
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 3, 137-157 (1986)

An Optimization of Queries in Distributed
Database Systems

CHIN-WAN CHUNG

Computer Science Department, General Motors Research Laboratories,
Warren, Michigan 48090

AND

KEKI B. IRANI

Department of Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, Michigan 48109

Received January 1, 1984

This paper addresses the processing of a query in distributed database systems
using a sequence of semijoins. The objective is to minimize the intersite data traffic
incurred by a distributed query. A method is developed which accurately and
efficiently estimates the size of an intermediate result of a query. This method
provides the basis of the query optimization algorithm. Since the distributed query
optimization problem is known to be intractable, a heuristic algorithm is developed
to determine a low-cost sequence of semijoins. The cost comparison with an existing
algorithm is provided. The complexity of the main features of the algorithm is
analytically derived. The scheduling time for sequences of semijoins is measured for
example queries using the PASCAL program which implements the algorithm.
0 1986 Academic Press. Inc.

1. INTRODUCTION

The concept of distributed database systems has emerged as a natural
solution to the information processing problems of geographically dispersed
organizations. In this paper, we are concerned with processing a query in a
distributed relational database system implemented on a point-to-point packet
switching communication network.

In order to process the distributed query, portions of the database at dis-
persed sites have to be transferred to the user site. In a packet switching
network, the delay in transmitting a large amount of data between two sites

137

0743-7315186 $3.00
Copyright 8 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

138 CHUNG AND IRAN1

is roughly proportional to the volume of the data transmitted [131. It was first
observed [171 for the Arpanet that the data transfer rate between sites is low.
Consequently, the minimization of the intersite data transfer is important in
processing a distributed query.

The usual methodology for distributed query processing consists of reduc-
ing the referenced relations using a sequence of semijoins after initial local
processing (ILP). An estimation of the sizes of the reduced relations after
each semijoin in a sequence of semijoins is necessary to compute the intersite
data transfer incurred by a distributed query.

A number of methods have been proposed which estimate the sizes of
intermediate results of queries in centralized database systems [5, 8, 14, 161.
It is difficult, however, to apply these estimation methods to the distributed
query processing. Moreover, there has been very little research on the esti-
mation of the sizes of the reduced relations for a sequence of semijoins.

The previous semijoin strategies for distributed query optimization [3, 4,
7, 10, 1 I] assume that the joining attributes in referenced relations are inde-
pendent throughout the processing of a query. An improved estimation
method is introduced in [11. However, this method involves graph search
which can be quite costly for large graphs. In Sections 3 and 4, we describe
our own model for deriving the estimates. Efficient estimation algorithms and
formulas are developed in Section 5 based on the model.

The distributed query optimization problem is known to be NP-hard [lo].
Hence any realistic algorithm for determining a sequence of semijoins in-
volves heuristics. Our algorithm is no exception. The algorithms which
schedule reasonable semijoin strategies for general distributed queries are
reported in [1, 3, 111. The algorithm in [1 l] constructs a schedule for each
relation separately. The algorithm in [l] is based on hill-climbing technique
with two enhancements to the basic algorithm. The algorithm in [3] decom-
poses a query into simple queries [1 l] and schedules a sequence of semijoins
for each simple query. Hence the reduction in cost achievable by processing
one simple query for another simple query has not been taken into account.
We present our algorithm in Section 6. Our algorithm makes use of the
dependence of joining attributes in the same relations to reduce the query cost.

Comparisons of the query costs produced by our algorithm with those
obtained by the algorithm given in [l] have been made using the examples
given in [1, 3, 111. In all cases, our algorithm performs better than the other
algorithm.

2. FRAMEWORK OFMODEL

In this section, we state assumptions and explain notations. Then, a model
for distributed query optimization is outlined.

It is assumed that a relation is a unit of distribution. It is also assumed that

QUERIES IN DISTRIBUTED DATABASE SYSTEMS 139

queries are conjunctive and contain only equijoin terms. During ILP, all the
selections, projections, and local joins are performed.

An attribute A in relations R and S is named R.A and S.A, respectively.
These are considered to be different attributes, since R.A and S.A represent
different sets of values. The set of joining attributes is partitioned into blocks
{B,lk = 1, . . .) p} by the equivalence relation =. The attributes in each
block have a common domain.

For example, for relations

SUPPLIER (S#, S-NAME), SUPPLY (S#, P#), PART (P#,
P-NAME)

and the query

FIND (SUPPLIER. S-NAME, PART. P-NAME)
WHERE (SUPPLIER.S# = SUPPLY.S#) AND (SUPPLY.P# =

PART.P#),
B1 = {SUPPLIER.S#, SUPPLY.S#} and
B2 = {SUPPLY.P#, PART.P#}.

Two different joining attributes are said to be associated with each other
if they are the attributes of the same relation.

The semijoin of R by S on A and B, denoted by R <A = B]S, is defined as
(R[A = B]S)[A,], where AR denotes the attributes of R. If R and S are at
different sites, R <A = B]S is called semijoinfrom S.B to R.A because S[B]
is transmitted to be compared with R [A]. After the semijoin from S.B. to R.A,
R is reduced to R-CA = B]S. A semijoin is possible between any pair of
joining attributes in the same block.

We define the following variables:

Dk

t
Ai
1x1

fl,
4

$
4
R,
Wi
u

the domain of the attributes in block &
the ith joining attribute in a query
the current set of values of joining attribute a,
the initial set of values of ai after ILP
the cardinality of a set X
the semijoin from a, to uj
the ith semijoin in a sequence of semijoins
the cost incurred by e$
the benefit achieved by #i
the net benefit of & (n, = bi - ci)
the ith relation referenced by a query
the width of the attribute a,
a sequence of semijoins

It is assumed that \Ai 1 and 1 Rj 1 after ILP are known for all Ai and Rj
necessary to process the query. Also, I Dk I for all Bk and the widths of all the
attributes in a query are available from the data directory.

