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THE GEOMETRICAL MODEL OF DENDRITIC GROWTH: THE SMALL VELOCITY LIMIT 
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We present a systematic analysis of the geometrical model of dendritic growth in the small velocity lim2t. Velocity selection 
is demonstrated analytically and the allowed velocities are explicitly calculated as a function of anisotropy. 

1. Introduction 

A number of non-equilibrium systems give rise 
asymptotically to complex, yet reproducible, pat- 
terns independent of the initial conditions. For 
example, the dendritic tips of growing snowflakes 
have a parabolic shape with fixed width and rate 
of growth (dependent, of course, on the external 
undercooling and the material parameters) [1]. 
Similarly, in a Hele-Shaw call, when a viscous 
fluid is displaced by an inviscid one, the system 
evolves into a single finger of reproducible shape 
and velocity [2]. The problem of understanding 
these patterns has received increasing attention in 
recent years. 

In both systems mentioned above, it has been 
known for some time that, in the absence of 
surface tension, the equations of motion possess a 
continuum family of steady-state solutions char- 
acterized by arbitrary velocity [2, 3]. Furthermore, 
these solutions, for the experimentally correct 
velocity, well approximated the actual patterns 
seen. It had long been conjectured that the surface 
tension acted in some fashion to select a unique 
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velocity, but no mechanism had been elucidated. 
In particular, perturbative analyses gave no infor- 
mation on the velocity selection problem [1, 8]. 

Recently, though, much progress has been made 
on this question on a number of fronts. One 
involves a set of simplified models developed to 
explore the dendritic growth problem. The first is 
the geometrical model [4], in which the dynamics 
of an interfacial curve is controlled by the local 
geometry of the curve. The model, for a wide 
range of parameters, was found to evolve into 
complex dendritic shapes reminescent of snow- 
flakes, with dendritic tips which grew out at a rate 
independent of initial conditions. The analysis of 
the model at zero surface tension yielded a con- 
tinuous family of solutions with arbitrary velocity. 
It was demonstrated numerically, however, that 
upon the introduction of surface tension, this 
family breaks down to a discrete set of solutions 
[5]. This breakdown is nonperturbative, arising 
from a singularity exponentially small in the 
surface tension. The requirement that this singu- 
larity be absent then forms a non-linear eigen- 
value problem for the velocity. The final selection 
of a unique pattern from this discrete set is a 
dynamical question. In general, only the fastest 
moving (if any) of this set is linearly stable and 
thus seen in the simulations [6]. 

Similar conclusions were drawn from an analy- 
sis of another simplified model of dendritic growth, 
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the boundary-layer model [7]. This model differs 
from the geometrical model in that it has an 
additional field which lives on the interface. It too 
exhibits a non-perturbative breakdown of the 
zero-surface-tension continuum of steady-state 
solutions in the presence of finite surface tension. 

In parallel with this development, further study 
[8] of the viscous finger in a Hele-Shaw cell also 
demonstrated that the set of steady-state solutions 
is discrete for non-zero surface tension. Later work 
has also shown that velocity selection in the case 
of dendritic growth is also controlled by the ex- 
istence of solutions of the steady state equations 
including surface tension [9]. In all of these sys- 
tems, the microscopic surface tension acts in a 
striking fashion to determine the macroscopic dy- 
namics. 

Until now, the only demonstrations of this "mi- 
croscopic solvability" have been numerical in na- 
ture. An analytic method for computing the 
selected velocity as a function of the control 
parameters (undercooling, anisotropy, etc.) has 
been lacking. Even the simplest scaling behavior 
of the velocity with these parameters is not under- 
stood. A first attempt to understand these prob- 
lems was recently undertaken by Langer [10]. He 
studied the steady-state equations for the geomet- 
ric and boundary-layer models with the ani- 
sotropy set equal to zero, so that there are no 
non-trivial solutions. By making an inspired, but 
uncontrolled, approximation Lartger was able to 
derive the leading behavior for small velocity of 
the "mismatch function", which controls the 
breakdown of the continuous family of solutions. 
Apart from an overall multiplicative factor inde- 
pendent of velocity, his calculation was confirmed 
by direct numerical computation. Langer's work 
thus succeeded in capturing some of the essential 
features of the small velocity limit o f  the local 
models, but failed to provide a fundamental and 
systematic understanding of the problem. In ad- 
dition, a satisfactory treatment of the effects of 
anisotropy remained an open problem. 

