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This paper addresses the processing of a query in distributed database systems 
using a sequence of semijoins. The objective is to minimize the intersite data traffic 
incurred by a distributed query. A method is developed which accurately and 
efficiently estimates the size of an intermediate result of a query. This method 
provides the basis of the query optimization algorithm. Since the distributed query 
optimization problem is known to be intractable, a heuristic algorithm is developed 
to determine a low-cost sequence of semijoins. The cost comparison with an existing 
algorithm is provided. The complexity of the main features of the algorithm is 
analytically derived. The scheduling time for sequences of semijoins is measured for 
example queries using the PASCAL program which implements the algorithm. 
0 1986 Academic Press. Inc. 

1. INTRODUCTION 

The concept of distributed database systems has emerged as a natural 
solution to the information processing problems of geographically dispersed 
organizations. In this paper, we are concerned with processing a query in a 
distributed relational database system implemented on a point-to-point packet 
switching communication network. 

In order to process the distributed query, portions of the database at dis- 
persed sites have to be transferred to the user site. In a packet switching 
network, the delay in transmitting a large amount of data between two sites 
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is roughly proportional to the volume of the data transmitted [ 131. It was first 
observed [ 171 for the Arpanet that the data transfer rate between sites is low. 
Consequently, the minimization of the intersite data transfer is important in 
processing a distributed query. 

The usual methodology for distributed query processing consists of reduc- 
ing the referenced relations using a sequence of semijoins after initial local 
processing (ILP). An estimation of the sizes of the reduced relations after 
each semijoin in a sequence of semijoins is necessary to compute the intersite 
data transfer incurred by a distributed query. 

A number of methods have been proposed which estimate the sizes of 
intermediate results of queries in centralized database systems [5, 8, 14, 161. 
It is difficult, however, to apply these estimation methods to the distributed 
query processing. Moreover, there has been very little research on the esti- 
mation of the sizes of the reduced relations for a sequence of semijoins. 

The previous semijoin strategies for distributed query optimization [3, 4, 
7, 10, 1 I] assume that the joining attributes in referenced relations are inde- 
pendent throughout the processing of a query. An improved estimation 
method is introduced in [ 11. However, this method involves graph search 
which can be quite costly for large graphs. In Sections 3 and 4, we describe 
our own model for deriving the estimates. Efficient estimation algorithms and 
formulas are developed in Section 5 based on the model. 

The distributed query optimization problem is known to be NP-hard [lo]. 
Hence any realistic algorithm for determining a sequence of semijoins in- 
volves heuristics. Our algorithm is no exception. The algorithms which 
schedule reasonable semijoin strategies for general distributed queries are 
reported in [ 1, 3, 111. The algorithm in [ 1 l] constructs a schedule for each 
relation separately. The algorithm in [l] is based on hill-climbing technique 
with two enhancements to the basic algorithm. The algorithm in [3] decom- 
poses a query into simple queries [ 1 l] and schedules a sequence of semijoins 
for each simple query. Hence the reduction in cost achievable by processing 
one simple query for another simple query has not been taken into account. 
We present our algorithm in Section 6. Our algorithm makes use of the 
dependence of joining attributes in the same relations to reduce the query cost. 

Comparisons of the query costs produced by our algorithm with those 
obtained by the algorithm given in [l] have been made using the examples 
given in [ 1, 3, 111. In all cases, our algorithm performs better than the other 
algorithm. 

2. FRAMEWORK OFMODEL 

In this section, we state assumptions and explain notations. Then, a model 
for distributed query optimization is outlined. 

It is assumed that a relation is a unit of distribution. It is also assumed that 
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queries are conjunctive and contain only equijoin terms. During ILP, all the 
selections, projections, and local joins are performed. 

An attribute A in relations R and S is named R.A and S.A, respectively. 
These are considered to be different attributes, since R.A and S.A represent 
different sets of values. The set of joining attributes is partitioned into blocks 
{B,lk = 1, . . . ) p} by the equivalence relation =. The attributes in each 
block have a common domain. 

For example, for relations 

SUPPLIER (S#, S-NAME), SUPPLY (S#, P#), PART (P#, 
P-NAME) 

and the query 

FIND (SUPPLIER. S-NAME, PART. P-NAME) 
WHERE (SUPPLIER.S# = SUPPLY.S#) AND (SUPPLY.P# = 

PART.P#), 
B1 = {SUPPLIER.S#, SUPPLY.S#} and 
B2 = {SUPPLY.P#, PART.P#}. 

Two different joining attributes are said to be associated with each other 
if they are the attributes of the same relation. 

The semijoin of R by S on A and B, denoted by R <A = B]S, is defined as 
(R[A = B]S)[A,], where AR denotes the attributes of R. If R and S are at 
different sites, R <A = B]S is called semijoinfrom S.B to R.A because S[B] 
is transmitted to be compared with R [A]. After the semijoin from S.B. to R.A, 
R is reduced to R-CA = B]S. A semijoin is possible between any pair of 
joining attributes in the same block. 

We define the following variables: 

Dk 

t 
Ai 
1x1 

fl, 
4 

$ 
4 
R, 
Wi  
u 

the domain of the attributes in block & 
the ith joining attribute in a query 
the current set of values of joining attribute a, 
the initial set of values of ai after ILP 
the cardinality of a set X 
the semijoin from a, to uj 
the ith semijoin in a sequence of semijoins 
the cost incurred by e$ 
the benefit achieved by #i 
the net benefit of & (n, = bi - ci) 
the ith relation referenced by a query 
the width of the attribute a, 
a sequence of semijoins 

It is assumed that \Ai 1 and 1 Rj 1 after ILP are known for all Ai and Rj 
necessary to process the query. Also, I Dk I for all Bk and the widths of all the 
attributes in a query are available from the data directory. 

