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A new type of decomposition of static games is defined in order to describe cases where overt 
behavior only is cooperative to a degree. The basic idea is to split the original game into a set of 
subgames defined by sets of decisions made by the players. In each subgame, different coalitions 
may form (e.g., two chain stores can cooperate in one city and not in another). To motivate the 
concept we give an example where such schizophrenic behaviour naturally arise between two 
firms competing on advertising and quantity. The new type of games are then compared to 
Aubin's fuzzy games and it is demonstrated that the core of these games with or without 
side-payments is identical to the core of the original games. We finally show how this type of 
games degenerates to fuzzy games under certain conditions. The concept of semifuzzy games 
therefore offers us a new way to think about fuzzy games, which allows us to avoid the 
interpretational difficulties associated with other approaches. 
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Introduction 

Since Chamberlin [5], economists have argued that firms often collude on price 
and compete on advertising. G.M. and Toyota share the development costs of a 
n e w  e n g i n e ,  w h i l e  V o l v o  a n d  R e n a u l t  c o o p e r a t e  in a n o t h e r ,  m e a n w h i l e  all  f o u r  

f i rms c o m p e t e  fo r  ca r  sales .  T h e  U . S .  a n d  the  U . S . S . R .  p l ay  t h e  n u c l e a r  w a r  g a m e  

c o o p e r a t i v e l y  a n d  ye t  f ight  l i m i t e d  war s  [15]  in p l aces  l ike  K o r e a  a n d  V i e t n a m .  

T h e s e  e x a m p l e s  i l lus t r a t e  t h e  w i d e s p r e a d  p rac t i ca l  i n c i d e n c e  of  p a r t i a l  c o o p e r a -  

t ion ,  s i t ua t i ons  w h e r e  p l a y e r s  m a k e  s o m e  of  a se t  o f  s i m u l t a n e o u s  dec i s ions  

c o o p e r a t i v e l y  a n d  s o m e  n o n c o o p e r a t i v e l y ,  a 

So  far ,  o u r  o n l y  t o o l  fo r  d e s c r i b i n g  pa r t i a l  c o o p e r a t i o n  in s ta t ic  g a m e s  is t h e  

fuzzy  g a m e s  [3] w h i c h  a r e  d e f i n e d  o v e r  fuzzy  subse t s  of  t h e  se t  of  p l aye r s .  

F o r m a l l y ,  if N = {1 . . . . .  n} is t he  se t  o f  p l aye r s ,  a fuzzy  g a m e  w i t h  s ide  p a y m e n t s  

is d e f i n e d  by  its c h a r a c t e r i s t i c  f u n c t i o n  V :  [0, 1]"--+ R ,  a s s u m e d  to  be  pos i t i ve ly  

* Discussions with Ph. Artzner and the comments of an anonymous referee has benefited the paper 
greatly. The author does, of course, retain sole responsibility for any remaining errors. 
** Present address: School of Management, Northwestern University, Evanston, 11..60201. 

1 In a setting where decisions are made sequentially, we can use standard dynamic game theory to 
describe alternating periods of cooperation and competition (e.g. [17]). Our concern here is with 
situations where cooperation and competition take place simultaneously. Such situations may of course 
occur at each stage of dynamic games. 
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homogeneous and assign zero value to the empty set. This function, which was 
introduced to simplify the proofs of several known results on the core, has two, 
for descriptive purposes, unfortunate properties. 

The first of these is best brought out by an example. In a game with three 
players (a,b,c), assume the (ordinary) value function: W(a,b)= W(a,c)= 
W(b, c)= 4, W(a, b, c )=  5. If each player participates 50% in a two person 
coalition with each of the two others, the total payoff to these three fuzzy 
coalitions should be 2 + 2+  2 = 6 > 5 (!). The catch is,, that sets of fuzzy coalitions 
like (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2) are infeasible, since each of these coalitions 
assume the existence of an isolated adversary which cannot be found in any of the 
other coalitions. (One may think of this as three people trying to schedule 
meetings during four hours or as three firms competing/colluding in four markets). 
Introducting appropriate constraints on the domain of V would of course deprive 
it of its nice properties and therefore render fuzzy games useless as a tool for 
mathematical convenience. 

