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A linear stochastic program where the right.hand side elements are linear transformations of ;.,,tepenclent stochastic variables 
is considered. We show how bounds on the recourse (second-stage) problem can be found by working directly on the 
independent stochastic variables instead of the right-hand side elements. 

655 stochastic programming * bounds * dependent fight-hand side 

I. Introduction 

When stochastic programs with recourse are 
solved in practice, it is usually necessary to ap- 
proximate the distributions of the stochastic varia- 
bles. This results in a lower and an upper bound 
on the recourse (second-stage) problem. The ap- 
proximations are refined until the bounds satisfy a 
user-specified stopping ~le .  The algorithms used 
to refine the zpproximations usually assume that 
the stochastic variables are inde?endent, in this 
note it is shown how algorithmic obstacles ca~ be 
overcome for one type of dependency, nam~|v the 
case where only the right-hand r, ide is stochastic, 
and where each element of the ~.~,ht-hand side is a 
Linear combination of independe.,~t stochastic vari- 
ables. 

2. Stochastic programs with recourse 

A stochastic prograro with recourse can be for- 
mulated as follows. Find the vector x to minimize 

* Supported by National Science Foundation Grant No. ECS- 
83O4065. 

0167-6377/86/$3.50 © 1986. Elsevier Science Publishers B,V. (North-Holland) 

z where 

=cx  + Q(x ) ,  (1) 
subject to 

A x = b ,  x>~O 

and 

;2(x)  = Y'-Q(x, ~,)p,,  

where 

Q ( x ,  ~,) = mia{qyll  Wy = ~ , -  Tx,  y ~ 0 } .  

Here p~ is the probability that 4~ = ~ .  These prob- 
lems can be so!ve~ by the L-shaped decomposi- 
tion method developed by Van Slyke and Wets 
[1 i], a specialized variant of Benders' [1] decom- 
position. Different algorithmic procedures based 
on tbAs can be found [n Wets [14,15], Wallace 
[!2,13] and, Birge [4,51. 

A problem closely related to the two-stage sto- 
chastic programming problem with recourse is the 
distribution problem [9, oh. II]. Dependent sto- 
chastic variables have in that case been treated by 
Bereanu [2]. 

In all algorithmic work so far on the recourse 
problem, the usual assumption is that the different 
elements in the ~-vector are independent. In this 
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paper it is instead assumed that 

where H is some deterministic matrix and the 
vector n is a vector of independent stochastic 
variables. In a production context this could mean 
that the demand for raincoats in ,;evera! neighbor- 
ing cities depends on the same stochastic varia- 
bies, namely some measures of the local weather 
conditions. The cities' dependencies on these con- 
ditions will, however, not be the same. Therefore 
the rows of H will not in general be linearly 
dependew. 

3. Approximation schemes 

I; the number of possible outcomes for 6 (or ~/) 
is too large, Q(x) cannot be found. Hence a lower 
bound L(x)  and an upper bom~d U(x) must be 
constructed. These bounds can be found by ap- 
proximating the distribution of the stochastic vari- 
ables. A description of such approximation proce- 
dures can be found in Birge and Wets [6]. We also 
refer to [6] for convergence proofs, which cover all 
methoas considered in thins paper. 

The basic approximation procedures partition 
the rectangular support of the independent sto- 
chastic variables into smaller rectangles, hereafter 
called cells. Note that since the ~/-variables are 
indepepdent, the support of ~q is a rectangle. The 
support of the ~-variables, on the other hand, is 
not a rectangle. The question now is the following. 
Is it best to work in the ,~-space or the "q-space?. To 
answer" this, consider the calculations that are 
necessary to find the upper and the lower bounds. 

Since Q(x) is convex [11], we know from Jen- 
sen's inequality that Q(x)>1 Q(x, ~), where ~ is 
the expected value of ~. Applying this bound-on 
each cell (letting ,~ be the conditional expected 
value of ~ within-the ceil), and weighting the 
results on each cell by the probabilities attached 
to that cell, a total lower bound can be found. The 
following are needed to find this lower bound: 
(1) the conditional expected values of the stochas- 

tic variables within each cell, 
(2) the probability attached to each cell. 

Finding an upper bound requires the computa- 
tion of probabilities att,ched to eoch extreme 
point of every cell. In [6] these probabilitieg are 
derived as imputed measures on extreme points 
and good schemes are given for their computation 

with independent right-hand sides. Some new wart 
has also been done for the dependent case; set 
Gassmann and Ziemba [8] and Birge and Wets [71 
Hence, finding upper bounds requires 
(3) probabilities attached to the extreme points. 