We express the transmission cost in terms of the volume of data traffic. The 
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data traffic includes the following message overhead incurred by intersite data 
flow: 

(1) V,: the fixed portion of the message overhead, 
(2) V,: the portion of the message overhead which is proportional to the 

length of the message. 

The transmission cost to transfer the message of length M bytes is given by 

C(M)=Vf+V,+M 
= vf+ uhf, (1) 

where 2) = 1 + V,/M. V, and b are the parameters determined by the commu- 
nication network being used. 

Assuming the transmission cost function given by (1)) we can compute the 
cost and the benefit of a semijoin. Let cij be the cost incurred byf;j and bij the 
benefit achieved byAi. The cost cij is the transmission cost, as given by (l), 
to transfer Ki and benefit bij is the reduction in the transmission cost due to 
the reduction in relations. 

The benefit achieved by a semijoin depends on the type of relations in- 
volved. When a relation referenced by a query consists of only one joining 
attribute after ILP, this relation can be ignored after transmitting a semijoin 
from this attribute. In addition, if the block containing this attribute has only 
two attributes and neither is in the target list, then both of them can be ignored 
after the semijoin. Since this situation can cause a chain effect to other 
relations, additional reductions of intersite data transfer can be achieved. A 
relation consisting of only one joining attribute after ILP is called a singleton 
joining relation. The set of all singleton joining relations is denoted by SJR. 
It is common for a query which does not have a long target list to have 
SJR # pl, where pI denotes an empty set. 

Consider a semijoin Aj, where: (i) Ui is an attribute of Rp; (ii) Uj, ak are 
attributes of R,; and (iii) ai, Uj E B,, . The benefit bij for the semijoin A, is 
classified into the following four different parts: 

1. bij: the benefit due to the reduction of ( R, ) which results from the 
reduction of 1 Kj 1 if R, is not at the user site, 

2. bfj: the benefit due to the elimination of Rp if Rp is not at the user 
site and Rp E SJR, 

3. b?j: the benefit due to the elimination of aj if R, is not at the user site 
and Bh = p after fij, 

4. b!j: the benefit due to the elimination of duplicated values of ak if 
R, is not at the user site and R, becomes a singleton joining relation afterJj. 

Then bij = bf, + b$ + b;t, + b:. The components of bij are illustrated in 
Fig. 1. SemijoinJ;j is called benejiciul if bi, - cij > 0. 
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FIG. 1. The components of the benefit b, achieved by semijoin j, 

3. ESTIMATION OF THE CARDINALITY OF A RELATION REDUCED BY A 
SEMIJOIN 

Consider a relation R, and its attribute Uj such that ( Kj 1 = m. Define a 
counting random variable X, for each u; E Kj which counts the number of 
tuples in R, in which the value of Uj is I);. Then for each Xi, the possible values 
are 1, 2, . . . , IR,(-m + 1 and EE, Xi = IR,l. By taking the expected 
values on both sides of the equation, 

E [ 1 2 Xi = 2 E[Xi] = mE[Xi] = )Rgl, 
i=l i=l 

where E [X] denotes the expected value of X. Hence 

E[Xi] = w for all 0; E K,. (2) 
J 

If a semijoin changes the value of a variable, we will append “N” to the 
name of the variable to designate the new value. After applying a semijoinji , 
R, and Kj are reduced to R, N and KjN, respectively. Since 
&K, N Xi, from (2)) 

= C E[X;]= IKjNIE[Xi]= IKjNIk 
t i iEKj N I i 

R,NI= 

(3) 

Therefore, if we know ( Kj N I for some aj which is an attribute of R, , then we 
can compute I R,N I. 

There are two different ways by which a Kj can be reduced. 

(1) If attributes Ui and Uj are in a block, a semijoin jj reduces Kj to a 
new set K; Kj, where Ki Kj denotes Ki 17 Kj. 
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(2) If Uj and a, are associated with each other, then they are in different 
blocks. The reduction of K, by the semijoinf, , where a, is in the same block 
as a,, also reduces Kj. 

First, we discuss the estimation of 1 KjN ) due to a semijoinJj. Suppose 
Bk = {al, . . . ) ai, Uj, . . . 3 a,}. Consider Jj as the first element in a se- 
quence of semijoins to process a query. If Dk is perceived to be the sample 
space, any X C Dk is the probabilistic event that v E X for v E Dk. Initially 
Kh = Ah for all ah E Bk, and the only restriction on Ah’s is that they be 
subsets of Dk. Therefore the events Ah’s are mutually independent events. 
Afterfij, KjN = AiAj. From P(AiAj) = P(Ai)P(Aj), 

A dependence between the events Ki and Kj is created as a consequence of 
the initial Aj. A new procedure must be established to derive the correct 
estimation of ( KjN I or I KiN I for a subsequent Aj or Ji, respectively. We 
generalize (4) by using conditional probability. 

DEFINITION 1. For a block Bk = {a,, . . . , a,}, let H be a proper subset 
of Dk. Consider a sequence of semijoins CT. H is a reachable set for Bk after 
u if there exists a concatenation V, W of two sequences of semijoins, V and 
W, where (i) V is a subsequence of a; (ii) any semijoin in W is between the 
attributes in Bk; and (iii) the sequence V, W reduces A; to H for some Ui E Bk . 

