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A linear stochastic program where the right-hand side elements are linear transformations of independent stochastic variables
is considered. We show how bounds on the recourse (second-stage) problem can be found by working directiy on the
independent stochastic variables instead of the right-hand side elements.
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1. Introduction

When stochastic programs with recourse are
solved in practice, it is usually necessary to ap-
proximate the distributions of the stochastic varia-
bles. This results in a lower and an upper bound
on the recourse (second-stage) problem. The ap-
proximations are refined until the bounds satisfy a
user-specified stopping rule. The algorithms used
to refine the approximations usuzlly assume that
the stochastic variables are independent. In this
note it is shown how algorithmic obstacles can be
overcome for one type of dependency, namelv ihe
case where only the right-hand side is stochastic,
and where each element of the right-hand side is a
linear combination of independent stochastic vari-
ables.

2, Stochastic programs with recourse

A stochastic progra with recourse can be for-
mulated as follows. Find the vector x to minimize
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z where

z=cx+ Q(x), (1)
subject to

Ax=b, x>0

and

Q(x)=ZQ(x; £)pis
where
Q(x, &) =min{gy[| Wy =§,— Tx, y>0}.

Here p; is the probability that § = £,. These prob-
lems can be solved by the L-shaped decomposi-
tion method developed by Van Slyke and Wets
[11], a specialized variant of Benders’ [1] decom-
position. Different algorithmic procedures based
on ihis can be found in Wets [14,15], Wallace
[12,13] and Birge [4,5).

A problem closely related to the two-stage sto-
chastic programming probiem: with recourse is the
distribuiion problem [9, ch. II}. Dependent sto-
chastic variables have in that casc been treated by
Bereanu [2].

In all algorithmic work so far on the recourse
problem, the usual assumption is that the different
elements in the ¢-vector are independent. In this
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paper it is instead assumed that

&=Hny,

where H is some deterministic matrix and the
vector 7 is a vector of independeni stochastic
variables. In a production context this could mean
that the demand for raincoats in several neighbor-
ing ciiics depends on the same stochastic varia-
bies, namely some measures of the local weather
conditions. The cities’ dependencies on these con-
ditions will, however, not be the same. Therefore
the rows of H will not in general be linearly
dependent,

3. Approximation schemes

I¢ the number of possible outcomes for £ (or )
is too large, Q(x) cannot be found. Hence a lower
bound L(x) and an upper bound U(x) must be
constructed. These bounds can be found by ap-
proximating the distribution of the stochastic vari-
ables. A description of such approximation proce-
dures can be found in Birge and Wets [6]. We also
refer to [6] for convergence proofs, which cover all
methods considered in this paper.

The basic approximation procedures partition
the rectangular support of the independent sto-
chastic variables into smaller rectangles, hereafter
called cells. Note that since the n-variables are
independent, the support of % is a rectangle. The
support of the £-variables, on the other hand, is
not a rectangle. The question now is the following,
Is i1 best to work in the £-space or the 5-space? To
answer this, consider the calculations that are
necessary to find the upper and the lower bounds.

Since Q(x) is convex {11}, we know from jen-
sen’s inequality that Q(x) > Q(x, §), where § is
the expected value of £. Applying this bound on
each cell (letting £ be the conditional expected
value of £ within the cell), and weighting the
results on each cell by the probabilities attached
to that cell, a total lower bound can be found. The
following are needed to find this lower bound:
(1) the conditional expected values of the stochas-

tic variables withir each celi,
(2) the probability attached tc each cell.

Finding an upper bound rzquires the computa-
tion of probabilities attached to each extreme
point of every cell. In [6) these probabilities are
derived as imputed measures on extreme points
and good schemes are given for their computation
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with independent right-hand sides. Some new worl
has also been done for the dependent case; set
Gassmann and Ziemba [8] and Birge and Wets [7)].
Hence, finding upper bounds requires

(3) probabilities attached to the extreme points.