We express the transmission cost in terms of the volume of data traffic. The

140 CHUNG AND IRAN1

data traffic includes the following message overhead incurred by intersite data
flow:

(1) V,: the fixed portion of the message overhead,
(2) V,: the portion of the message overhead which is proportional to the

length of the message.

The transmission cost to transfer the message of length M bytes is given by

C(M)=Vf+V,+M
= vf+ uhf, (1)

where 2) = 1 + V,/M. V, and b are the parameters determined by the commu-
nication network being used.

Assuming the transmission cost function given by (1)) we can compute the
cost and the benefit of a semijoin. Let cij be the cost incurred byf;j and bij the
benefit achieved byAi. The cost cij is the transmission cost, as given by (l),
to transfer Ki and benefit bij is the reduction in the transmission cost due to
the reduction in relations.

The benefit achieved by a semijoin depends on the type of relations in-
volved. When a relation referenced by a query consists of only one joining
attribute after ILP, this relation can be ignored after transmitting a semijoin
from this attribute. In addition, if the block containing this attribute has only
two attributes and neither is in the target list, then both of them can be ignored
after the semijoin. Since this situation can cause a chain effect to other
relations, additional reductions of intersite data transfer can be achieved. A
relation consisting of only one joining attribute after ILP is called a singleton
joining relation. The set of all singleton joining relations is denoted by SJR.
It is common for a query which does not have a long target list to have
SJR # pl, where pI denotes an empty set.

Consider a semijoin Aj, where: (i) Ui is an attribute of Rp; (ii) Uj, ak are
attributes of R,; and (iii) ai, Uj E B,, . The benefit bij for the semijoin A, is
classified into the following four different parts:

1. bij: the benefit due to the reduction of (R,) which results from the
reduction of 1 Kj 1 if R, is not at the user site,

2. bfj: the benefit due to the elimination of Rp if Rp is not at the user
site and Rp E SJR,

3. b?j: the benefit due to the elimination of aj if R, is not at the user site
and Bh = p after fij,

4. b!j: the benefit due to the elimination of duplicated values of ak if
R, is not at the user site and R, becomes a singleton joining relation afterJj.

Then bij = bf, + b$ + b;t, + b:. The components of bij are illustrated in
Fig. 1. SemijoinJ;j is called benejiciul if bi, - cij > 0.

QUERIES IN DISTRIBUTED DATABASE SYSTEMS 141

RP

ai

%

FIG. 1. The components of the benefit b, achieved by semijoin j,

3. ESTIMATION OF THE CARDINALITY OF A RELATION REDUCED BY A
SEMIJOIN

Consider a relation R, and its attribute Uj such that (Kj 1 = m. Define a
counting random variable X, for each u; E Kj which counts the number of
tuples in R, in which the value of Uj is I);. Then for each Xi, the possible values
are 1, 2, . . . , IR,(-m + 1 and EE, Xi = IR,l. By taking the expected
values on both sides of the equation,

E [1 2 Xi = 2 E[Xi] = mE[Xi] =)Rgl,
i=l i=l

where E [X] denotes the expected value of X. Hence

E[Xi] = w for all 0; E K,. (2)
J

If a semijoin changes the value of a variable, we will append “N” to the
name of the variable to designate the new value. After applying a semijoinji ,
R, and Kj are reduced to R, N and KjN, respectively. Since
&K, N Xi, from (2))

= C E[X;]= IKjNIE[Xi]= IKjNIk
t i iEKj N I i

R,NI=

(3)

Therefore, if we know (Kj N I for some aj which is an attribute of R, , then we
can compute I R,N I.

There are two different ways by which a Kj can be reduced.

(1) If attributes Ui and Uj are in a block, a semijoin jj reduces Kj to a
new set K; Kj, where Ki Kj denotes Ki 17 Kj.

142 CHUNG AND IRAN1

(2) If Uj and a, are associated with each other, then they are in different
blocks. The reduction of K, by the semijoinf, , where a, is in the same block
as a,, also reduces Kj.

First, we discuss the estimation of 1 KjN) due to a semijoinJj. Suppose
Bk = {al, . . .) ai, Uj, . . . 3 a,}. Consider Jj as the first element in a se-
quence of semijoins to process a query. If Dk is perceived to be the sample
space, any X C Dk is the probabilistic event that v E X for v E Dk. Initially
Kh = Ah for all ah E Bk, and the only restriction on Ah’s is that they be
subsets of Dk. Therefore the events Ah’s are mutually independent events.
Afterfij, KjN = AiAj. From P(AiAj) = P(Ai)P(Aj),

A dependence between the events Ki and Kj is created as a consequence of
the initial Aj. A new procedure must be established to derive the correct
estimation of (KjN I or I KiN I for a subsequent Aj or Ji, respectively. We
generalize (4) by using conditional probability.

DEFINITION 1. For a block Bk = {a,, . . . , a,}, let H be a proper subset
of Dk. Consider a sequence of semijoins CT. H is a reachable set for Bk after
u if there exists a concatenation V, W of two sequences of semijoins, V and
W, where (i) V is a subsequence of a; (ii) any semijoin in W is between the
attributes in Bk; and (iii) the sequence V, W reduces A; to H for some Ui E Bk .

When a query is partially processed after a sequence (T, the current set of
all reachable sets for Bk, denoted by R& , is defined to be the set containing
Dk and all reachable sets for Bk after (T. Since o‘ is a special case of the
sequence V, W, every Ki is an element of R&. u is A after ILP, where A
denotes the null sequence. In this case, V, W = W, and the current set of all
reachable sets for Bk is called the initial set of all reachable sets for Bk , and
is denoted by RS:.