When a query is partially processed after a sequence (T, the current set of 
all reachable sets for Bk, denoted by R& , is defined to be the set containing 
Dk and all reachable sets for Bk after (T. Since o‘ is a special case of the 
sequence V, W, every Ki is an element of R&. u is A after ILP, where A 
denotes the null sequence. In this case, V, W = W, and the current set of all 
reachable sets for Bk is called the initial set of all reachable sets for Bk , and 
is denoted by RS:. 

Consider a set K E RSk, which is the smallest set containing both Ki and 
Kj. The knowledge that the event Kj has occurred does not affect the proba- 
bility of occurrence of the event Ki when the effective sample space is reduced 
to the event K. Hence the events Ki and Kj are conditionally independent given 
the event K. That is, 

P(K;K, I K) = P(Ki I K)P(Kj I K). (5) 

The set K is called the restricting set of K, and Kj . The estimation of ) K, N 1 
after a semijoin fij as an element in arbitrary position in a sequence of 
semijoins is as follows: 

P(KiK,) = P(K;Kj I K)P(K) + P(KlK, I R)P(R). 
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Since Ki KjK = fl because Ki Kj C K, we have 

IKiKjl _ IKI - 
IDkI P(K,K,IK)lDkI. 

Multiplying both sides by I Dk I and using (5) gives 

To estimate I Kj N I after a semijoinf, , where a, is in the same block as a,, 
and Uj and a, are the attributes in the same relation Rg, a solution to the 
problem considered by Yao [18] is used. This reduction was ignored in most 
of the previous semijoin strategies [3,4, 10, 111. It was first observed in [7] 
that Yao’s solution is applicable. Suppose I R, / = n, (Kj I = m, and 
I R, N ( = k. Then ( KjN I after a semijoin frs is given by 

[ 

k n(1 - l/m) - i + 1 
ml-n 

i=l 1 n-i+1 

4. LATTICE MODEL FOR THE CURRENT SET OF ALL REACHABLE SETS 

In this section, we show that the current set of all reachable sets RSk forms 
a lattice and we subsequently use that fact to calculate the cardinality of the 
set of values of an attribute. Since the characteristic of a lattice model is 
common to each block Bk, we will drop the block index unless it is necessary. 

4.1. Initial Lattice 
We begin by showing that the set RS’ forms a lattice. This, we show by 

generating the elements of RS’ in a step-by-step manner. The lattice (RS’, Q 
is called an initial lattice. 

Consider B = {al, . . . , a,}. Because of the probabilistic nature of esti- 
mation, at any instance during the query processing, Ki Kj # $d for any ui, 
aj E B. From the remark after Definition 1 concerning RS’, we observe that 
for any X E RS’, X can be reached from Ai for Ui E B after a sequence of 
semijoins each of which is between the attributes of B. Hence for any 
X E RS’, X = ni,,, Ai, where J C (1, 2, . . . , n}. Let RS! = 
{Ai I ai E B}. Th e set RS! is generated by intersecting i sets taken from RS\ 
at a time for i = 1, 2, . . . , n. (See Fig. 2.) Thus 

RS; = {A,A2,A,A3, . . . ,A,-,A,} 

RS: = {A,A~ . - - A,}. 
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Let RS; = (0). Then RS’ = U F. RSf . 
The following lemma relates the lattice theory and the query processing in 

a database system. 

LEMMAS. Given a block B, the initial set of all reachable sets, RS’, forms 
a lattice under set-inclusion, with l.u.b.{X, Y} = minimum(Z E RS’ 1 X C 
Z and Y C Z} and g.l.b.{X, Y} = XYf or any X, Y E RS’. In estimating the 
effect OfJ;j orfii for ai, aj E B, the restricting set is l.u.b.{Ki, Kj} and the 
reduced set is g.l.b.{K,, Kj}. 

The first part of Lemma 1 follows directly from the fact that RS’ is closed 
under intersection [2]. The initial lattice (RS’, C) is denoted by L’. 

4.2. Expanded Lattice 
In this subsection, we show that RS at any instance during the query 

processing also forms a lattice. The lattice (RS, C) is called an expanded 
lattice, and is denoted by L. 

After ILP, L = L’. The lattice L for a block B can be expanded by semijoins 
between attributes in other blocks. This is caused by the effect on Kj by a 
semijoin frs , where a, is in the same block as a,, and aj is associated with a,. 
The new expanded lattice is denoted by L* = (RS*, C), Different expanded 
lattices will be generated for different sequences of semijoins. 

We illustrate this expansion by expanding L’. Suppose K, = X E L’ for 
aj E B before a semijoin frs is performed. The reduction of K, results in the 
reduction of Kj. The reduced Kj, namely KjN, cannot be expressed by the 
intersection of sets in RS! . The expansion of an initial lattice that reflects the 
effect of the semijoin frs is as follows: 

(1) Suppose RS’, = {A,, AZ, . . . , A,}. Let A,+, represent the KjN 
formed by frs . 

(2) RS* = RS’ U {XA,+I} U G, where G is the set of elements gener- 
ated by intersecting XA n+l and the elements in L’. 