The other problem with descriptive uses of fuzzy games is, that they typically 
offer very limited insights about the way in which partial coalitions achieve their 
payoff. In an M market duopoly with price and advertising, a 50% coalition could 
mean collusion in some markets or that price and/or advertising or a combination 
thereof always was set between the competitive and the monopolistic levels. All 
that matters is that the payoffs come out right. 

Let  us emphasize that this critique applies only to the use of fuzzy games as a 
framework for understanding games with partial cooperation, a use which was not 
intended by the fathers of the concept. We have no quarrels with its m. athematical 
usefulness. 

The purpose of this paper is to propose an alternative tool for describing and 
analyzing partial cooperation in static games. Intuitively, the basic idea is to allow 
the players to be 'schizophrenic' and define 'semifuzzy' games over subsets of the 
sets of all decisions made by all players. Based on appropriate restrictions on the 
characteristic functions of such games, we can derive some simple relationships to 
ordinary and fuzzy games. 

The key aspect in the definition of semifuzzy games can be illustrated through 
three examples. The first example involves a game played in each of 20 cities such 
that payoffs in each of the 20 games are dependent  only on the actions taken in 
that game. (The replicated economies of Debreu and Scarf [7] is a similar 
situation.) In this type of game we could look at all possible coalitions in each of 
the 20 games individually and define the set of semifuzzy coalitions as the set of 
ordered 20 game sequences of one game coalitions. So the value function would 
have 20 sets of one game coalitions as its domain. (This will be made more precise 
below.) 

When the game cannot be divided into independent subgames, the situation 
gets somewhat more complicated. Assume that in the game above, a player's 
actions in a given pair of cities are linked by a common resource constraint, such 
that he or she has the choice between vigorous effort in one city and moderate 
effort in both cities. In this case, cooperation in one place and noncooperation in 
another seems to be an awkard scenario, since the characteristic function would 
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depend on the way the two coalitions shared the scarce resource, while authority 
over this resource is unclear. We will therefore confine our decomposition to 
subgames with independent sets of feasible actions. Interdependent  payoffs, as in, 
e.g., the price-advertising decomposition, do not pose this type of problem. We 
have finally made the choice not to include seemingly 'unreasonable'  coalitions in 
which some players participate in fewer subgames than other  players. In a 
duopoly, for example, we exclude a situation where our firm sets both price and 
advertising cooperatively, whereas the other prices noncooperatively. 

It turns out, that the core of the game in which all partial coalitions are allowed 
is equal to the core of the ordinary game defining it. The reason lies, intuitively, in 
the super-additivity of the characteristic function. Because of the super-additivity, 
the core constraints from partial coalitions are less tight than those from the full 
coalitions. Furthermore,  under suitable conditions, if the game can be decom- 
posed into many decisions, we can find a partitioning of these such that any 
fraction of a full coalitions payoff can be approximated by colluding only in that 
fraction of the decisions. These results are obtained for both the sidepayment case 
and the case without side payments. In fact the difference between these two cases 
almost disappears for this class of games. 

Before we proceed in our presentation of semifuzzy games we would like to 
point to some interesting parallels between this concept and another  reformulation 
used in some studies of telephone ratesetting. 2 In their pathbreaking application 
of cooperative nonatomic game theory, Raanan [14] and Billera, Heath,  and 
Raanan [4] consider symmetric games in which each player has the same large set 
of decision variables. They then reformulate these games to consider each 
increment in each decision variable by each player a 'player' in the reformulated 
game. Each member  of the set of decision variables thus constitute a class of 
'players'. This differs from our analysis in two ways. First, Raanan et al. are more 
parsimonious than we are in the sense that we look at each decision variable of 
each player as a separate 'player', where they consolidate across players into 
types. Secondly, the 'players' in their analysis are not known before the game is 
played and a distribution of decisions has emerged. By contrast, our reformulation 
is defined directly on the structure of the original game. 