In this paper, we shall present a systematic 
treatment of the small velocity limit of the geo- 

metric model. In so doing, we shall be able to 
understand the justification and limitations of 
Langer's approximation. We shall also derive ana- 
lytic results for the dependence of the selected 
velocity on anisotropy. These predictions will be 
shown to be in accord with the results of direct 
numerical computation. Lastly, we shall discuss 
possible extensions of the method to address sta- 
bility questions and other more physical models. 

2. The geometrical model- preliminary 
observations 

The geometrical model [4] (GM) is a simple 
model of a moving interface in two-dimensions, in 
which the motion is strictly a function of the local 
geometry of the interface. Notwithstanding its 
simplicity, it has a very rich structure. Depending 
on the values of the anisotropy and other control 
parameters, the model exhibits many of the 
phenomena seen in more complicated systems, 
induding repeated side-branching, tip-splitting 
and stable needle-crystal behavior. Its underlying 
mathematical structure is also quite similar to 
other pattern-forming systems. The GM has 

• proven to be a very useful testing-ground for 
studying the physics of pattern-formation. 

The basic assumption of the GM is that the 
normal velocity, on, of a point on the interface is a 
function only of the curvature r, its even deriva- 
tives with respect to the arclength s, and the 
orientation (with respect to a fixed direction in 
space) of the normal to the interface, given by 0. 
In detail [41, 

[ d2r ) 
v~ = ~ ~-d-'~s 2 + • + A ~  2 -  B~ 3 

x (1 + ,cos,n0) .  (2.1) 

Here y plays the role of surface tension, or 
short distance cutoff. A rescaling of length and 
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time scales shows that the surface tension enters 
a s  y o  2, where v is a typical velocity. Thus, if we 
choose units so that - /= 1, the small surface ten- 
sion limit corresponds to the limit of small veloci- 
ties. The parahaeters e and m corresponds to the 
strength and order of the anisotropy respectively, 
and A and B are other adjustable control parame- 
ters, playing the roles of undercooling and nuclea- 
tion size. We shall be interested in the following in 
the existence of steady-state solutions of the model, 
which satisfy the equation 

v, = v cos 0, (2.2) 

describing an interface of fixed shape moving at 
constant velocity v in a fixed direction. The behav- 
ior of the resulting steady-state equation is 
well-understood numerically [5]. The equation 
possesses solutions for only a discrete set of veloc- 
ities for given e, A and B. This can be most easily 
understood by considering the equation as a set of 
three coupled first-order equations for a trajectory, 
parameterized by s, in the three-dimension " phase 
space" of 0, ~ =  dO/ds ,  and X= d r / d s .  Then 
only one trajectory leaves the fixed point at 0 = 
-~ r /2 ,  ~ = h = 0, and similarly, only one trajec- 
tory enters the fixed point at 0 = *r/2, x = A = 0. 
For  a steady-state solution to exist, they must be 

the same trajectory, which by symmetry, must 
have A = 0 at 0 = 0. For general v, this will not 
occur, and so no solution exists for that ~. We can 
then define a "mismatch function" F which char- 
acterizes the mismatch of the two relevant trajec- 
tories 

- d*~ - 1 d ~ -  0), (2.3) F--- ---d-~ (0 = 0) = ~ ~ - ( 0  = 

The equation in this variable reads 

(V 2 -- X2)/~2 d/¢ dr  
dx  ----~ - xK2 dx  

2 o~r 2 
+ ( v 2 - x  ) r ( - ~ - ~ ) + r + A K 2 - B r  3 

-- .( ,  /,,> 

where we have used the geometric relation ~ = 
dO/ds ,  and T m is the Chebyshev polynomial 
satisfying T,,(cos 0) = cos toO. 

The trajectory that enters the fixed point at 
x = 0 (0 = ¢r/2) is characterized by the condition 
that K 0~ x for small x. By the chain rule, 

0~ - 1  OK 1 0~: 
09X os inO O0 ~U2 X2 0 0 '  

( 2 . 5 )  

so Og/Ox has a square root singularity at x = v ,  
unless F vanishes. Thus, to compute F, we need 
only examine the divergent part of a~/Ox,  and we 
can ignore any finite contributions. This diver- 
gence implies a specific behavior for the coeffi- 
cients of the power series expansion of x about 
x = 0. If we write 

OO 00 

• = E a.x 2"÷1+ E b.x 2", (2.6) 
n~0 n=l 

then 

a,,b,,-- Fo'b (1 + O(nl--)), as n 
2 ~ 3 / 2 0 2 n  

--* 00, 

(2.7a) 

where K is the curvature along the trajectory enter- 
ing the fixed point at 0--~r/2. The condition for 
velocity selection is then just F = 0. In the follow- 
ing, we shall compute F in the small velocity limit, 
and so proceed to examine its zeros. 