Since RS* contains XA,+ 1 and is closed under intersection, it is the set of 
all reachable sets for B after frs and LN is a lattice. Since A,+ 1 C X, A,+, = 
X4,,+,. We prefer to denote the new element by XA,+t. Therefore, A,+, is 
used when the set is used as a generator while XA,+I is used to designate a 
specific element in a lattice. For the mth expansion of the lattice, the reduced 
set will be represented by A,,,. 

The expanded lattice is the generalization of the initial lattice L’. We 
summarize the above discussion in the following theorem: 

THEOREM 1. Given a block B = {a,, a2, . . . , a,,}, the current set of all 
reachable sets RS at any point in the sequence of semijoins forms a lattice 
under set-inclusion, with l.u.b.{X, Y} = minimum{Z E RS 1 X c Z and 
Y C Z} and g.l.b.{X, Y} = XYf or any X, Y E RS. In estimating the effect 
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of&j orA; for a;, a, E B, the restricting set is I.u.b. {K;, Kj} and the reduced 
set is g.1.b. {Ki, Kj}. 

The formula to compute 1 Kj N 1 resulting from fij can be obtained using 
Theorem 1. Substituting 1 K 1 = I l.u.b.{Ki, Kj} I in (7), we have the basic 
formula 

JKjNI = g.l.b.l{Ki, Kj}l 

I K I I&I (9) 

= 1 l.u.b.{K;, Kj}I ' 

This lattice model for estimating the reduction of relations during query 
processing can be used for a broadcasting communication network as well as 
a point-to-point communication network. 

5. METHODS FOR COMPUTING THE CARDINALITY OF THE REDUCED SET 

In a distributed query optimization algorithm, the reduction of the set of 
values of a joining attribute by a semijoin has to be computed frequently. 
Therefore, an efficient method for estimating the reduciton is crucial in 
increasing the efficiency of the algorithm. 

The special structure and labeling rule of the lattice L are used to indicate 
lattice operations. In this section, we assume that L contains n initial sets 
A,, . . . , A, and m sets A,,+, , . . . , A,,, generated by semijoins between 
the attributes in other blocks. Let I be an index set { 1, 2, . . . , n, 
n+l,... , n + m}. Since each reachable set in L is the intersection of 
some elements of the set {A,, A2, . . . , A,, A,+, , . . . , A,,,} and since the 
set RS is closed under intersection we can state the following lemma: 

LEMMAS. LetZ={1,2,.. .,n,n+ l,..., n+m}.AnysetXE 
RS is given by X = n iEl, Ai for some Z, C 1. 

Z, is the index set of the reachable set X. The index set Z, uniquely deter- 
mines the set X. The index set of An+k, 1 I k 5 m, which is obtained after 
reduction of some Z E L by a semijoin between the attributes in a block other 
than Z3 is given, by convention, by ZA,+t = Z, U {n + k}. 

LEMMA 3. Zf X and Y are two elements of RS with index sets Z, and 
Zy, respectively, then g.l.b.{X, Y} = nkEI, Ak, where Z, = Z, U Z, and 
Z.u.b.{x, y} = n,,,,W A,,, where I, = Z, fl Z,. 

The associative property of g.1.b. allows us to state the following more 
general result: 

LEMMA 4. Let Z = (1, 2, . . . , n, n + 1, . . . , n + m}. Then for any 
setX E RS with the index set I, G I, X = g.Z.b{X,, X2, . . . , X,}for some 
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Xj E RS,j E J = {1,2, . . . , p}, ifand only ifZ, = Uj, Zj, where Zj is the 
index set of Xjfor j E J. 

Using Lemma 2, we represent a reachable set by its index set. In computing 
the cardinality of a set X E L, we determine sets X1, X2, . . . , X, such that 
XI, x2, . * . 9 X, E L, g.l.b.{X1, X2, . . , , X,,} = X, and the cardinalities 
of x,, x2, . . . , X, are easily obtainable. In fact, the following algorithm 
generates the index sets of X1, . . . , X,, such that either Xi E {A,+l, 
A n+Zr . . * 7 A,+,} or Xi E L’ for i = 1, . . . , p. 

PROCEDURE SET-COVER (Z1) 
// Z, is the index set of X E RS. ZAq is the // 
//indexsetofA,forq=n+ 1,. . . ,n+m// 
C-B ; initialize the cover being constructed. 
u+maxZ, 
WHILE u > n ; n: the size of block 
DO BEGIN 

C+-C u K4,) 
z, + z, - I* 
IF Z, = fl ’ 
THENut 
ELSE u t max Z, 

END 
IFu#OTHENC+-CU{I,} 
RETURN (C) 

END SET-COVER 

The following is an algorithm which takes the index set of X E L and 
computes the cardinality of X by using the associativity of g.1.b. and repetitive 
application of (9). 

PROCEDURE CAL-CARD (ZJ 
// Z, is the index set of X. SET-COVER takes Z, and // 
// returns {II, . . . , Zp} corresponding to {Xi, . . . , X,)/l 
IFmax Z, I n 
THEN CARD + 1 D IIIiE,, P (Ai) ;P(Ai) = IAiIIID( 
ELSE BEGIN 

SET-COVER (ZJ 
FORi= 1 UNTILp DO ki + max Z, 
IFk,Sn ; suppose k, % , . . . , I kp 
THEN C-GLB + ) D Illi,, , P (Ai) 
ELSE C-GLB * 1 Ak, 1 
FOR i = 1 UNTILp-1 
DO BEGIN 
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LUB + liZi+, ;LUB is the index set of l.u.b.{Xi, Xi+,} 
IF LUB = pl 
THEN C-LUB + 1 D 1 
ELSE C-LUB t CAL-CARD (LUB) 
C-GLB + C-GLB X IAk,+, I/C-LUB ; use (9) 
Ii+, +Zi UZi+l 

END 
CARD t C-GLB CARD = 1x1 

END 
END CAL-CARD 
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In order to use CAL-CARD, we have only to store the information of D, 
A,, . . . , A,, &+I, . . . , A,+, instead of the whole lattice. 

