
Computers in Human Behavior, Voh 2, pp. 235-238, 1986 0747-5632/86 $3.00 + .00
Printed in the U.S.A. All rights reserved. Copyright © 1987 Pergamon Journals Inc.

Book Review

Computer-Based Instruction: Methods and Development. S. M. Alessi and S. R. Trol-
lip. Englewood Cliffs, NJ: Prent ice-Hal l , Inc. , 1985, xiii + 418 pp. , $25.95, paperback.

The history of computers has been t raced to various origins, but E N I A C (Electronic
Numer ica l In tegra tor and Compute r) is a good candida te for the dist inct ion of first elec-
tronic, general purpose computer . W h e n it was act ivated in Februa ry of 1946, it occupied
15,000 square feet of floor space and had to be rewired li terally every t ime it was to per-
form a new function. About twenty years later, IBM touted the "360" as its flagship main-
frame. It featured 256K "core memory" and cost the modern equivalent of $800,000.
Ano the r 20 years has put computers with more power and more versat i l i ty on desktops
at prices below $2,000.

The cont inuing evolut ion of "smal ler and better" compute r technology is the stuff of
science fiction and is enough to make anyone wonder where it will lead. Corpora t ions ,
universities, and school districts are part icularly interested in the future of classroom com-
put ing and many are bet t ing that it will prove to be more fact than fiction. Apple , Com-
modore , T a n d y / R a d i o Shack, and IBM are invest ing great efforts to capture parts of the
educational market est imated to be worth more than $2.3 billion dollars over the next four
years in ha rdware alone (Reinhold , 1986).

Despite the willingness of some to make these large investments, others suspect the com-
pu te r will have no more success in the schools than did other much-hera lded technologi-
cal innovat ions, such as, the phonograph , television, and teaching machines. Though the
phonograph and television have found wide acceptance in Amer ican society, they have
never been widely used devices for school instruction. Recent surveys have shown that
schools will f 'requently teach about computers , but less frequently teach with computers
(Becker, H. J . , 1983; Corpora t ion for Public Broadcast ing, 1986).

Perhaps the greatest threat to the acceptance of compute r -based instruct ion is the lack
of adequa te software. An assessment project which surveyed hundreds of p rograms rec-
o m m e n d e d only 30 % to 40 % for use and found only 5 % to be of t ruly high quali ty. Only
20 % of the p rograms had been pilot tested with learners dur ing deve lopment (Komoski ,
1984, p. 247). H a r d w a r e can only be as good as its software. In the educat ional arena ,
new fleets of powerful mic rocompute rs look like fine ships sent to sea without pilots.

It is in this context that the book Computer-Based Instruction. Methods and Development is
presented. The authors express their legi t imate concern over the poor qual i ty of typical
ins t ruct ional software and offer detai led advice from their own experience with p rogram
development as a contr ibut ion to the necessary remediat ion. In three sections, the authors
touch on all the major themes relevant to computer -based instruction: hardware , instruc-
t ional design, and software development . The meat of the book is in the second section
and it consists of meticuluous descriptions of and prescriptions for effective tutorials, drills,
s imulations, instructional games, and computer -based testing. The first section gives cur-
sory sketches of the computer ' s history in and out of the classroom and of hardware and
software that developers should know about . The third section concerns the processes
related to software development , such as, f lowchart ing and p rogramming . One good fea-
ture of this section (and the whole book) is that it is not machine- or language-bound. The
r ecommenda t ions are generic and do not presume a famil iar i ty with any par t icu la r com-
pu te r or p r o g r a m m i n g language.

The strategy of empowering novice developers with explicit rules for the creation of effec-
tive software is an appea l ing one. Local software deve lopment could be more responsive

235

236 Book Review

to the specific needs of a part icular school district, school, class, or even student. Program-
ming instruct ion could clarify the content and methods of instruct ion for teachers, par-
ents, and students, and could help in isolat ing especially effective and especially weak
componen t s of a course or a cur r icu lum. Final ly, the same s tandards that Computer-Based
Instruction r ecommends for developers could be borrowed by users and purchasers of soft-
ware to sift the wheat from the chaff.

W h a t should developers and evaluators a t tend to if they are to improve the quali ty of
instructional software? And does Computer-Based Instruction provide the necessary directicm?
I think developers and, perhaps even more, evaluators of instructional software would do
well to examine this book. Its considerat ion of different software types is thorough and
detai led and even experienced p rogrammers will probably be led to consider software fea-
tures that they had inadver tent ly neglected in the past. The book's great virtues are its
thoroughness and detail ; its great drawbacks are that it seems somewhat dated and con-
servative in its conception of software development .

