM may have an important  

role in the regulat ion of dopaminergic  neurotrans-  

mission in the nigrostriatal  pathway,  and in the be- 

havioral changes due to manipulat ions of this system. 

We report  here that a regimen of A M P H  which re- 

sults in behavioral  sensitization also produces  a sig- 

nificant increase in CaM levels in striatal homoge-  

nates. 

Polyclonal ant ibodies  against CaM were prepared  

in a sheep that was first immunized with performic 

acid-oxidized CaM 17, then boosted with injections of 

native protein,  according to the procedure  described 

in Dedman  et al 4. Upon bleeding,  serum for the ra- 

d ioimmunoassay described below is obta ined by al- 

lowing the blood to clot, fol lowed by centrifugation 

at 6000 g for 20 min at 4 °C. This serum is then stored 

at -20  °C until it is thawed and diluted for use in the 

assay. Calmodulin  from rat testes was purified by the 

method of Dedman  et al 3, and was radio- iodinated,  

or used for the s tandards in the radio immunoassay 

described below. Lyophil ized parvalbumin was ob- 

tained from Sigma Chemical  Company.  

Female ,  Hol tzman rats (225-250 g) were injected 

(i .p.) with ei ther  2.5 mg/kg A M P H  or an equal vol- 

ume of saline once daily for 5 days. Ten days after the 
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last injection,  all animals received ei ther  A M P H  (2.5 

mg/kg i .p.) or saline 30 min before decapi ta t ion,  such 

that 4 t rea tment  groups were formed:  (1) chronic 

t rea tment  with A M P H  - -  challenge with A M P H ;  (2) 

AMPH-sa l ine ;  (3) sa l ine -AMPH:  (4) saline-saline. 

Af te r  decapi ta t ion,  str iata were rapidly removed and 

homogenized in 12 vols. of ice-cold 125 mM borate  

buffer (pH 8.4) containing 75 mM NaCI and 3 mM 

E G T A  ( R I A  buffer).  Crude homogena te ,  soluble. 

and 27,000 g part iculate  fractions were p repared  for 

rad io immunoassay  as follows. Homogena te  and par- 

ticulate fractions were solubilized in 1% Lubrol  PX. 

and all samples were boiled at 95 °C for 5 rain and 

cooled rapidly in a dry ice-methanol  bath (about  5 s). 

Each sample was di luted in R I A  buffer to between 

0.05 and 0.4 mg protein/assay tube and equi l ibrated 

for approximate ly  24 h at 4 °C in plastic tubes con- 

taining 10,000 cpm of purified [1251]CAM (prepared  

by Bolton and Hunte r  radio- iodinat ion,  NEN Du 

Pont,  about  2000 Ci/mmol) ,  a 1:20 final dilution of 

sheep serum containing ant i -CaM ant ibody,  suffi- 

cient to bind about  20% of the total  radioact ivi ty ,  and 

R I A  buffer containing 20/~g BSA/ml  in a final assay 

volume of 500 /A. Ant igen-an t ibody  complex was 

precipi ta ted by adding 1 ml of a 20% polyethylene  

glycol (M r = 8000) solution to each tube.  Samples 

were then vor texed,  centrifuged at 5000 g for 30 min. 

and the supernatants  were aspirated.  Pellets were 

counted for [125I] in a Tracor  Analyt ic  gamma coun- 

ter. Quant i ta t ion  of CaM content  in the striatal ex- 

tracts was der ived by using a s tandard curve of highly 

purif ied,  unlabel led CaM between 0.1 and 10/~g. The 

1C50 for [1251]CaM displacement  was 650 ng. Two or 

three dilutions per  sample were measured  to ensure 

tissue l ineari ty with the s tandard  curve. Trea tment  

effects were evaluated  by an analysis of variance with 

p lanned comparisons (contrasts)  between the 4 treat-  

ment  groups. The method described here is basically 

a modificat ion of previously descr ibed CaM radioim- 

munoassays 2"1~, with the novel advantage of replac- 

ing protein A or second ant ibody procedures  with a 

polyethylene glycol precipi tat ion of ant igen-ant ibody 

complex,  thereby reducing t ime and reagent  costs. 

Parvalbumin did not displace t racer  at any concen- 

trat ion between 0.1 and 100/~g, while increasing con- 
centrat ions of crude brain extracts displaced tracer 

with a curve of the same slope as the CaM standard 

curve (Fig. 1). 
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Fig. l. p25I]Calmodulin displacement curves for purified, unla- 
belled calmodulin (~l~) and crude striatal extracts (4~): The 
IC5~ for purified calmodulin is 650 rig. 