Next, we present an approximate formula of (8). Since k is the number of 
tuples of the reduced relation after a semijoin, k may be very large. In this 
case, k iteration required in (8) takes a long computation time. We have the 
following approximate formula: 

l&N1 = {;I; 1 ;; 1 ;:,;I if n/m -C k 
otherwise. (10) 

We have compared the results of (8) and (10) for a broad range of values 
of n, m, and k. The comparison shows that the error due to the use of (10) 
instead of (8) is practically negligible. 

6. SOLUTION ALGORRHM 

In this section, we present a heuristic algorithm for deriving a sequence of 
semijoins. Further, we discuss the heuristics on which this algorithm is based. 

Our strategy is to process a block as a unit and to sequence the blocks. We 
select a block, then schedule a sequence of semijoins among the attributes of 
the block, according to rules which will be explained later. The subsequent 
blocks are selected and processed in the same way. The blocks are sequenced 
to take advantage of the reductions in cost by processing a block for other 
blocks. 

Our heuristic algorithm, Algorithm H, consists of the following seven 
major procedures: 

1. INI’I-ATTR-INACTIVATION 
2. PROCESS-BLOCKS 
3. BUILD-PATH 
4. REVERSE-PROCESS-BLOCKS 
5. HILL-CLIMBING 
6. COMPLETION 
7. SCREENING 
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Algorithm H also updates the database state after considering a semijoin, 
using the estimation method previously presented. The procedures in Algo- 
rithm H are sequentially executed in the order as listed above except for 
procedure BUILD-PATH, which is embedded in procedure PROCESS- 
BLOCKS. 

Procedures PROCESS-BLOCKS, REVERSE-PROCESS-BLOCKS, and 
COMPLETION are the main features of Algorithm H. Procedures 
INIT-ATTRINACTIVATION , BUILD-PATH, HILL-CLIMBING, and 
SCREENING are control features to increase the robustness of the algorithm 
for random input data. We shall describe the main features of the algorithm 
followed by the control features. 

6.1. Main Features 
Procedures PROCESS-BLOCKS selects and processes one block at a 

time. For an attribute a; defined on a domain Dk, the density dj is 1 Ki [/I Dk (. 
Consider a block Bk = {a,, . . . , a,} with dl 5 * * * 5 d,. The basic strat- 
egy to process a block is to perform the sequence of semijoins, 
f 129 . ’ . 3 fn-1, II, to achieve a maximal reduction within a block with a min- 
imal cost. Processing a block in this way is called a block visit. 

If an attribute ai in a block Bk is not associated with any attribute in other 
blocks and if the visit to the block Bk does not end in ai, then the attribute ai 
can be excluded from further scheduling of semijoins because the current 
values of some other attribute in the block Bk are contained in the values of 
ai. After a block is visited, the remaining attributes are called active attri- 
butes, and the excluded ones inactive attributes. 

The amount of data transferred by each semijoin in visiting Bk is bounded 
by ( K1 Iwl. Since Bk contains at least two joining attributes, dld2 is a rough 
approximation of the reduction achieved by visiting Bk. We, therefore, mul- 
tiply I K, (w, by a penalty factor 1 + dld2, and we define the block cost BC(k) 
of an unvisited block Bk as follows: 

BC(k) = 1 K1 /w,(l + d,d2). (11) 

The following variables are defined to explain the algorithms: 

P 
UP 
VP 
SVP 
ZB) 
SW) 
4%) 

the set of all blocks 
the set of unvisited Llocks 
the set of visited blocks 
the sequence of visited blocks 
the sequence of semijoins being scheduled by Algorithm H 
the set of active attributes in block B 
the sequence of inactive attributes in block B 
the set of blocks which contains the amibutes associated with ai. The elements of 
Afi(a,) are called the associated blocks of a,. The set of end associaie blocks, 
END-A& at the end of visiting a block Bk which ends in a, is given by A/?@,) II Up. 
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Initially Up = /3, VP = @, A(B) = B, uh = A, SI(B) = A, and 
END-AP = 8. When a semijoinjj is scheduled, it is appended to ah and if 
ai is unassociated, Algorithm H excludes ai from A(B) and appends it to 
SI(B). Algorithm H does not append a semijoinJj to oh if$j does not reduce 
( Kj 1 at least by one. 

Procedure BUILD-PATH embedded in procedure PROCESS-BLOCKS 
will be explained more fully later. It builds a path rk to an unvisited block Bk 
which is a sequence of semijoins, each between two attributes of a visited 
block, such that the last semijoin in the path is to an attribute associated with 
an attribute in Bk. Procedure PROCESS-BLOCKS is described below: 

PROCEDURE PROCESS-BLOCKS 
While U/3 = 8, do the following: 

1. (find the candidate blocks) Let B, and B, be the blocks with the 
minimal block cost in END-AP and Up - END-AP, respectively. 

Case 1. If END-AP = @, B, is the only candidate block. 

Case 2. If END-AP # @l and BC(e) 5 BC(u), B, is the only candidate 
block. 