Finally there is the question of how to refine 
the approximation of the distributions if the dif- 
ference between the lower and upper bounds is 
not within some chosen tolerance. This is usually 
done by partitioning one of the cells into two new 
cells. This refinement must choose 
(4) the cell to partition. 
These 4 tasks are described below for both the ~- 
and the ~-space. 

Ta~'k I. Since l,~e ~/-variables are independent, 
it is only necessary in the 7/-space to find the 
expected value of one variable at a time. Finding 
conditional expected values in the ~-space, how- 
ever, is rather cumbersome since the variables are 
dependent within each cell. This problem can be 
regarded as purely statistical. For some distri- 
butions, it is relatively easy to solve. Most of the 
known results in the dependent case treat jointly 
distributed ~-variables (e.g., a multinormal distri- 
bution). They do not consider ~ as the sum of a 
set of independent st~hastic variables, t~eeause, 
/or example, m~st distributions are not closed 
under summation. 

Task H. The probAem is approximately the 
same herc~ Calculations are easier in the 1/-space 
than in the ~-space. For both Tasks l and lI, the 
general f-space case requires multiple integration, 
which becomes extremely difficult in higher di- 
mensions. 

Task IlL As mentioned above, there are several 
solutions to this problem in the independent case. 
Kall and Stoyan [10] proposed using the extreme 
point with highest value as an upper bound, in [6] 
a general problem is formulated that results in a 
unique determination of appropriate extreme point 
weights for cells divided into simplices. This result 
is also in [8] where a linear program is given for 
finding appropriate extreme point weights. 

Tasl- IV. Let x, be the current approximation 
of the optimal solution. Tlie general belief today is 
thai :he cell containing the vector Tx, should be 
partitioned. The reason for this choice is twofold. 
First, the polyhedral function Q(x) (and also L(x)  
and U(x)) is most non-linear close to Tx,. Second, 
the point Tx, most certainly is a non-differentia- 
b!e point of Q(x,. ). It is therefore ~a point at 
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~hich a partitioning would make the. linear ap- 
~)roximations more accurate It is of course easy to 
find the cell containing T,r,. in the ~-space. But 
~vhere is (are) the point(s) corresponding to Tx, in 
the ~pspace? To our knowledge this is an un- 
answer¢d question. The next section shows how to 
find ~oint(s) in the )l-space corresponding to Tx~ 
in the ~-space. 

4. Finding the partitioning point 

The question to answer in this section i~ as 
follows. Given the linear combination f - H)l and 
th:~ point Tx~ in the ~-space, which point(s) in the 
r/-spaee correspond(s) to Tx, in the 4~-space? 

Proposition. Consider the problem 

Min w = ez  + + ez-, 
subjec~ to H)l + lz + - 17.- --- Tx,,  (2) 

I <~ )l ~ u, 
z >~O, 

where I is a unit matrix of appropriate size, e is a 
vector of ones and the vectors I and u represent 
the lower and upper bounds on the support of )l. 

Let w* be the minimal value of w in (2), and 
let ~)* be the value of )) at the optimal solution of 
(2). Then, if w* = 0, )l* is a point in the support 
of vt that corresponds to Tx, in the ~-space. If 
• ,v* > 0, ))* is a point in the support of )l that 
maps into a point in the support of ~ which is 
closest in It norm to Tx,. 

Proof. Case 1. If w* = 0, we have found a point 
)/*, such tha t  H~)* = Tx, and I ~< 7/* ~< u. Hence )l" 
is a point in the support of v/that maps into Tx, 
in the support of ~. The point ~* is not necessarily 

l~nique~ If it is not unique, the )) values that map 
into Tx, form a convex set. It is then best to 
partition at an interior point in the convex set 
since ~t is not possible to partition a variable that 
is at one of its bounds. 

Case 2. If w* > 0, it was not possible to find a 
point in the support of 7/that mapped into Tx,. 
The point )l* will then be such that it is a point in 
the support, of )l that maps into a point in the 
support of ~ which is closes in I norm to Tx,. 
(Note that ez++ ez- gives the distance between 
Tx, and H~q* in terms of the l~ norm.) This 
completes the proof. [] 

Case 2 above can occur repeatedly in a two- 
stage stochastic programming problem if either cx 
in ~1) is 1~uch larger than Q(x) fin which case the 
problem is "almost" deterministic), or if rain 
Q(x, ~) over ~ is always a corner solution. 

If q > O, Tx, is the minimizing point of O(x, , -  ). 
in this case )l* can be found b:), solving 

Min v = qy, 

subject to IVy-  H)l = - T x , .  
{3) 

1 ~< r/,-~ u, 

y>~0. 