As seen in Fig. 2, total  CaM levels in striatal ho- 

mogenates from animals r e c e M ng  chronic A M P H  

(group 1 or group 2) were significantly higher (P  < 

0.001) than CaM levels in s tr iatum from ei ther  acute 

A M P H  (group 3) or  saline controls (group 4). The 

membrane -bound  pool  of  CaM that was not removed 

by EGTA-wash ing  (EGTA-res i s t an t )  was not af- 

fected by A M P H  t rea tments  (Fig, 2). This result indi- 
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Fig. 2. Soluble (Cytosol), particulate (Membrane), and total 
calmodulin levels in striatum from rats which received I of the 4 
chronic-challenge treatment regimens indicated above. Chron- 
ic treatments consisted of 5 injections Of amphetamine (once 
daily for 5 days) followed by 9 days with no injections. Acute 
challenges with amphetamine were administered on the tenth 
day after the last injection, 30 min prior to decapitation. Crude 
particulate and soluble fractions were prepared from striata 
which were homogenized in a buffer containing 3 mM EGTA, 
as described in the text. Data shown are the mean calmodulin 
levels _+ S.E.M. for 7-8 rats per group. 
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cates that A M P H  treatment is either increasing the 

CaM associated with a distinct, membrane-bound,  

labile (EGTA-sensitive) pool, or it is increasing CaM 

within the soluble pool. The possibility that a labile, 

membrane-bound pool of CaM may be selectively in- 

volved in the response to chronic alterations in nigro- 

striatal dopamine activity warrants further investiga- 

tion. The functional significance of the non-labile 

(EGTA-resistant) pool also requires evaluation. 

There are reports of calcium-independent CaM- 
binding sites in brain l's. However,  it also appears 

that some of the calmodulin remaining in membranes 

after the E G T A  wash is capable of stimulating ade- 

nylate cyclase activity in a calcium-dependent man- 

ner, since the addition of calcium to these mem- 

branes produces a small activation of adenylate cy- 

clas&. 

The observed increase in total CaM levels might 
indicate the de novo synthesis of new protein, or de- 

creased degradation of existing CaM, or possibly the 

release of 'silent' CaM from a binding protein which 
prevented its detection by radioimmunoassay. In- 

creasing CaM levels within a structure or compart- 

ment within a cell could decrease the calcium re- 

quirement for calcium-dependent enzymes located 

within that compartment,  resulting in their activa- 

tion. For example, presynaptic increases in striatal 

CaM might be expected to enhance dopamine syn- 

thesis through the calcium-dependent activation of 

tyrosine hydroxylase, or facilitate the release of do- 
pamine in a manner which has been described for 

other neurotransmitter systems 5. These events 

could, in turn, result in an increase in the amount of 

dopamine released by AMPH,  which might be a criti- 

cal feature in the development of behavioral sensiti- 

zation to AMPH,  as suggested by Robinson and 
Becker ~a. Furthermore,  increases in striatal CaM 
may also selectively alter pre- or postsynaptic cAMP 

levels through the activation of calcium-dependent 

adenylate cyclase or phosphodiesterase ~':. either of 

which could modify the nigrostriatal signal which ulti- 

mately shapes behavioral responsivity to AMPH.  We 

have shown that the striatal dopamine-sensitive ade- 

nylate cyclase system is modulated by doses of am- 

phetamine which produce behavioral activation in 

rats 12, and there are also several studies which sug- 

gest that cAMP plays a role in the behavioral effects 

which are characteristic of dopamine agonists ~z~5 

Although we have found no alteration in the sensitiv- 

ity of striatal adenylate cyclase for dopamine or CaM 

in vitro after this chronic A M P H  treatment regimen 

(unpublished findings), an alteration in adenylate cy- 

clase activity due to in vivo changes in the compart- 

mentation of CaM cannot be ruled out. 

Other investigators have reported a decrease in 

dopamine D2@H]antagonist binding in striatal mem- 

branes from behaviorally sensitized rats after chronic 
A M P H  14. In this context, it is interesting that Sever- 

son j~' has noted a relationship between elevated stria- 

tal CaM levels and genetically decreased D_~-dopa- 

mine receptor densities in mice. Together,  these 

studies and the present findings suggest there could 

be a functional link between CaM and D,-dopamine 

receptors. Although the relationship between CaM 

and behavioral sensitization remains to be explored, 

the present results clearly reinforce the idea of a 

functional relationship between striatal calmodulin 
and nigrostriatal dopamine activity. 
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