Case 3. IF END-A/3 # fl and BC(e) > BC(u), B, and B, are both 
candidate blocks. 

2. (select a block) Let Bci be the ith candidate block for i = 1, 2, and BN 
the next block to be visited. For each candidate block, call BUILD-PATH. 
Suppose 7rcl = 4,,, . . . , &, and 7rc2 = +21, . . . , &,,. If B,, is the only 
candidate block or X7=1 cij + BC(c 1) 5 x’&i c2j + BC(c2), then BN + B,I, 
else BN t Bc2. 

3. (process a path and visit a block) Append TN, the path to BN, to oh and 
the sequence of visited blocks corresponding to the elements of ?r,, to SVP. 
Sort the attributes of A(B,) in ascending order of densities. Suppose the 
sorted list is al, . . . , a,, then append fi2, . . . ,fn-l,n to a,,. Let 
A/I = U, AP (a) for a E A(BN) - {a,}. If a, is unassociated and 
AP fl (U/3 U V/3) # 8, appendf,j to oh for Uj selected as follows: 

Case 1. If AP fl Up # 8, for each ai E A(BN) - {Q”} and for each 
Bk E AP(ai) fl Up, compute the cost of the block Bk, BC(k), after the 
semijoinfni is performed. Select Uj which has the minimal BC(k). 

Case 2. If AP n U/3 = @, select aj associated with the most recently 
visited block in SVp. 

If 1 A(BN) ( > 1, include BN in V/3 and append BN to SVP. Up t Up - {BN}. 

In procedure PROCESS-BLOCKS, the reductive power of a visited block 
is utilized by subsequent block visits whenever possible. In order to use the 
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reductive power of a block visited later, roughly the order of visits is reversed 
with respect to the order of visits by procedure PROCESS-BLOCKS. 

PROCEDURE REVERSE-PROCESS-ELOCKS 
While SVB # A, do the following: 
Let B be the last block in SVB with A(B) = {ai, . . . , a,} and 

d,,s ,..., Id,. If B E V/3 and n > 1, appendf,,,-i, . . . , fil to uk 
and exclude B from VP. Delete B from SVB. 

Procedure COMPLETION reduces the size of the relations containing 
inactive attributes and at least one target attribute using the reductive power 
accumulated in active attributes. 

PROCEDURE COMPLETION 
For each B E B, if A(B) # fl and SI(B) # A, do the following: 
Suppose A(B) = {ai, . . . , +i} and SI(B) = ai, u;+~, . . , , a,. Select 

Uj E A(B) with the minimal density. s t-j. For t = i to n, if the net benefit 
n,, > 0, append fst to ak and s t t. 

6.2. Control Features 

Procedure INT-ATTR-INACTIVATION, which is the first procedure in 
Algorithm H, excludes unassociated attributes with high initial density to 
avoid semijoins which are neither beneficial for themselves nor useful for 
subsequent semijoins. 

PROCEDURE INIT-ATTRINACTIVATION 
For each B E B, do the following: 
For each unassociated attribute ai E B with di 1 0.8: Suppose a; is an 

attribute of relation R. If R $Z SJR or R is at the user site, exclude uj from 
A(B) and append ai to SI(B). Sort the attributes in SI(B) in ascending order 
of their densities. If 1 A(B) 1 < 2, exclude B from Up. 

Procedure BUILD-PATH makes better use of the reductive power accu- 
mulated in visited blocks to reduce the cost of visiting an unvisited block. We 
create a path which is a sequence of semijoins, each from an already visited 
block. 

We define the symbols which are used in procedure BUILD-PATH given 
below. BN is a candidate for the next block to be visited. TN = &I, . . , d& 
is a path constructed at some point during the execution of the procedure, 
where+N,, 1 li Im, is a semijoin between two attributes in an already 
visited block BNi. PB = {BNi 1 1 5 i 5 m}. For each u E BN when TN = A 
and for each a E BN1 when TN # A, we define CAND-PB(u) = 
& E MU n VP 1 th ere exists a,, E Bk which is associated with a and 
ug E A(B,) such that dg < dh}. (Y = {U E BN I CAND-P/~(U) # 8). a* is 
an element of a with minimal density. n(n) = net benefit obtained from a 
sequence of semijoins r. 
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PROCEDURE BUILD-PATH (BN) 
Initialize Pp t 9 and ?r,, * A. If (Y # 8, do the following: 
Select a* E (Y. u. t a*. p* * CAND-PP (ao). Repeat the following un- 

til p* = 8: 
1. Select Bj E p* such that if &, is the semijoin from the attribute 

with the smallest density in Bj to the attribute associated with u,, then --n (~Bj, 
TV) + BC(N) is minimum. 

2. Pp + Pp U {Bj}. TN + +Bj, TN. 
3. Suppose &j = &. ~0 + u,. p* + CAND-PP(uO) - P/3. 

Select TNh = 4Nh, +N, k+l, . . . , &, c r,‘., such that -n (TN,,) + BC(N) . . . is minimum. TN t rNh. 

A hill-climbing technique can be adopted before using procedure COM- 
PLETION to further decrease the query cost. Only the semijoins between 
active attributes need to be considered. 

PROCEDURE HILL-CLIMBING 
Let (Y = Uk A(Bk), where the union is performed over those k for which 

1 A(Bk) ( > 1. TEMP- (Y + (Y. While TEMP-a # $4, do the following: 
Select ai E TEMP-(Y with the minimal d;. Select Uj E TEMP-(I! with the 

maximal nij. If ni, > 0, then appendAj to flk and TEMP-a + (Y - {ai}, else 
TEMP-a + TEMl?a - {ai}. 