To motivate the concept of semifuzzy games and outline a promising area of 
application, we will now look at a simple example where two firms naturally are 
led to competitive advertising and cooperative quantity setting. After these more 
intuitive considerations we will proceed to the formal part of the paper. Section 2 
will contain the relevant definitions while some properties of semifuzzy games are 
derived in Section 3. A short discussion is provided in Section 4 and a numerical 
illustration is contained in the Appendix. 

1. Example 

The phenomenon of tacit collusion in games of the prisoners' dilemma type has 
traditionally been analyzed in the setting of repeated (ordinary) games. While 

2 We are grateful to the referee for alerting us to this parallel. 
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several models are available [8, 11, 1, 13], we will here use the simple framework 
developed by Telser [17]. 

We look at a symmetric two-person game in which the players can cooperate or 
compete. If both cooperate,  the payoff to each is 7r +, if both compete they each 
get ~r ° and if one competes while the other  cooperates the former gets vr*. 
Assume further that the game is repeated an unknown number of times such that 
the expected number of games remaining/~ + 1 is independent of the number of 
games already played. If firms believe that cooperation, once violated, will never 
be reestablished, the expected payoff from violating an agreement is given by 
~ . ,+  ~ . 0 ,  whereas keeping the agreement yields the expected payoff (~ + 1)Tr +. 
Accordingly, cooperation will prevail if ~-*-~-+~< tz(Ir + -  ~.o). 

Let  us now apply this to a Cournot duopoly where two firms set outputs xl, x2 
and face a market price of P = 1 -~ (x l  + xz). Assuming costs to be zero, it is trivial 

~.o_ ~ Cooperative profits are vr += 3 ,  whereas a firm to find Nash profits as - - .  
which cheats on a cooperating colleague will receive 7r*= ~-~s. If we now assume 
that /~ = ~ ,  we can conclude that cooperation is impossible. So far, there is no 
problem. 

The problems appear if we try to take the model one step further to study a 
situation where firms set both output and advertising. Assume that the price goes 
up by y l + y 2  if the firms spend y~ and y~, respectively, on advertising. If firms 
compete, cooperate or cheat on both parameters we can find the resulting profits 
as 5 ,  3, and 143 ~--~, respectively. Accordingly, we will not have total cooperation. 
However,  if firms compete on advertising, the profits from competing, cooperating 
and cheating on quantity are ~ ,  3, and los ~-~-g, respectively. 3 In this case quantity- 

_ 17  cooperation is a self-enforcing agreement (still assuming t z - r  g). So we have 
reconstructed a rational analogy to Chamberlin's [5] much acclaimed conjecture, 
but not in a setting covered by ordinary game theory. 

As this and the other examples cited in the introduction show, many instances 
of collusion are of this partial nature. It is therefore crucial to know the properties 
of games where such schizophrenic behavior is allowed. We will here call such 
games 'semifuzzy'. 

2. Definitions 

Let us look at an n-person game with super-additive characteristic function 
W:{0, 1} n ---> A, where A is an n-dimensional space of multi-utilities in the no 
side-payment case and the non-negative real line in the side-payment case and the 
empty set is mapped into the origin. Assume that the actions of each player can be 
decomposed into m identical mutually exclusive and collectively exhaustive 
factor-sets, such that the set of feasible actions in one factor-set is independent of the 
choice made in another factor-set. We will call these decompositions 'scenes'. Note 
that all games have at least one scene. 

Given a decomposition into rn scenes, we can think of a player as participating 
in (perhaps) different coalitions on each scene. Denote  by {0, 1}7 the set of 

s It turns out that quantity competition prevents cooperative advertising. 
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n-vectors with 1 in the i-th argument  and 0 or 1 everywhere else. S t -  
(Sil . . . . .  $i,.) e ({0, 1}7)" can then represent  an ordered set of coalitions in which 
player i participates. We will now assume the existence of a rule (e.g. no 
side-payment)  which assigns payoffs to each player as a function of the coalitions 
formed and the strategies played by all players on all scenes. Let  Ai be  the i-th 
argument  of A in the no s ide-payment  case and the non-negative real line in the 
s ide-payment  case. We can now use the rule above to define the functions 
Vi: ({0, 1};=) " ---> Ai, i e N, by the maximum payoff i can guarantee himself given 
that he participates in a given ordered set of coalitions. '~ Vi is the characteristic 
function for this 'n-person,  m-scene semifuzzy game' .  