It is most convenient to discuss the steady-state 
equation in another variable, namely x = v cos 0. 

where 

vF,~ + F 6 = F. (2.7b) 

This last equation implies that all we need com- 
pute is the asymptotic behavior of the affs and 
b.'s for large n. It is to this task that we now turn. 
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3. A pedagogical example 

As explained in the previous section, we need to 
compute the leading behavior of the coefficients of 
the Taylor series about x = 0 for large n. To get a 
feel for how this calculation works, let us first 
treat a simpler, exactly solvable example where we 
can work everything out explicitly. This example 
is provided by the linearized form of the steady 
state equation (2.4) obtained by writing K = v cos 0 
+ E and dropping all terms nonlinear in ~. To 
simplify the analysis even further, we shall set 
A = B -- e = 0. The result of this is the linear equa- 
tion 

02 ~ 3x2)0 ~ xZ( v 2 - x2)-~x 2 + x(2o 2 -  

+(v2-3x2)~]+~=x(2x2-v2). (3.1) 

This is, modulo the dropping of the ~ term in the 
brackets, just the equation studied by Langer using 
WKB techniques. Our intent at this stage, though, 
is not to treat eq. (3.1) as an approximation to the 
full equation (2.4), but rather as a pedagogical 
exercise. 

Following the reasoning of the last section, we 
see that 8g/Ox has a square root singularity at 
x = v, and we may investigate the large n behavior 
of the Taylor series as in eqs. (2.6) and (2.7). Here 
the b, all vanish due to the symmetry of eq. (3.1) 
under x ~ - x, ~ ---, - ~. The a ,  satisfy the recur- 
sion relation 

where the constant K is fixed by eqs. (3.2a-b) to 
be 

K = z6, (3.4) 

with order o 2 corrections. Eq. (3.3) implies that 
there are two regions in n in which the a , ' s  have 
qualitatively different behaviors; namely n << 1/v  
and n >> 1 /v  2. In the former case, we may ignore 
the v 2 terms in the denominator, and we find that 
the a ,  grow as 4"(n!) 2. More precisely, for 1 << n 
<< 1/v 

n 
a ,  = K l I  ( 4m2 + 2) 

m~0 

~-v 4m 2 + 2 
2K(4" (n ! )  2) 

m~l/l 

~o 4 m Z + 2 ( 1  

For n >> 1/02, however, we must take account 
of the denominator. We may do this by changing 
the product into the exponential of a sum of 
logarithms, and approximating the sum by an 
integral via the Euler-Maclaurin sum formula, 
again with order v 2 corrections. The result is that 
for n >> 1 /v  2 

a~Ksinh(-~2)v-2"-S/2e-~'/2On-3/2.  (3.6} 

ao(I  + 3v 2) = - v  2, (3.2a) 

al(1 + 13v 2) - 6a o = 2, (3.2b) 

a.[1 + o:(4n 2 + 6n+  3)] 

= ( 4 , :  + ( ,  > 1). (3.2°) 

The solution of eq. (3.2c) is immediate: 

a ,  = K ]-I 4rnZ + 2 (3.3) 
,n=0 1 + v2(4m 2+ 6m + 3 ) '  

This is in agreement with our expectation from eq. 
(2.7), and implies that to lowest order in v the 
mismatch function for the linear problem is 

r =  2 # K  e - ' : o  

= T  (3 7) 

This result may be verified by a direct numerical 
integration of eq. (3.1). The functional dependence 
of F on v is the same as found by Langer in his 
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analysis, though the overall numerical factor dif- 
fers. In part, this is due to his dropping the ff term 
in the brackets in eq. (3.1), though it does not 
explain the entire discrepancy. Evidently his 
method is not capable of predicting this overall 
constant factor. 

The change in behavior of a n can be understood 
from the differential equation (3.1). For n << l / v ,  
we can calculate the an's in perturbation theory in 
0 2 . To lowest order, this is equivalent to dropping 

all the 0 2 terms in eq. (3.1). By so doing, however, 
we modify the behavior of the differential equa- 
tion at x = 0, introducing a spurious essential 
singularity. This accounts for the very singular 
behavior of the an's for 1 << n << 1/v. Since the 
original differential equation had only an irregular 
singular point at x = 0, this behavior must cease 
for n large enough. The behavior of the Taylor 
series is then controlled by the other singular 
point of the equation at x = v. 