Consider a set K E RSk, which is the smallest set containing both Ki and
Kj. The knowledge that the event Kj has occurred does not affect the proba-
bility of occurrence of the event Ki when the effective sample space is reduced
to the event K. Hence the events Ki and Kj are conditionally independent given
the event K. That is,

P(K;K, I K) = P(Ki I K)P(Kj I K). (5)

The set K is called the restricting set of K, and Kj . The estimation of) K, N 1
after a semijoin fij as an element in arbitrary position in a sequence of
semijoins is as follows:

P(KiK,) = P(K;Kj I K)P(K) + P(KlK, I R)P(R).

QUERIES IN DISTRIBUTED DATABASE SYSTEMS 143

Since Ki KjK = fl because Ki Kj C K, we have

IKiKjl _ IKI -
IDkI P(K,K,IK)lDkI.

Multiplying both sides by I Dk I and using (5) gives

To estimate I Kj N I after a semijoinf, , where a, is in the same block as a,,
and Uj and a, are the attributes in the same relation Rg, a solution to the
problem considered by Yao [18] is used. This reduction was ignored in most
of the previous semijoin strategies [3,4, 10, 111. It was first observed in [7]
that Yao’s solution is applicable. Suppose I R, / = n, (Kj I = m, and
I R, N (= k. Then (KjN I after a semijoin frs is given by

[

k n(1 - l/m) - i + 1
ml-n

i=l 1 n-i+1

4. LATTICE MODEL FOR THE CURRENT SET OF ALL REACHABLE SETS

In this section, we show that the current set of all reachable sets RSk forms
a lattice and we subsequently use that fact to calculate the cardinality of the
set of values of an attribute. Since the characteristic of a lattice model is
common to each block Bk, we will drop the block index unless it is necessary.

4.1. Initial Lattice
We begin by showing that the set RS’ forms a lattice. This, we show by

generating the elements of RS’ in a step-by-step manner. The lattice (RS’, Q
is called an initial lattice.

Consider B = {al, . . . , a,}. Because of the probabilistic nature of esti-
mation, at any instance during the query processing, Ki Kj # $d for any ui,
aj E B. From the remark after Definition 1 concerning RS’, we observe that
for any X E RS’, X can be reached from Ai for Ui E B after a sequence of
semijoins each of which is between the attributes of B. Hence for any
X E RS’, X = ni,,, Ai, where J C (1, 2, . . . , n}. Let RS! =
{Ai I ai E B}. Th e set RS! is generated by intersecting i sets taken from RS\
at a time for i = 1, 2, . . . , n. (See Fig. 2.) Thus

RS; = {A,A2,A,A3, . . . ,A,-,A,}

RS: = {A,A~ . - - A,}.

144 CHUNG AND IRAN1

Let RS; = (0). Then RS’ = U F. RSf .
The following lemma relates the lattice theory and the query processing in

a database system.

LEMMAS. Given a block B, the initial set of all reachable sets, RS’, forms
a lattice under set-inclusion, with l.u.b.{X, Y} = minimum(Z E RS’ 1 X C
Z and Y C Z} and g.l.b.{X, Y} = XYf or any X, Y E RS’. In estimating the
effect OfJ;j orfii for ai, aj E B, the restricting set is l.u.b.{Ki, Kj} and the
reduced set is g.l.b.{K,, Kj}.

The first part of Lemma 1 follows directly from the fact that RS’ is closed
under intersection [2]. The initial lattice (RS’, C) is denoted by L’.

4.2. Expanded Lattice
In this subsection, we show that RS at any instance during the query

processing also forms a lattice. The lattice (RS, C) is called an expanded
lattice, and is denoted by L.

After ILP, L = L’. The lattice L for a block B can be expanded by semijoins
between attributes in other blocks. This is caused by the effect on Kj by a
semijoin frs , where a, is in the same block as a,, and aj is associated with a,.
The new expanded lattice is denoted by L* = (RS*, C), Different expanded
lattices will be generated for different sequences of semijoins.

We illustrate this expansion by expanding L’. Suppose K, = X E L’ for
aj E B before a semijoin frs is performed. The reduction of K, results in the
reduction of Kj. The reduced Kj, namely KjN, cannot be expressed by the
intersection of sets in RS! . The expansion of an initial lattice that reflects the
effect of the semijoin frs is as follows:

(1) Suppose RS’, = {A,, AZ, . . . , A,}. Let A,+, represent the KjN
formed by frs .

(2) RS* = RS’ U {XA,+I} U G, where G is the set of elements gener-
ated by intersecting XA n+l and the elements in L’.

Since RS* contains XA,+ 1 and is closed under intersection, it is the set of
all reachable sets for B after frs and LN is a lattice. Since A,+ 1 C X, A,+, =
X4,,+,. We prefer to denote the new element by XA,+t. Therefore, A,+, is
used when the set is used as a generator while XA,+I is used to designate a
specific element in a lattice. For the mth expansion of the lattice, the reduced
set will be represented by A,,,.

The expanded lattice is the generalization of the initial lattice L’. We
summarize the above discussion in the following theorem:

THEOREM 1. Given a block B = {a,, a2, . . . , a,,}, the current set of all
reachable sets RS at any point in the sequence of semijoins forms a lattice
under set-inclusion, with l.u.b.{X, Y} = minimum{Z E RS 1 X c Z and
Y C Z} and g.l.b.{X, Y} = XYf or any X, Y E RS. In estimating the effect

QUERIES IN DISTRIBUTED DATABASE SYSTEMS 145

of&j orA; for a;, a, E B, the restricting set is I.u.b. {K;, Kj} and the reduced
set is g.1.b. {Ki, Kj}.