In the no s ide-payment  case, we can use V~ to define the imputations of the 
semifuzzy game as the set of payoffs which weakly dominates the payoff which 
V- - (Vx  . . . . .  V,) assigns to individual play on all scenes and the payoff which V 
assigns to forming the grand coalition on all scenes. As usual the core is the set of 
imputations which no coalition can block. Fur thermore we assume that V is 
super-additive on each scene. That  is, for a given set of coalitions on all scenes 
other  than ], for all disjoint (S i, T i) e ({0, 1}")2: 

vi(s, u T,, Y. vi(s , .)+ [ ,  .). 
ieSIUT I ieSl ieTl 

The definitions for the s ide-payment  case proceed analogously. 

3. Properties 

By defining partial coalitions on the set of scenes, semifuzzy games are more  
explicit about  the mechanisms through which partial coalitions are realized than is 
the case for fuzzy games. On the other hand, we lose the link to the payoff offered 
by the fuzzy game concept. Similarly, by defining V on ({0, 1}?)% we rule out the 
existence of inconsistent simultaneous partial coalitions. The domain of V is of 
course no longer a convex compact  set, so we lose all the nice analytical 
propert ies of fuzzy games. 

With respect to the core of semifuzzy games, it may be tempting to follow the 
intuition of Aubin [3], according to which we 'shrink'  the core by allowing more 
coalitions to form. (See, however,  Artzner  et al. [2].) While clearly C o r e ( V ) ~  < 
Core(W),  we can in fact show: 

Theorem 1S. In  a side-payment game: 

Core(V)  = Core(W).  

Proof .  Note first that Vi is constructed such that Y.i~s Vi(S . . . . .  S ) =  W(S) for 
S e {0, 1}". We can use the super-additivity of V~ to get that for any set of m 

4 Because the other members  in S i may vary from scene to scene, it is not possible to define V(S~) as 
the payoff to the whole set of coalition members.  Accordingly, our f ramework is most  natural  in the no 

s ide-payment  case. 



26 B. Wernerfelt 

coalitions, ($1 . . . . .  Sin) e{0, 1} "m, if T =  U?=I Si, then Y~,~a- Vi(S~ . . . . .  S,,) <<- W(T) .  
So these partial coalitions cannot lead to stronger core constraints than the 
corresponding coalitions in W. Thus Core(W)<~Core(V).  []  

Theorem IN.  In a no side-payment game: 

Core(V) = Core(W).  

The proof  proceeds as above except for the fact that we avoid the summations.  
Theorems 1S and 1N have very wide implications. In particular, they tell us that 

any results about the core of ordinary games (existence, convexity, compactness,  
etc.) transfer immediately to any associated semifuzzy games. 

Let  us now prove some limit theorems on semifuzzy games. Assume that a 
game can be decomposed into countably many scenes, each of which has the 
property that the marginal value of the grand coalition (call G)  on that scene, 
over  no coalitions (call 1) on that scene, goes to zero as m ~ oo. In order  to 
formalize this we define V/':({0, 1}7)P-~x{0, 1},".---~ B, such that V~(To, S) is the 
value to player i of being in coalitions To the first p - 1 scenes, in coalitions S in 
the p-th scene and alone on the remaining m - p  scenes. We thus assume: 

Vie  N, Vp ~< m, VTo~ ({0, l}n)P-l: 

V'}(To, G ) -  V'}~(To, 1) ---> 0 for m ~ oo. (A1) 

This type of assumption would apply to cases where countably many subgames 
are played simultaneously, for example over  a geographical space. 

I.f we define Q~ : {0,1}" ---> B, by VP(S) p p-1 = V i (S  , S), we can now prove: 

T h e o r e m  2S. In a side-payment game which satisfies (A1): 

V S e { 0 , 1 } " , V I ~ [ 0 , 1 ] , 3 p ~ < m :  ~, QP(S)---~hW(S) form---~oo. 

So as in fuzzy games, any fractional payoff can be realized for a given coalition. 