We see that )l* corresponds to Tx,, in a different 
sease here than it did for problem (2). i;  v* = 0, 
)l* still maps into Tx,,. but if t,* > 0. we can no 
longer claim that H)l* is the point in the support 
of ~ that in I~ norm is closest to Tx,r 

5. Finding the p~tition direction 

Section 4 describes procedures for finding a cell 
containing )l* that is in the support of )l and that 
is partitioned to improve the bounds L(x)  and 
U(x). Let this cell containing )l* be S*.  There are 
many ways to partition S*. One could, for exam- 
ple~ split S* along all coor,~inate directions. When 
)l is large, it may be impractical to partition ia all 
coordinate directions at every refinement of the 
bounds. Instead, we give a method for de- 
termining a single coordinate direction through 
which to divide S*.  

This procedure follows the development in [6]. 
Consider the Junction h , ( ~ ) =  Q(x,, H)l). This 
function is piecewise linear on S*. It is currently 
approximated on S* by using its value at the 
conditional expet:tatio~ ef  )l on S* and at the 
extreme points of S*.  To better approximate h , ,  
S* should be partitioned into two new cells so 
that h ,  is as nearly linear as possible on ~hese new 
cells. In other words, it should be cut across the 
direction in which h,  is most non-linear. 

Birge and Wets [6] described a procedure for 
doing this in which one partitions a cell through 
the edge along which the subgradients of h ,  vary 
most. This, then, represents the edge with the 
greatest non-finearity. We can do this for h,  pro- 
vided we can find the subgradients of h,  at the 
extreme points of S*.  Subgradients at  neighboring 
extreme p:)int,~ are compared. The pair with the 
great.¢st difference (in th, e direction between the 
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Table 1 
Comparison of altemat4ve refinements a 

Ex. H Non-linearity 
cell method 

Greatest probabilily 
cell method 

(I) (2) (3) (4) (I) (2) (3) (4) 

1 (1,1,1 ) 4 11 132 0.25 8 11 180 0.45 
2 (2, 1, I) 7 9 187 0.38 8 6 96 0.30 
3 (1.5, 1, 1) 3 8 91 0.16 15 12 314 1.16 
4 (2, O, 1) 2 9 46 0.08 8 8 117 0,37 
5 ( 1.5, 1.5, 0) 8 11 228 0.48 - 50 + - 0.8 + 
6 (1.5, 0.5, i) 12 !0 290 0.86 - 50+ - 0.8 + 

]'he columns are (1) number ,:X partitions, (2) number of L-shaped iterations. (3) number of simplex iterations. 14) CPU seeond~. 
The number of simplex iterations of NCM includes iterations in problem (21. 

points) provides the edge through which to split 

S*.  
To find the subgradients at extreme points, s', 

i - 1 . . . . .  r, of  S*,  we solve 

Maximize w'=~r(Hs'- T x , ) ,  (4) 

subject to ~'W < q. 

A subgradient  of h ,  at s '  is then ¢r'H where ~ 
solves (4). This is clear ~'rom the definition of  h , .  

6. Numerical  example 

To show the usefuhess  of the procedures in 
Section 4, consider the following small example, 

Minimize z =  x t + x 2  + E,~{2y~ + 5y~ + 2y~  

+ 5Y~i + 2Y3 + + 5 )3  }, (5) 

subject to 

x 1 + x  2 >i 0.5, 

x~ + y ~  - y /  = h~71, 

x2 ~ ~'2 ÷ - Y 2  = h2~, 

x~ + x 2  + .v ;  - : ~  = h ~ ,  

x, ,  x~, y ; ,  y ; ,  y~ ,  y~ ,  y ; ,  y f > l o ,  

and ~1 is uniform |0, 2[  
Problem (5) is an example of a simple recourse 

problem. In Table 1, (5) ;s solved using the L- 
sha[,cd code [5] and the general refinement scheme 
presented in [3]. The method for parti t ioning 
through 7i* as described above (Non-lineari ty Cell 
Method  (NCM))  is compared against the naive 
approach (Greatest  Probabili ty Cell Method  
(GPCM))  of  parti t ioning the cell with the greatest 

probability. The table shows the merit of our  
method relative to the n~Lve approach. Rc~ults are 
presented for varying vah, cs of H = (h~, h 2, h3). 
In each of the examples, N C M  required fewer 
partitions. In all but  one example, N C M  was also 
faster. Note, however, that in that example, N C M  
had ach!:~ved a fighter bound ~han G P C M  when it 
terminated. In two of the examples, G P C M  re- 
q,.~ired more than fifty major iterations of  the 
L-shaped code ano was stopF~d before achieving 
convergence. 
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