4. The isotropic ease 

In this section we will begin our study of the original, non-linear steady-state equation (2.4). As in the 
previous section, we restrict our attention to the simplest case; namely e = A = B = 0. The more general 
case will be dealt with in the next section. As before, our task is to derive the recursion relation for the 
coefficients of the Taylor expansion, as defined in eq. (2.6). The b,'s again vanish due to symmetry, and the 
a~'s satisfy the equations 

a o + v2a 3 ---- 1, 

 o[1 + + + 
[(2 n - 2 ) / 3 ]  [( m + 1 ) / 2 ]  

= E E 

(4.1a) 

4S(n  - rn - 1, m - k, k )an_ l_ma , , _k a  k 
m-O k=max(O,2m-n+ l) 

x [ (n  - m -  1) 2 + - k)2 + k2 + n 2 + 2n]  

tt2n- 3)/31 C(,n + 1)/21 

--V2 E V~ 2 S ( 1 7 _ m _ l , m _ k + l , k ) a n _ l _ , n a m + l _ k a  k 
m--O k=max(O,2m-n+2) 

X [2(n - m - 1) 2 + 2(m - k + 1) 2 + 2k 2 + 2n 2 + 6n + 3]. (4.1b) 

S(a,  b, c) is a symmetry factor which equals 1, ½, ~ corresponding to the cases when (a,  b, c} has 3, 2 or 1 
distinct elements respectively. The bracket notation on the sum limits denotes the integer part of the 
argument. 

We see immediately from eq. (4.1a) that a o -- 1 with ¢(v  2) corrections which we may ignore. Eq. (4.1b), 
unlike eq. (3.2c), cannot be solved exactly. We can, however, extract the information we seek via the 
technique of matched asymptotic analysis [11]. This involves solving eq. (4.16) approximately in the two 
regions n << 1 /o  (region I) and n >> 1 (region II). As these two approximations are both valid in the 
overlap region 1 << n << 1/v,  the two results should match there, allowing us to "bridge the gap", and 
attain an answer valid for all n. 

For  region I, n << 1/v ,  and, as we saw in section 3, we may approximate the recursion relation by 
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dropping all v 2 terms. The result is 

[(2 n - 2 ) / 3 ]  [ m/2] 
- k X a  I a I i ' -  ~_, ~_, 4 S ( n - m - l , m - ~ ¢ ,  ) , - 1 - m  ,~-kak a n -- 

ra=O k = m a x ( O , 2 m - n +  l) 

X [ ( n - - m -  1) 2+ ( r n -  k)  2 + k 2+ n 2+ 2hi ,  (4.2) 

with the boundary condition a I = 1. It is easy to see that, for n large, (but still small compared to l / v ) ,  

I _ _  K4.(n!)Z(1 + 0 1 (4.3) 

where the constant K is a pure number independent of both v and n. 
We must now analyze eq. (4.1c) for n >> 1. We have just seen that for 1 << n << l / o ,  the an's grow as a 

factorial-squared. For n >> 1/v 2, on the other hand, the v 2 term on the left-hand-side of eq. (4.1c) 
dominates the 1. This implies that the a , ' s  now grow (only) exponentially, as (1/vz) ". Thus, for all n >> 1, 
each a n is bigger than its predecessor, an_t, by a large factor (originally a factor of n 2 and saturating 
when n -~ 1/v to a factor of 1/o2). Then the sums on the fight-hand side of (4.1b) are dominated by their 
m --- k -- 0 terms. Due to the v 2 in front of the second sum, we may then drop it entirely to this order. 
What  remains is then nothing but the linear recursion relation (3.2c) we studied in the last section! We 
may again solve this recursion relation exactly, yielding the result 

II K,m~__ ° 4 m 2 + 2  
a. = 1+v2(4m 2 + 6 m + 3 ) "  

(4.4) 

Here though, unlike in the last section, we cannot determine the constant K '  directly, since the 
approximate recursion relation is not valid for small n, where the boundary condition is imposed. Instead, 

u in the overlap region 1 << n << 1/v, obtained from eq. (3.5), with the we must match the behavior of a ,  
result of the n << 1/v analysis (4.3), whereupon we obtain 

K' K~r/2¢2 (4.5) 
sinh (~r/¢2-) ' 

The mismatch function now follows immediately in analogy with (3.7): 

F = 2 K ' ¢ ~  sirda (~r/¢~) v-3/2 e-,~/2~ = K 2 -  l/2~r3/Zv-3/2 e-./2~. (4.6) 

Apart from the numerical factor, this is the same result as for the linear equation (3.1). This is due to the 
fact that F is determined by the asymptotic behavior of the a , ' s  and asymptotically the a , ' s  obey the 
recursion relation of the linear problem. This explains why Langer, in his investigation of the linear 
problem, obtained the correct functional form for/7. 