ProoL Assume S=  G, for any h, we can find a p such that 

Z - p--1 v, (G)-~XW(G)~< Y. f,~(G). 
iEG leg 

By (A1), the theorem is true for S = G. For S = G, we can again find a p such that 

Z -p--1 v, (s)-~xw(s)<~ ~, f'?(s)~< Y. W(s, o), 
i ~ S  i ~ S  i ¢ S  

using (A1) twice, the thoerem thus also holds for S = G. []  

Let  W~ denote the i-th argument  of the characteristic function of a game 
without side payments.  

T h e o r e m  2N. In a no side-payment game which satisfies (A1): 

ViEN,  VSE{O, 1}",Vhe[O, 1],3p<~m: Q['(S)---~hW~(S) form---~oo. 
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The proof proceeds as above except for the fact that the different players i e S  
now may have different p's. Of course if the scenes are identical this will not 
happen. 

Also Theorems 2S and 2N point to a wide range of results. In particular, we can 
employ completely analog methods to show how semifuzzy games may be used to 
proxy differentiable extensions of value functions of ordinary games [12, 6, 3]. 
Furthermore,  we now have a logically consistent way of thinking about fuzzy 
games, since the difficulties mentioned in Section 1 disappear if we think of a 
fuzzy game as the limit of a semifuzzy game. 

4. Discussion 

We have defined a new class of games suitable for understanding the very 
common occurrence of partial cooperation in static games. Allowing the players 
to play cooperatively or competitively on individual decision parameters does not 
change the core of the game. Also, under suitable conditions any fraction of the 
payoff to a full coalition and thus a fuzzy game can be approximated. The main 
contribution of the present paper is to show that we can allow partial cooperation 
in our models without making any additional restrictions on the core of a given 
game. Our second set of theorems might be useful in establishing some limit 
results in particular applications of the semifuzzy game concept. More importantly 
they do, however, allow us to think about fuzzy games in a way in which the 
interpretational difficulties mentioned in Section 1 do not occur. 

Our definition excludes games where the set of feasible actions in one subset of 
the decision variables is dependent  on the actions in its complement. Since such 
situations are very common, e.g., where a resource constraint is involved, it would 
be useful to develop a characterization of such games. Within the class of games 
we consider, it should be possible to develop more insights than those in our 
theorems, particularly for certain special cases. For  example, it might be interest- 
ing to look at games composed of identical subgames. 

Another  avenue for further research lies in the application of the concept of 
semifuzzy games rather than the theorems in this paper. In this context one 
should note that contrary to other concepts in cooperative game theory, semifuzzy 
games d o  not have nice market  representations. The reason is, that the mathemat-  
ically convenient assumption that each coalition has a strictly positive endowment  
of each good is in direct conflict with the idea underlying semifuzzy games. As 
suggested in the example of Section 1, games of the prisoners' dilemma type, 
particularly in economics, political science and biology seems a much more 
promising application. In economics, the allegation that multiple point competi- 
tion can facilitate partial cooperation has a long history [5, 17] and little 
supporting formal theory. 5 In political science, the use of selected areas to signal 
threats or the use of selected weapons as deterrence have long been part of the 
received theory [15, 10]. Finally, there would seem to be many possible applica- 
tions in the rapidly developing area of mathematical biology. 

s This has recently been confirmed in empirical studies by Heggestad and Rhoades [9] and Scott 
[16]. 
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In  short,  the semifuzzy game concept  seems to describe several  c o m m o n  
p h e n o m e n a  and in par t icular  may have the potent ia l  to increase our  unde r s t and -  

ing of instances of partial  cooperat ion.  

Appendix. Numerical illustration 

Consider  an ord inary  game be tween  players a and  b, with value funct ion  
W(1, O)= W(O, 1 )=  2, W(1,  1 )=  6. If this game decomposes  into two identical  
scenes, the value funct ion  for the semifuzzy game could look like 

V,,(1, O; 1, O) = Vb(O, 1; O, 1) -- 2, 

V.(1,  1; 1, O) = Vb(1, 1; O, 1) = V.(1.  O; 1, 1) = Vb(O, 1; 1, 1) = 2½, 

Va(1, 1; 1, 1) = Vb(1.1;  1, 1) = 3. 
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