The formula to compute 1 Kj N 1 resulting from fij can be obtained using
Theorem 1. Substituting 1 K 1 = I l.u.b.{Ki, Kj} I in (7), we have the basic
formula

JKjNI = g.l.b.l{Ki, Kj}l

I K I I&I (9)

= 1 l.u.b.{K;, Kj}I '

This lattice model for estimating the reduction of relations during query
processing can be used for a broadcasting communication network as well as
a point-to-point communication network.

5. METHODS FOR COMPUTING THE CARDINALITY OF THE REDUCED SET

In a distributed query optimization algorithm, the reduction of the set of
values of a joining attribute by a semijoin has to be computed frequently.
Therefore, an efficient method for estimating the reduciton is crucial in
increasing the efficiency of the algorithm.

The special structure and labeling rule of the lattice L are used to indicate
lattice operations. In this section, we assume that L contains n initial sets
A,, . . . , A, and m sets A,,+, , . . . , A,,, generated by semijoins between
the attributes in other blocks. Let I be an index set { 1, 2, . . . , n,
n+l,... , n + m}. Since each reachable set in L is the intersection of
some elements of the set {A,, A2, . . . , A,, A,+, , . . . , A,,,} and since the
set RS is closed under intersection we can state the following lemma:

LEMMAS. LetZ={1,2,.. .,n,n+ l,..., n+m}.AnysetXE
RS is given by X = n iEl, Ai for some Z, C 1.

Z, is the index set of the reachable set X. The index set Z, uniquely deter-
mines the set X. The index set of An+k, 1 I k 5 m, which is obtained after
reduction of some Z E L by a semijoin between the attributes in a block other
than Z3 is given, by convention, by ZA,+t = Z, U {n + k}.

LEMMA 3. Zf X and Y are two elements of RS with index sets Z, and
Zy, respectively, then g.l.b.{X, Y} = nkEI, Ak, where Z, = Z, U Z, and
Z.u.b.{x, y} = n,,,,W A,,, where I, = Z, fl Z,.

The associative property of g.1.b. allows us to state the following more
general result:

LEMMA 4. Let Z = (1, 2, . . . , n, n + 1, . . . , n + m}. Then for any
setX E RS with the index set I, G I, X = g.Z.b{X,, X2, . . . , X,}for some

146 CHUNG AND IRAN1

Xj E RS,j E J = {1,2, . . . , p}, ifand only ifZ, = Uj, Zj, where Zj is the
index set of Xjfor j E J.

Using Lemma 2, we represent a reachable set by its index set. In computing
the cardinality of a set X E L, we determine sets X1, X2, . . . , X, such that
XI, x2, . * . 9 X, E L, g.l.b.{X1, X2, . . , , X,,} = X, and the cardinalities
of x,, x2, . . . , X, are easily obtainable. In fact, the following algorithm
generates the index sets of X1, . . . , X,, such that either Xi E {A,+l,
A n+Zr . . * 7 A,+,} or Xi E L’ for i = 1, . . . , p.

PROCEDURE SET-COVER (Z1)
// Z, is the index set of X E RS. ZAq is the //
//indexsetofA,forq=n+ 1,. . . ,n+m//
C-B ; initialize the cover being constructed.
u+maxZ,
WHILE u > n ; n: the size of block
DO BEGIN

C+-C u K4,)
z, + z, - I*
IF Z, = fl ’
THENut
ELSE u t max Z,

END
IFu#OTHENC+-CU{I,}
RETURN (C)

END SET-COVER

The following is an algorithm which takes the index set of X E L and
computes the cardinality of X by using the associativity of g.1.b. and repetitive
application of (9).

PROCEDURE CAL-CARD (ZJ
// Z, is the index set of X. SET-COVER takes Z, and //
// returns {II, . . . , Zp} corresponding to {Xi, . . . , X,)/l
IFmax Z, I n
THEN CARD + 1 D IIIiE,, P (Ai) ;P(Ai) = IAiIIID(
ELSE BEGIN

SET-COVER (ZJ
FORi= 1 UNTILp DO ki + max Z,
IFk,Sn ; suppose k, % , . . . , I kp
THEN C-GLB +) D Illi,, , P (Ai)
ELSE C-GLB * 1 Ak, 1
FOR i = 1 UNTILp-1
DO BEGIN

QUERIES IN DISTRIBUTED DATABASE SYSTEMS

LUB + liZi+, ;LUB is the index set of l.u.b.{Xi, Xi+,}
IF LUB = pl
THEN C-LUB + 1 D 1
ELSE C-LUB t CAL-CARD (LUB)
C-GLB + C-GLB X IAk,+, I/C-LUB ; use (9)
Ii+, +Zi UZi+l

END
CARD t C-GLB CARD = 1x1

END
END CAL-CARD

147

In order to use CAL-CARD, we have only to store the information of D,
A,, . . . , A,, &+I, . . . , A,+, instead of the whole lattice.

Next, we present an approximate formula of (8). Since k is the number of
tuples of the reduced relation after a semijoin, k may be very large. In this
case, k iteration required in (8) takes a long computation time. We have the
following approximate formula:

l&N1 = {;I; 1 ;; 1 ;:,;I if n/m -C k
otherwise. (10)

We have compared the results of (8) and (10) for a broad range of values
of n, m, and k. The comparison shows that the error due to the use of (10)
instead of (8) is practically negligible.

6. SOLUTION ALGORRHM

In this section, we present a heuristic algorithm for deriving a sequence of
semijoins. Further, we discuss the heuristics on which this algorithm is based.

Our strategy is to process a block as a unit and to sequence the blocks. We
select a block, then schedule a sequence of semijoins among the attributes of
the block, according to rules which will be explained later. The subsequent
blocks are selected and processed in the same way. The blocks are sequenced
to take advantage of the reductions in cost by processing a block for other
blocks.