The only remaining task is to compute the number K. Unfortunately, we know of no analytic procedure 
to accomplish this, so we must resort to a numerical computation. We solve the v-independent recursion 
relation (4.2) by computer for a I, from which 

I 

K =  lim a ,  ~ 1.0741... (4.7) 
, - ~  4"(n!)  z 
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Fig. 1. Graph of Fly-  3/2 e-,,/2e versus o. The straight fine is drawn through the data to aid in extrapolating to v = 0. 

Thus, our final result for the mismatch function for the case e = A = B = 0, to lowest order in o is 

F = 4.2292 v - 3 / 2 e - ' / z v .  (4.8) 

In fig. 1, we graph the result of a direct numerical computation of F / ( v - 3 / 2  e- , /2v)  for various values of 
o. We see that our result (4.8) is in excellent agreement with the extrapolation of the curve in fig. 1 to v = 0. 

5. Anisotropic ease 

We will next examine the effect of anisotropy on our equation (2.4). We shall first discuss in detail the 
case of biaxial anisotropy, m = 2. Afterwards we shall sketch what occurs for general m and also for 

non-zero A and B. 
For  the case at hand, the only modification to the analysis in section 4 is that due to the inhomogeneous 

piece, where x is now replaced by x / ( 1  + e T 2 ( x / v ) )  = x / ( 1  + e ( 2 x 2 / v  2 - 1)). It is apparent from this that 
the natural scaling of e is e - iv 2. Having performed this rescaling, and dropping terms higher order in v, 
the inhomogeneous term simplifies to x / ( 1  + 2~x2). The recursion relation (4.1b) is then modified by the 
addition of a term ( -  2~)" to the right-hand side. In region I the approximate recursion relation now reads 

[(2n- 2)/3] Ira/2] 
k ~a I al r I _  ~ Y'. 4 S ( n  m 1, m k ,  ) , - 1  ,~ ,, kak a n - -  - -  _ 

m=O k=max(O,2m-n+l) 

× [ ( n -  m -  1) 2 + ( m -  k)  2 + k 2 + n 2+ 2n] + ( - 2 ~ ) "  (5.1) 

with a I = 1. In the matching region, 1 << n << 1 / v ,  the aI. behave as 

a'. --- K(E)4" (n ! )  2, (5.2) 

where the n and o independent factor K is now a function of E. 



378 R.F. Doshen et aL / The geometrical model of dendritic growth 

In region II, the new terms are subdominant due to the rapid growth of the a~'s. Thus, the approximate 
recursion relation in region II is again the linear recnrsion relation (3.2c). The analysis then proceeds 
exactly as in the last section with the result 

F ~- K(~)2-1/2~ra/2v- 3/2 e-,,/2o. (5.3) 

The functional dependence on v is again the same, with an t-dependent multiplicative factor. For a given 
~, we may proceed as before and calculate K(~) numerically by examining the limit of the sequence 
{K,(~)} as follows: 

K(~) = lim K,(~) ,  (5.4) 

where 

K ,  (~) = a~ /4" (  n !)2 (5.5) 

I is given by (5.1) and a n 
We are most interested, however, in determining the roots of K(?), since, by (5.3), these are the roots of 

F. The above discussion suggests that it might be useful to start by examining the roots of the K,(?),  since 
if the convergence of the sequence in (5.4) is Uniform in ?, the roots of Kn(? ) will converge to the roots of 
K(~). It is easy to see that K,(~) is an nth order polynomial in ~. For example, 

KI(~ ) = ½(1 - ~), (5.6a) 

K2('~ ) = ~ ( 9  - 9~ + ~2). (5.6b) 

Thus, K,(~) has n roots, which we may label ~,~,, where m = 1 . . . . .  n. In table I we display the ~m,n for 
n = 1 . . . . .  6. The first observation to make is that all the roots are real. Furthermore, if we examine ~,,,, for 
fixed m and varying n, we find that they form a rapidly convergent sequence. The ruth root of K is just 
the limit point of this sequence. We thus have a numerical procedure for generating as many roots of K as 
we like, limited only by our (computer's) endurance. 