Finally there is the question of how to refine
the approximation of the distributions if the dif-
ference between the lower and upper bounds is
not within some chosen tolerance. This is usually
done by partitioning one of the cells into two new
cells. This refinement must choose
(4) the cell to partition.

These 4 tasks are described below for both the §-
and the »-space.

Task I. Since tae n-variables are independent,
it is only necessary in the u-space to find the
expected value of one variable at a time. Finding
conditional expected values in the §-space, how-
ever, is rather cumbersome since the variables are
dependent within each cell. This problem can be
regarded as purely statistical. For some distri-
butions, it is relatively easy to soive. Most of the
known results in the dependent case treat jointly
distributed £-variables (e.g., a multinormal distri-
bution). They do not consider ¢ as the sum of a
set of independent stochastic variables, because,
for exampic, most distributions are not closed
under summaticn.

Task Il. The protlem is approximately the
same here. Calculations are easier in the %-space
than in the £-space. For both Tasks I and II, the
general £-space case requires multiple integration,
which becomes extremely difficult in higher di-
mensiosns.

Task 111. As mentioned above, there are several
solutions to this problem in the independent case.
Kall and Stoyan [10] proposed using the extreme
point with highest value as an upper bound. In {6}
a general problem: is formuiated that results in a
unique determination of appropriate extreme point
weights for cells divided into simplices. This result
is also in [8) where a linear program is given for
finding appropriate extreme point weights.

Tasi- 1V. Let x, be the current approximation
of the uptimal solution. Tlie general belief today is
that the cell containing the vector T, should be
partitioned. The reason for this choice is twofold.
First, the polyhedral function Q¢ x) (and also L(x)
and U(x)) is most non-linear close to T'x,. Second,
the point Tx, most certainly is a non-differentia-
ble point of Q(x,-). It is therefore.a point at
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which a partitioning would make the linear ap-
proximations more accurate. It is of course easy to
find the cell containing Tx, in the §-space. But
where is (are) the point(s) correspeading to T, in
the 7-space? To our knowledge this is an un-
answercd question. The next section shows how to
find point(s) in the y-space corresponding to Tx,
in the §-space.

4. Finding the partitioning point

The question to answer in this section 1§ as
follows, Given the linear combination £ = Hy and
the point Tx, in the ¢-space, which point(s) in the

n-space correspond(s) to Tx, in the §-space?

Proposition. Consider the problem

Min w=ez*+ez,

subject to  Hn+Iz* - 12" =Tx,, @
Igngu,
220,

where [ is a unit matrix of appropriate size, e is a
vector of ones and the vectors / and u represent
the lower and upper bounds on the support of 7.

Let w* be the minimal value of w in (2), and
let 7* be the value of % at the optimal solution of
(2). Then, if w* ==0, ¥* is a point in the support
of # that corresponds to Tx, in the &-space. IV
w* >0, n* is a point in the suppori of 7 that
maps into a point in the support of §{ which is
closest in /; norm to Tx,.

Proof. Case 1. If w* =0, we have found a point
7*, such that Hy* = Tx, and ! < %* < u. Hence #*
is a point in the support of n that maps iato Tx,
in the support of £. The point »* is not necessarily
-nnique. If it is not unique, the n values that map
into Tx, form a convex set. It is then best to
pariition at an interior point in the convex set
since it is not possible to partition a variable that
is at one of its bounds.

Case 2. If w* > 0, it was not possible to find a
point in the support of n that mapped into Tx,.
The point #* will then be such that it is a point in
the support of % that maps into a poiat in the
support of £ which is closes in / norm to Tx,.
(Note that ez* + ez~ gives the distance between
Tx, and Hw* in terms of the /; norm.) This
completes the proof. O
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Case 2 above can occur repeatedly in a two-
stage stochastic programming; problem if either ex
in (1) is much larger than @(x) {in which case the
problem is ‘almost’ deterministic), or if min
O(x, &) over ¢ is alwavs a corner solution.

If ¢ > 0, Tx, is the minimizing point of Q(x,.- ).
In this case 7* can be found by solving

Min v=gqyp,
subjectto Wy-—Hn= —-Tx,,
1 (3)
€U,
y=0.