Our heuristic algorithm, Algorithm H, consists of the following seven
major procedures:

1. INI’I-ATTR-INACTIVATION
2. PROCESS-BLOCKS
3. BUILD-PATH
4. REVERSE-PROCESS-BLOCKS
5. HILL-CLIMBING
6. COMPLETION
7. SCREENING

148 CHUNG AND IRAN1

Algorithm H also updates the database state after considering a semijoin,
using the estimation method previously presented. The procedures in Algo-
rithm H are sequentially executed in the order as listed above except for
procedure BUILD-PATH, which is embedded in procedure PROCESS-
BLOCKS.

Procedures PROCESS-BLOCKS, REVERSE-PROCESS-BLOCKS, and
COMPLETION are the main features of Algorithm H. Procedures
INIT-ATTRINACTIVATION , BUILD-PATH, HILL-CLIMBING, and
SCREENING are control features to increase the robustness of the algorithm
for random input data. We shall describe the main features of the algorithm
followed by the control features.

6.1. Main Features
Procedures PROCESS-BLOCKS selects and processes one block at a

time. For an attribute a; defined on a domain Dk, the density dj is 1 Ki [/I Dk (.
Consider a block Bk = {a,, . . . , a,} with dl 5 * * * 5 d,. The basic strat-
egy to process a block is to perform the sequence of semijoins,
f 129 . ’ . 3 fn-1, II, to achieve a maximal reduction within a block with a min-
imal cost. Processing a block in this way is called a block visit.

If an attribute ai in a block Bk is not associated with any attribute in other
blocks and if the visit to the block Bk does not end in ai, then the attribute ai
can be excluded from further scheduling of semijoins because the current
values of some other attribute in the block Bk are contained in the values of
ai. After a block is visited, the remaining attributes are called active attri-
butes, and the excluded ones inactive attributes.

The amount of data transferred by each semijoin in visiting Bk is bounded
by (K1 Iwl. Since Bk contains at least two joining attributes, dld2 is a rough
approximation of the reduction achieved by visiting Bk. We, therefore, mul-
tiply I K, (w, by a penalty factor 1 + dld2, and we define the block cost BC(k)
of an unvisited block Bk as follows:

BC(k) = 1 K1 /w,(l + d,d2). (11)

The following variables are defined to explain the algorithms:

P
UP
VP
SVP
ZB)
SW)
4%)

the set of all blocks
the set of unvisited Llocks
the set of visited blocks
the sequence of visited blocks
the sequence of semijoins being scheduled by Algorithm H
the set of active attributes in block B
the sequence of inactive attributes in block B
the set of blocks which contains the amibutes associated with ai. The elements of
Afi(a,) are called the associated blocks of a,. The set of end associaie blocks,
END-A& at the end of visiting a block Bk which ends in a, is given by A/?@,) II Up.

QUERIES IN DISTRIBUTED DATABASE SYSTEMS 149

Initially Up = /3, VP = @, A(B) = B, uh = A, SI(B) = A, and
END-AP = 8. When a semijoinjj is scheduled, it is appended to ah and if
ai is unassociated, Algorithm H excludes ai from A(B) and appends it to
SI(B). Algorithm H does not append a semijoinJj to oh if$j does not reduce
(Kj 1 at least by one.

Procedure BUILD-PATH embedded in procedure PROCESS-BLOCKS
will be explained more fully later. It builds a path rk to an unvisited block Bk
which is a sequence of semijoins, each between two attributes of a visited
block, such that the last semijoin in the path is to an attribute associated with
an attribute in Bk. Procedure PROCESS-BLOCKS is described below:

PROCEDURE PROCESS-BLOCKS
While U/3 = 8, do the following:

1. (find the candidate blocks) Let B, and B, be the blocks with the
minimal block cost in END-AP and Up - END-AP, respectively.

Case 1. If END-AP = @, B, is the only candidate block.

Case 2. If END-AP # @l and BC(e) 5 BC(u), B, is the only candidate
block.

Case 3. IF END-A/3 # fl and BC(e) > BC(u), B, and B, are both
candidate blocks.

2. (select a block) Let Bci be the ith candidate block for i = 1, 2, and BN
the next block to be visited. For each candidate block, call BUILD-PATH.
Suppose 7rcl = 4,,, . . . , &, and 7rc2 = +21, . . . , &,,. If B,, is the only
candidate block or X7=1 cij + BC(c 1) 5 x’&i c2j + BC(c2), then BN + B,I,
else BN t Bc2.

3. (process a path and visit a block) Append TN, the path to BN, to oh and
the sequence of visited blocks corresponding to the elements of ?r,, to SVP.
Sort the attributes of A(B,) in ascending order of densities. Suppose the
sorted list is al, . . . , a,, then append fi2, . . . ,fn-l,n to a,,. Let
A/I = U, AP (a) for a E A(BN) - {a,}. If a, is unassociated and
AP fl (U/3 U V/3) # 8, appendf,j to oh for Uj selected as follows:

Case 1. If AP fl Up # 8, for each ai E A(BN) - {Q”} and for each
Bk E AP(ai) fl Up, compute the cost of the block Bk, BC(k), after the
semijoinfni is performed. Select Uj which has the minimal BC(k).

Case 2. If AP n U/3 = @, select aj associated with the most recently
visited block in SVp.

If 1 A(BN) (> 1, include BN in V/3 and append BN to SVP. Up t Up - {BN}.

In procedure PROCESS-BLOCKS, the reductive power of a visited block
is utilized by subsequent block visits whenever possible. In order to use the

150 CHUNG AND IRAN1

reductive power of a block visited later, roughly the order of visits is reversed
with respect to the order of visits by procedure PROCESS-BLOCKS.