Procedure SCREENING deletes obviously unnecessary semijoins sched- 
uled by the procedures previously described. 

PROCEDURE SCREENING 
Let uh = (bl, . . . , +t and & = Jj. 1 I k 5 t, and let Uj be an attribute 

of some relation R and ai the attribute of some relation R ’ . 

1. For k = t down to 1, if nk Cr 0 and 4,,, neither comes from nor goes 
to an attribute of R for all m > k, delete &. 

2. If the query references relations at the user site, do the following: 
For k = t down to 1, if R is at the user site and (bm does not go to an attribute 

of R’ for all m > k, replace & with “move R’ to the user site.” 

Since the deletion of & from ah does not affect the costs and benefits of 
other semijoins, they do not have to be recomputed. 

6.3. Complexity Analysis of Algorithm H 

The measure of the complexity is the number of sequences of semijoins 
generated by Algorithm H in the process of constructing the final sequence. 
The existence of procedure HILL-CLIMBING in Algorithm H makes it 
difficult to derive a narrow-bound time complexity. If there are s possible 
semijoins and m relations involved in processing a query, then the worst case 
complexity of procedure HILL-CLIMBING is 0 (s XEi 1 R; I). Fortunately, 
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procedure HILL-CLIMBING is a refinement feature and very seldom uti- 
lized. The worst case complexity of procedure BUILD-PATH can be easily 
shown to be 0 (1 p 13). Just like procedure HILL-CLIMBING, procedure 
BUILD-PATH is very seldom utilized. 

Since most queries are handled only by the main features of Algorithm H, 
we shall consider the complexity of the main features of Algorithm H. 

THEOREM 2. The worst case complexity of the main features of Algo- 
rithm H without procedure BUILD-PATH is O(n*( p I), where n * = 
max{lBI IB E PI. 

Proof. Procedure PROCESS-BLOCKS is the dominant procedure which 
has two major loops, one embedded within the other. For B = 
h, . . . , a,,} E p, procedure PROCESS-BLOCKS generates one sequence 
of length A, for h = 1, . . . , n - 1, and maximum n - 1 sequences of 
length n. The maximum number of sequences that can be generated by 
procedure PROCESS-BLOCKS is 2(n - 1). Since n % n *, the worst case 
complexity of procedure PROCESS-BLOCKS is 0 (n *I p 1). n 

7. QUERY EXAMPLES 

The examples from recently published papers [ 1, 3, 1 l] are selected for 
tests. We compute the costs for the same examples by Algorithm H and the 
SDD-1 algorithm [l] using our estimation method for the cardinalities of 
reduced relations. In order to avoid repetitive details, only the first example 
is carried out in detail. 

Since a statistical estimation method is used, the costs, benefits, and cardi- 
nalities are first computed in real numbers, and then the results are given in 
integers by rounding the real numbers. 

EXAMPLE 1. The example by Hevner and Yao [l l] is considered. This 
example is also used by Cheung [3]. The database has the following four 
relations each of which is located at a different site: 

EMPLOYEE (E#, ENAME, SEX), COURSE(C#, CNAME, LEVEL) 
STUDENT-COURSE(E#, C#), TEACHER-COURSE(E#, C#, ROOM). 

The relation TEACHER-COURSE is at the user site. The relational form of 
the query is as follows: 

FIND (EMPLOYEE.ENAME, COURSE.CNAME) 
WHERE (EMPLOYEE.E# = STUDENT-COURSE.E#) 

ANI~(E~~PLOYEE.E# = TEMX-II~FLC~~JRSE.E#) 
AND (TEACHER-COURSE.C# = COURSE.C#) 
AND (COURSE.LEVEL = ‘Advanced’) 
AND (TEACHERCOURSE.ROOM = ‘103’) 
AND (EMPLOYEE.SEX = ‘M’) 
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The parameters for the query and the database are defined as follows: 

R, = COURSE, R2 = TEACHERCOURSE 

R3 = EMPLOYEE, R4 = STUDENT-COURSE 

al = COURSE.C#, a2 = TEACHERC0URSE.C~# 

a3 = TEACHER-COURSE.E#, a4 = EMPLOYEE.E# 

a5 = STUDENT-COURSE.E#, a, = COURSE.CNAME 

a, = EMPLOYEE.ENAME. 

After ILP, the reduced query and the given initial database state are shown 
below. 

WHERE (ai = a*) AND (a3 = u4) AND (a4 = us) 

1 RI 1 = 100, IR21 = 300, IR31 = 200, IR41 = 600 

IAl 1 = 100, IA21 = b3( = IAd1 = 200, /AsI = 600 

Wi = 1 fori= 1,. . . ,5 

w, = 11, w, = 9 

ID,/ = 400, 1021 = 1000. 

From the reduced query, we have B, = {al, u2} and B2 = {u3, u4, us}. 

In accordance with Hevner and Yao’s example, the communication net- 
work parameters, V, and o, are set to 10 and 1, respectively. Then the initial 
cost, IC, of moving R,, R3, and R4 after ILP to the user site is 3830. 

Query Cost by Algorithm H. The lattices L, and L2 for B, and B2, re- 
spectively, and the changes of Ki’s during the application of c~ are shown in 
Fig. 2. The expansions of the initial lattices are shown in dotted lines. The 
changes of values of database state variables after each semijoin in ah are 
shown in Table I along with bi, ci, and ni for each semijoin. 