We see that 5* corresponds to Tx, in a differemt
sense here than it did for problem (2). ii v* =0,
%* still maps into 7x,, but if »* >0, we can no
longer claim that H%* is the point in the support
of £ that in /, norm is closest to Tx,.

5. Finding the pastition direction

Section 4 describes procedures for finding a cell
conlaining #* that is in the suppori of 3 and that
is partitioned to improve the bounds L{x) and
U(x). Let this cell containing #* be S*. There are
many ways to partition S*. One could, for exam-
ple, split S$* along all coor:iinate directions. When
7 is large, it may be impractical to partition iz a!!
coordinate directions at every refinement of the
bounds. Instead, we give a method for de-
termining a single coordinate direction through
which to divide §*,

This procedure follows the development in [6k
Consider the function A,(%)= Q{x,. Hy). This
function is piecewise linear on S*. It is currently
approximated on S* by using its value at the
conditional expectation of 7 on S$* and at the
extreme points of $*. To better approximate k,,
§* should be partitioned into two rew cells so
that h, is as nearlv lin2ar s possible on ihese new
cells. In other words, it should be cut across the
direction in which h, is most non-linear.

Birge and Wets [6] described a procedure for
doing this in which one partitions a cell through
the edge along which the subgradients of A, vary
most. This, then, represents the edge with the
greatest non-linearity. We can do ihis for h, pro-
vided we can find the subgradients of A, at the
extreme points of $*. Subgradients at neighboring
extreme points are compared. The pair with the
greatest difference (in the direciion between the
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Table 1
Comparison of alternative refinements *
Ex. 4 Non-linearity Greatest probability

cell method cell method

(1} 2} 3) (4) Q)] (2) 3) @)
1 (1LLY) 4 11 132 0.25 8 11 180 0.45
2 L0 7 2 187 0.38 8 6 9% 0.30
3 (15.1,1) 3 8 91 0.16 15 12 314 1.16
4 2,0.1) 2 9 46 0.08 8 8 117 0.37
5 (1.5,1.5,0) 8 1 228 0.48 50+ - 0.8+
6 (15,05, 1) 12 L4 290 0.86 - 504 - 0.8+

# The columns are (1) number «f partitions, (2) number of L-shaped iterations, {3) number of simplex iterations, (4) CPU scconds.
The number of simplex iterations of NCM includes iterations in problem (2).

points) provides the edge through which to split
$*.

To find the subgradients at extreme points. s',
i=1,...,r, of $*, we solve
Maximize w'=x(Hs' - Tx,),

. 4
subject to #W<gq.

A subgradient of A, at 5’ is then #'H where #'
solves (4). This is clear from the definition of 4,.

6. Numerical example

To show ihe uszfulness of the procedures in
Section 4, consider the following small example.

Minimize z=ux,+x,+ E {2y +5y; +2y;

+5yy +2p7 +5p5 ), (5)
subject to
X+, > 0.5,
xy SN 7Y =hpm,
x; =y =hym,
Xy +x, +y3 —s5 =hg,

X1y X2» J’1+. yl_' y2+’ y{’ y;’ y3_>0‘

and 7 is uniform {0, 2.

Problem (5) is an example of a simple recourse
problem. In Tabie 1, (5) is solved using the L-
shaged code [5] and the general refinement scheme
presented in [3]. The method for partitioning
through n* as described above (Non-linearity Ceil
Method (NCM)) is compared against the naive
approach (Greatest Probability Cell Method
{(GPCM)) of partitioning the cell with the greatest
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probability. The table shows the merit of our
method relative ic ihe naive approach, Results are
presented for varying vaiucs of H = (h,, hy, h;).
In each of the examples, NCM required fewer
partitions. In all but one example, NCM was aisc
faster. Note, however, that in that example, NCM
had acli‘zved a tighter bound than GPCM when it
terminated. In two of the examples, GPCM re-
guired more than fifty major iterations of the
1.-shaped code ana was stopped before achieving
convergence.
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