PROCEDURE REVERSE-PROCESS-ELOCKS
While SVB # A, do the following:
Let B be the last block in SVB with A(B) = {ai, . . . , a,} and

d,,s ,..., Id,. If B E V/3 and n > 1, appendf,,,-i, . . . , fil to uk
and exclude B from VP. Delete B from SVB.

Procedure COMPLETION reduces the size of the relations containing
inactive attributes and at least one target attribute using the reductive power
accumulated in active attributes.

PROCEDURE COMPLETION
For each B E B, if A(B) # fl and SI(B) # A, do the following:
Suppose A(B) = {ai, . . . , +i} and SI(B) = ai, u;+~, . . , , a,. Select

Uj E A(B) with the minimal density. s t-j. For t = i to n, if the net benefit
n,, > 0, append fst to ak and s t t.

6.2. Control Features

Procedure INT-ATTR-INACTIVATION, which is the first procedure in
Algorithm H, excludes unassociated attributes with high initial density to
avoid semijoins which are neither beneficial for themselves nor useful for
subsequent semijoins.

PROCEDURE INIT-ATTRINACTIVATION
For each B E B, do the following:
For each unassociated attribute ai E B with di 1 0.8: Suppose a; is an

attribute of relation R. If R $Z SJR or R is at the user site, exclude uj from
A(B) and append ai to SI(B). Sort the attributes in SI(B) in ascending order
of their densities. If 1 A(B) 1 < 2, exclude B from Up.

Procedure BUILD-PATH makes better use of the reductive power accu-
mulated in visited blocks to reduce the cost of visiting an unvisited block. We
create a path which is a sequence of semijoins, each from an already visited
block.

We define the symbols which are used in procedure BUILD-PATH given
below. BN is a candidate for the next block to be visited. TN = &I, . . , d&
is a path constructed at some point during the execution of the procedure,
where+N,, 1 li Im, is a semijoin between two attributes in an already
visited block BNi. PB = {BNi 1 1 5 i 5 m}. For each u E BN when TN = A
and for each a E BN1 when TN # A, we define CAND-PB(u) =
& E MU n VP 1 th ere exists a,, E Bk which is associated with a and
ug E A(B,) such that dg < dh}. (Y = {U E BN I CAND-P/~(U) # 8). a* is
an element of a with minimal density. n(n) = net benefit obtained from a
sequence of semijoins r.

QUERIES IN DISTRIBUTED DATABASE SYSTEMS 151

PROCEDURE BUILD-PATH (BN)
Initialize Pp t 9 and ?r,, * A. If (Y # 8, do the following:
Select a* E (Y. u. t a*. p* * CAND-PP (ao). Repeat the following un-

til p* = 8:
1. Select Bj E p* such that if &, is the semijoin from the attribute

with the smallest density in Bj to the attribute associated with u,, then --n (~Bj,
TV) + BC(N) is minimum.

2. Pp + Pp U {Bj}. TN + +Bj, TN.
3. Suppose &j = &. ~0 + u,. p* + CAND-PP(uO) - P/3.

Select TNh = 4Nh, +N, k+l, . . . , &, c r,‘., such that -n (TN,,) + BC(N) . . . is minimum. TN t rNh.

A hill-climbing technique can be adopted before using procedure COM-
PLETION to further decrease the query cost. Only the semijoins between
active attributes need to be considered.

PROCEDURE HILL-CLIMBING
Let (Y = Uk A(Bk), where the union is performed over those k for which

1 A(Bk) (> 1. TEMP- (Y + (Y. While TEMP-a # $4, do the following:
Select ai E TEMP-(Y with the minimal d;. Select Uj E TEMP-(I! with the

maximal nij. If ni, > 0, then appendAj to flk and TEMP-a + (Y - {ai}, else
TEMP-a + TEMl?a - {ai}.

Procedure SCREENING deletes obviously unnecessary semijoins sched-
uled by the procedures previously described.

PROCEDURE SCREENING
Let uh = (bl, . . . , +t and & = Jj. 1 I k 5 t, and let Uj be an attribute

of some relation R and ai the attribute of some relation R ’ .

1. For k = t down to 1, if nk Cr 0 and 4,,, neither comes from nor goes
to an attribute of R for all m > k, delete &.

2. If the query references relations at the user site, do the following:
For k = t down to 1, if R is at the user site and (bm does not go to an attribute

of R’ for all m > k, replace & with “move R’ to the user site.”

Since the deletion of & from ah does not affect the costs and benefits of
other semijoins, they do not have to be recomputed.

6.3. Complexity Analysis of Algorithm H

The measure of the complexity is the number of sequences of semijoins
generated by Algorithm H in the process of constructing the final sequence.
The existence of procedure HILL-CLIMBING in Algorithm H makes it
difficult to derive a narrow-bound time complexity. If there are s possible
semijoins and m relations involved in processing a query, then the worst case
complexity of procedure HILL-CLIMBING is 0 (s XEi 1 R; I). Fortunately,

152 CHUNG ANDIRANI

procedure HILL-CLIMBING is a refinement feature and very seldom uti-
lized. The worst case complexity of procedure BUILD-PATH can be easily
shown to be 0 (1 p 13). Just like procedure HILL-CLIMBING, procedure
BUILD-PATH is very seldom utilized.

Since most queries are handled only by the main features of Algorithm H,
we shall consider the complexity of the main features of Algorithm H.

THEOREM 2. The worst case complexity of the main features of Algo-
rithm H without procedure BUILD-PATH is O(n*(p I), where n * =
max{lBI IB E PI.