1. INIT-ATTR-INACTIVATION 
Since di < 0.8 for all ai, all the attributes are initially active. 
2. PROCESS-BLOCKS 

(1) Since initially END-AP = @ , a block to be visited is selected from 
Up = {B,, B2} with the m inimum block cost. Using (1 l), 

BC(l) = IKrlw,(l + d,d2) = 100 x 1 x (1 + 0.25 x 0.5) = 112.5 

BC(2) = ( K31w3(1 + d3d4) = 200 x 1 x (1 + 0.2 x 0.2) = 208. 

Since BC(l) < BC(2), B, is selected for the visit. 
(2) Since VP = 8, no path is built for B,. By procedure PROCESS- 
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FIG. 2. The expansions of the lattices by the sequence of semijoins generated by Algorithm H 
for Hevner and Yao’s example. 

BLOCKS, +1 = fi2 is appended to ah, and aI is inactivated. Afterfiz, a new 
set A3A6 which represents the reduced K3 is formed. After B, is visited, 
U/3 = END-AP = {&}. Since B, has only one active attribute, Bi is not 
included in V/3. 

(3) Since U/3 = {&}, B2 is the next block to be visited. Since VP = 8, 
no path is built for BZ. In procedure BLOCK-VISIT, & = j&, & = & are 
appended to oh, and a4 becomes inactive. V/3 becomes {B2} and Up 
becomes pl. 

3. REVERSE-PROCESS-BLOCKS 
Since VP = {B2}, +4 = fs3 is appended to oh. After fs3, a new set A, A2A7 

which represents the reduced K2 is formed. Since R4 E SJR, R4 is ignored 
after f53. 

4. HILL-CLIMBING 
Since none of the semijoins are beneficial, procedure HILL-CLIMBING 

does not append any SemijOin t0 g,,. 
5. COMPLETION 

(1) For B1, a2 is the only active attribute, while al is the only inactive 
attribute. Hence & = f21. 

(2) For B2, u3 is the only active attribute, while a4 is the only inactive 
attribute. Hence &, = fj4. 

6. SCREENING 
No semijoin is deleted from oh by procedure SCREENING. 

From Table I, the cost of the query QC by Algorithm H is 

QC = IC - f: ni = 3830 - 3352 = 478. 
i=l 

Query Cost by the SDD-1 Algorithm. We follow the same procedure used 
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TABLE I 
THE SEQUENCE OF SEMIJOINS BY ALGORITHM H AND ITS EFFECT 

FOR HEVNER AND YAO’S EXAMPLE 

i 1 2 3 4 5 6 

4 fi2 f 34 f45 f53 fz1 f 34 

75.0 

/ 
50.0 
70.0 

I 14.0 
14.0 

0.0 1860.0 
110.0 80.0 

-110.0 1780.0 

8.4 
8.4 

591.6 
24.0 

567.6 

9.0 
8.7 
8.4 

18.4 
18.4 
0.0 

a.7 
a.7 

1095.3 
18.7 

1076.6 

a.4 
a.4 

56.0 
18.4 
37.6 

in SDD-1 and compute the cost of transmitting the data during the sequence 
of semijoins and transmitting the reduced relations to the assembly site. 
However, we further include the cost of transmitting the assembled answer 
from the assembly site to the user site. The cost of the query by the SDD-1 
algorithm is 756. 

An example by Bernstein et al. [l] is considered. In this example, the user 
site is not specified. We assume that the user site is not one of the sites at 
which the relations referenced by the user query are located. An example by 
Cheung [3] is also considered. The results are summarized in Table II. It is 
shown that Algorithm H performs uniformly better than the SDD- 1 algorithm. 

For the example in [ 11, if the relation Y is at the user site, Algorithm H and 
the SDD-1 algorithm produce identical sequences of semijoins and query 
cost. However, if the user site is the site of S or P, the query cost according 
to the SDD- 1 algorithm is also 4128. The query cost obtained by Algorithm 
H is 26 11 when S is at the user site whereas 218 1 when P is at the user site. 

Algorithm H has been implemented in PASCAL and runs on Amdahl 

TABLE II 
SUMMARY OF QUERY COST COMPARISONS 

Examples by 

Algorithm H&Y Bernstein Cheung 

Init. Cost 3,830 206,630 1,330 
SDD-1 756 4,128 796 
Algorithm H 478 2,711 683 
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TABLE III 
SCHEDULING TIME OF A SEQUENCE OF SEMIJOINS BY ALGORITHM H 

Example by No. of Sites 
Scheduling time 

(Seconds) 

Hevner and Yao 4 0.0039 
Bernstein et al. 3 0.0027 
Cheung 4 0.0043 

47OV/8. We have measured the execution time of the PASCAL program 
which implements Algorithm H. The scheduling time for the examples using 
Algorithm H is shown in Table III. 

8. CONCLUSION 

The query costs obtained by Algorithm H are compared with those obtained 
by an existing algorithm using some of the published examples. These query 
costs indicate that Algorithm H is superior. The efficiency of Algorithm H is 
mainly achieved by the following factors: 

(1) Since the number of blocks is considerably less than the number of 
semijoins, the block-oriented nature of Algorithm H leads to a significant 
reduction of search space. 

(2) The estimation using the lattice model provides an efficient com- 
putation method for the dominant term in Algorithm H. 
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