These roots of K(~) are easily translated to allowed values of the velocity. From the definition of ~, we 
see that for each root ~*e,. = lim ,_. ~e,,.~, there corresponds a selected velocity v* = (e/~) 1/2. For a given 
there are thus a discrete set of selected velocities, each one proportional to the square root of e, with a 
different, computable, constant of proportionality. 

We may test this prediction for the selected velocities against a direct numerical computation. In table 
II, we present the two largest allowed velocities for varying e, against the predicted values (e/e{') 1/2 and 
(e/e '~)  1/z. We see that there is good agreement, which as expected improves with decreasing e (and 
therefore velocity). 

Some general features about the distribution of roots e* may be inferred. As K,(~) has n roots, there 
will be an infinite number of roots of K(~). If these are all real, as we conjecture to be the case based on 
the data in table I, there would then be a discrete infinity of allowed velocities. Further, since the 
coefficient of the ~0 term in K,(~) approaches the constant K, as seen m section 4, and the coefficient of 
the ~ term is ( - 2 ) " / 4 n ( n ! )  2, the product of the roots of K~(~) is approximately K2~(n!) 2, for large n. If 
the ~,~., were smoothly distributed, then this would imply that ~m,, would be roughly 2m 2 for large m. 
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Table I 
Roots ~.,.. of Kn(~ ). 

n ~  1 2 3 4 5 6 7 

1 1.0 
2 1.146 7.855 
3 1,13688 5.663 29.20 
4 1.1371624 4.817 15.69 78,37 
5 1.13715638 4.638 11.53 34,59 173.1 
6 1.13715647 4.601 10.60 22.30 66.71 335.7 
7 1,13715647 4.596 10.46 19.18 38.70 117.3 592.8 

Table II 

Comparison of largest two predicted allowed velocities with 
actual values as determined by direct numerical computution 
of mismatch function F, for varying e. 

e v x vl(pred) o2 v2(pred) 

0.15 0.3667 0.3632 0.1761 0.1807 
0.1 0.2989 0.2965 0.1450 0.1475 
0.05 0.2107 0.2097 0.1034 0.1043 

The limited data in table I suggests that the last few roots at a given n are anomalously large, and E~ = m 2, 

so that v m ~- ( r / m 2 )  1/2. This issue merits further investigation. 
Finally, we would like to comment briefly on the case of arbitrary m, and non-zero A andB. The case of 

m even is structurally similar to the m = 2 case, with the appropriate scaling being e = ~v". On the other 
hand, there is a slight technical difference in the m odd case, as here ~ is no longer purely odd in x. The 
scaling relation e = ~v m still applies, but now we must compute the asymptotic behavior of both the a ,  and 
b~. For  large n, the recursion relation decouples, and we get the old recursion relation (3.2c) for the a n and 
an analogous one for the b n. Again performing the matching in the overlap region, we can calculate Fa. b as 
defined in eq. (2.7a). The selected velocities are then determined by finding approximate roots of the 
equation F = vF~ + F b = O. T h e  calculation with non-zero A and B proceeds similarly, but now the roots 
~* will be functions of A and B. The scaling relation still holds however. A curiosity that should be noted 
is that there are values of A and B for which ~* = 0 is a root. For these values, it would appear that there 
is no longer velocity selection and all values of v are allowed. This is an artifact of the small v 
approximation. Carrying out the calculation to higher order, velocity selection is restored. 

6. Discussion and summary 

In this paper  we have presented a complete 
systematic treatment of the small velocity limit of 
the geometrical model. In particular, we have 
calculated the mismatch function characterizing 
the breakdown of the continuous family of solu- 

tions seen in perturbation theory. We have also 
found an infinite set of roots of the mismatch 
function for finite anisotropy, corresponding to a 
discrete infinity of allowed solutions. 

Two directions for further research suggest 
themselves. First, the analysis herein can be ap- 
plied to studying the discrete spectrum of the 
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stability operator. Using these techniques, one 
might be able to show in general that only the 
fastest moving solution can be stable. The applica- 
tion of our methods to more physical models, such 
as dendritic crystal growth and Saffman-Taylor 
fingering would also be a fruitful exercise. We are 
currently exploring these possibilities. 

After the work reported herein was finished, we 
were informed of the concurrent work of M. 
Kruskal and H. Segur on this problem. Using a 
very different approach, they arrived at the same 
conclusions. 
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