Proof. Procedure PROCESS-BLOCKS is the dominant procedure which
has two major loops, one embedded within the other. For B =
h, . . . , a,,} E p, procedure PROCESS-BLOCKS generates one sequence
of length A, for h = 1, . . . , n - 1, and maximum n - 1 sequences of
length n. The maximum number of sequences that can be generated by
procedure PROCESS-BLOCKS is 2(n - 1). Since n % n *, the worst case
complexity of procedure PROCESS-BLOCKS is 0 (n *I p 1). n

7. QUERY EXAMPLES

The examples from recently published papers [1, 3, 1 l] are selected for
tests. We compute the costs for the same examples by Algorithm H and the
SDD-1 algorithm [l] using our estimation method for the cardinalities of
reduced relations. In order to avoid repetitive details, only the first example
is carried out in detail.

Since a statistical estimation method is used, the costs, benefits, and cardi-
nalities are first computed in real numbers, and then the results are given in
integers by rounding the real numbers.

EXAMPLE 1. The example by Hevner and Yao [l l] is considered. This
example is also used by Cheung [3]. The database has the following four
relations each of which is located at a different site:

EMPLOYEE (E#, ENAME, SEX), COURSE(C#, CNAME, LEVEL)
STUDENT-COURSE(E#, C#), TEACHER-COURSE(E#, C#, ROOM).

The relation TEACHER-COURSE is at the user site. The relational form of
the query is as follows:

FIND (EMPLOYEE.ENAME, COURSE.CNAME)
WHERE (EMPLOYEE.E# = STUDENT-COURSE.E#)

ANI~(E~~PLOYEE.E# = TEMX-II~FLC~~JRSE.E#)
AND (TEACHER-COURSE.C# = COURSE.C#)
AND (COURSE.LEVEL = ‘Advanced’)
AND (TEACHERCOURSE.ROOM = ‘103’)
AND (EMPLOYEE.SEX = ‘M’)

QUERIES IN DISTRIBUTED DATABASE SYSTEMS 153

The parameters for the query and the database are defined as follows:

R, = COURSE, R2 = TEACHERCOURSE

R3 = EMPLOYEE, R4 = STUDENT-COURSE

al = COURSE.C#, a2 = TEACHERC0URSE.C~#

a3 = TEACHER-COURSE.E#, a4 = EMPLOYEE.E#

a5 = STUDENT-COURSE.E#, a, = COURSE.CNAME

a, = EMPLOYEE.ENAME.

After ILP, the reduced query and the given initial database state are shown
below.

WHERE (ai = a*) AND (a3 = u4) AND (a4 = us)

1 RI 1 = 100, IR21 = 300, IR31 = 200, IR41 = 600

IAl 1 = 100, IA21 = b3(= IAd1 = 200, /AsI = 600

Wi = 1 fori= 1,. . . ,5

w, = 11, w, = 9

ID,/ = 400, 1021 = 1000.

From the reduced query, we have B, = {al, u2} and B2 = {u3, u4, us}.

In accordance with Hevner and Yao’s example, the communication net-
work parameters, V, and o, are set to 10 and 1, respectively. Then the initial
cost, IC, of moving R,, R3, and R4 after ILP to the user site is 3830.

Query Cost by Algorithm H. The lattices L, and L2 for B, and B2, re-
spectively, and the changes of Ki’s during the application of c~ are shown in
Fig. 2. The expansions of the initial lattices are shown in dotted lines. The
changes of values of database state variables after each semijoin in ah are
shown in Table I along with bi, ci, and ni for each semijoin.

1. INIT-ATTR-INACTIVATION
Since di < 0.8 for all ai, all the attributes are initially active.
2. PROCESS-BLOCKS

(1) Since initially END-AP = @ , a block to be visited is selected from
Up = {B,, B2} with the m inimum block cost. Using (1 l),

BC(l) = IKrlw,(l + d,d2) = 100 x 1 x (1 + 0.25 x 0.5) = 112.5

BC(2) = (K31w3(1 + d3d4) = 200 x 1 x (1 + 0.2 x 0.2) = 208.

Since BC(l) < BC(2), B, is selected for the visit.
(2) Since VP = 8, no path is built for B,. By procedure PROCESS-

154 CHUNG AND IRAN1

FIG. 2. The expansions of the lattices by the sequence of semijoins generated by Algorithm H
for Hevner and Yao’s example.

BLOCKS, +1 = fi2 is appended to ah, and aI is inactivated. Afterfiz, a new
set A3A6 which represents the reduced K3 is formed. After B, is visited,
U/3 = END-AP = {&}. Since B, has only one active attribute, Bi is not
included in V/3.

(3) Since U/3 = {&}, B2 is the next block to be visited. Since VP = 8,
no path is built for BZ. In procedure BLOCK-VISIT, & = j&, & = & are
appended to oh, and a4 becomes inactive. V/3 becomes {B2} and Up
becomes pl.

3. REVERSE-PROCESS-BLOCKS
Since VP = {B2}, +4 = fs3 is appended to oh. After fs3, a new set A, A2A7

which represents the reduced K2 is formed. Since R4 E SJR, R4 is ignored
after f53.

4. HILL-CLIMBING
Since none of the semijoins are beneficial, procedure HILL-CLIMBING

does not append any SemijOin t0 g,,.
5. COMPLETION

(1) For B1, a2 is the only active attribute, while al is the only inactive
attribute. Hence & = f21.

(2) For B2, u3 is the only active attribute, while a4 is the only inactive
attribute. Hence &, = fj4.

6. SCREENING
No semijoin is deleted from oh by procedure SCREENING.

From Table I, the cost of the query QC by Algorithm H is

QC = IC - f: ni = 3830 - 3352 = 478.
i=l

Query Cost by the SDD-1 Algorithm. We follow the same procedure used

QUERIES IN DISTRIBUTED DATABASE SYSTEMS 155

TABLE I
THE SEQUENCE OF SEMIJOINS BY ALGORITHM H AND ITS EFFECT

FOR HEVNER AND YAO’S EXAMPLE

i 1 2 3 4 5 6

4 fi2 f 34 f45 f53 fz1 f 34

75.0

/
50.0
70.0

I 14.0
14.0

0.0 1860.0
110.0 80.0

-110.0 1780.0

8.4
8.4

591.6
24.0

567.6

9.0
8.7
8.4

18.4
18.4
0.0

a.7
a.7

1095.3
18.7

1076.6

a.4
a.4

56.0
18.4
37.6

in SDD-1 and compute the cost of transmitting the data during the sequence
of semijoins and transmitting the reduced relations to the assembly site.
However, we further include the cost of transmitting the assembled answer
from the assembly site to the user site. The cost of the query by the SDD-1
algorithm is 756.

An example by Bernstein et al. [l] is considered. In this example, the user
site is not specified. We assume that the user site is not one of the sites at
which the relations referenced by the user query are located. An example by
Cheung [3] is also considered. The results are summarized in Table II. It is
shown that Algorithm H performs uniformly better than the SDD- 1 algorithm.

For the example in [11, if the relation Y is at the user site, Algorithm H and
the SDD-1 algorithm produce identical sequences of semijoins and query
cost. However, if the user site is the site of S or P, the query cost according
to the SDD- 1 algorithm is also 4128. The query cost obtained by Algorithm
H is 26 11 when S is at the user site whereas 218 1 when P is at the user site.

Algorithm H has been implemented in PASCAL and runs on Amdahl

TABLE II
SUMMARY OF QUERY COST COMPARISONS

Examples by

Algorithm H&Y Bernstein Cheung

Init. Cost 3,830 206,630 1,330
SDD-1 756 4,128 796
Algorithm H 478 2,711 683

156 CHUNG AND IRAN1

TABLE III
SCHEDULING TIME OF A SEQUENCE OF SEMIJOINS BY ALGORITHM H

Example by No. of Sites
Scheduling time

(Seconds)

Hevner and Yao 4 0.0039
Bernstein et al. 3 0.0027
Cheung 4 0.0043

47OV/8. We have measured the execution time of the PASCAL program
which implements Algorithm H. The scheduling time for the examples using
Algorithm H is shown in Table III.

8. CONCLUSION

The query costs obtained by Algorithm H are compared with those obtained
by an existing algorithm using some of the published examples. These query
costs indicate that Algorithm H is superior. The efficiency of Algorithm H is
mainly achieved by the following factors:

(1) Since the number of blocks is considerably less than the number of
semijoins, the block-oriented nature of Algorithm H leads to a significant
reduction of search space.

(2) The estimation using the lattice model provides an efficient com-
putation method for the dominant term in Algorithm H.

REFERENCES

1. Bernstein, P A., et al. Query processing in a system for distributed databases (SDD- 1).
ACM Trans. Database Systems 6, 4 (Dec. 1981), 602-625.

2. Birkhoff, G. Lattice Theory, 3rd ed. Amer. Math. Sot., Providence, R.I., 1967.
3. Cheung, T. A method for equijoin queries in distributed relational databases. IEEE Trans.

Comput. (Aug. 1982), 746-751.
4. Chiu, D. M., and Ho, Y. C. A methodology for interpreting tree queries into optimal

semi-join expressions. Proc. 1980 ACM SIGMOD Conference, May 1980, pp. 169-178.
5. Christodoulakis, S. Estimating selectivities in data bases. Ph.D. dissertation, University of

Toronto, 1980.
6. Chung, C. W. A query optimization in distributed database systems. Ph.D. dissertation,

University of Michigan, 1983.
7. Computer Corporation of America. A distributed database management system for com-

mand and control applications: Final technical report-Part II. Tech. Rep. No. CCA-
80-04, Jan 1980.

8. Demolombe, E. Estimation of the number of tuples satisfying a query expressed in predi-
cate calculus language. Proc. 1980 VLDB Conference, pp. 55-63.

9. Epstein, R., Stonebraker, M., and Wong, E. Distributed query processing in a relational
database system. Pm.:. 1978 ACM SIGMOD Conference, June 1978, pp. 169-180.

QUERIES IN DISTRIBUTED DATABASE SYSTEMS 157

10. Hevner, A. R. The optimization of query processing on distributed database systems.
Ph.D. dissertation, Purdue University, 1979.

11. Hevner, A. R., and Yao, S. B. Query processing in distributed database systems. IEEE
Trans. Softwure Engrg. SE-5, 3 (May 1979), 177-187.

12. Irani, K. B., and Khabbaz, N. G. A methodology for the design of communication
networks and the distribution of data in distributed supercomputer systems. IEEE Trans.
Comput. C-31, 5 (May 1982), 419-434.

13. Kleinrock, L. Queueing Systems, Vol. II, Computer Applications. Wiley, New York,
1976.

14. Richard, P Evaluation of the size of a query expressed in relational algebra. Proc. 1981
ACM SIGMOD Conference, pp. 155-163.

15. Rothnie, J. B., et al. Introduction to a system for distributed databases (SDD-1). ACM
Trans. Database Systems 5, 1 (Mar. 1980), 1-17.

16. Selinger, P, et al. Access path selection in a relational database management system. Proc.
1979 ACM SIGMOD Conference, May 1979, pp. 23-34.

17. Wong, E. Retrieving dispersed data from SDD- 1: A system for distributed databases. Proc.
1977 Berkeley Workshop on Distributed Data Management and Computer Networks, May
1977, pp. 217-235.

18. Yao, S. B. Approximating block accesses in database organizations. Comm. ACM. 20, 4
(April 1977), 260-26 1.