Section 1, "Computers and Their Applications," is probably the weakest part of the book.
The historical background and discussion of differences in compute r hardware is superfb
cial and has the quali ty of being an af ter thought . In the discussion of hardware , Apple 's
discontinued Lisa computer is pictured, as is a discontinued Texas Instrument 's home com-
puter. It is unclear whether the authors purposeful ly chose these representat ives or pub-
l icat ion delays rendered some of this section obsolete. Though these discont inued models
are included, no ment ion is made of Apple 's Macintosh . The Macintosh 's uniquely user-
friendly combina t ion of menu-dr iven , icon-based, mouse-control led p rograms complete
with windowing functions makes it a compute r that s imply cannot be ignored in a book
discussing instruct ional comput ing. Mice and Macintoshes are not the only items miss-
ing from the discussion of hardware. Modems , conferencing and networking, hard disks,
and other devices never made it to the text.

His tory and hardware are tangential to the main purpose of this book. But other sec-
tions of the book are weakened when they do not e laborate on the relat ionship between
development issues and hardware. For example, under what educational conditions would
a joyst ick be preferred to, say, a light pen? Nor does the book consider novel integrat ions
of new and old instruct ional systems. For example , how could a " t radi t ional" computer -
based tutorial be enhanced by al lowing compute r conferencing while the lesson is in
progress?

Section 2, "Methods of Compute r -Based Ins t ruct ion ," classifies instructional software
into five groups: drills, tutorials, simulations, instructional games, and testing programs.
These seem to be fair and well-defined dist inctions. The authors rightfully qualify their
taxonomy, suggesting that some software will combine elements of more than one of these
types, such as, a tutorial interspersed with short simulations. Unfortunately, the book does
not examine how such combinations could work and I suspect the average reader will finish
the book conceiving of software in jus t five categories.

The second section is eminently practical, often suggesting what to do without explaining
why it should be done this way. Though this approach will help developers get into pro-
duct ion right away, the dear th of theory may be a mistake for the long haul. When a
p r o g r a m m e r is faced with a novel problem or wishes to set out on some untradi t ional
course, he or she would still want to ground a new program in some set of principles that
are p resumed to be true of instruction and learn ing generally. Such principles are rarely
discussed in the book and, when they are, they are often not related to the specific recom-
mendat ions offered.

Tha t ' s not to say that the book has no guiding models. The ones that arc given seem
highly indebted to the behaviorist ic t radi t ion. The instructional model, for example, bor-
rows four of nine instruct ional events proposed by Gagn~ (Gagnd, 1970; Gagn~, Wager ,
& Rojas, 1981). The authors believe all good instruction must present intbrnmtion, guide
the s tudent , provide oppor tuni t ies tbr practice, and assess student learning. These arc,

Book Review 237

of course, a l ternat ive descriptors for a shaping process using cycles of s t imulus-response-
re inforcement .

Gagnfi 's inst ruct ional events are a good place for a designer to start, but they are not
without their shortcomings. First , they are vague and often cannot give clear direction.
To say that instruct ion means provid ing informat ion, guiding the student , etc. , almost
begs the question. Now we must ask what it means to provide information, guide the stu-
dent, etc. Also, the book's model implies a lock-step approach to instruction, that one must
first present information, then guide students, then provide practice, etc. Unde r some cir-
cumstances , it may be desirable to change the order of events. In fact, in some circum-
stances, it may be desirable to withhold some of the events. It may be instructionally sound,
for example, depending on the students and the content to be learned, to not present infor-
mat ion but require s tudents to discover it tbr themselves.

In section three, Cornputer-Based Instruction in t roduces a model of software deve lopment
that would be useful for novice developers and those who are dissatisfied with their cur-
rent methods. Like the instruct ional model, the deve lopment model has a behavioris t ic
flavor. Its eight steps can be descr ibed in three parts: the organiza t ion of ideas, produc-
tion of instruct ional mater ia ls , and evaluat ion of the product . Two comments should be
made about the model.

The first part of the deve lopment model, the organiza t ion of ideas, is very similar to
methods tor the deve lopment of behavioral objectives. The authors do well to explicit ly
direct developers to review the available resources, including previous programs in the area,
and to use b ra ins to rming techniques to generate ideas for the instructional program. The
authors also discuss "conceptual analysis" as an alternative or supplement to "task analysis."

P rog ramming , and instruct ion generally, would improve if all teachers would be so
explicit in creat ing their lessons. But what 's missing from this approach is at tention to the
cognitive processes that learners can be expected to engage in when presented with par t icu-
lar e lements of' p rograms. Ano the r way of designing instruction then would mean begin-
ning with clear statements of the kinds of mental processes, strategies, skills, and procedures
we wish our s tudents to acquire dur ing our instruction. If we wish to only convey infor-
mation, we could do the intbrmation processing for the students, thereby "short-circuiting"
their own menta l activity. Unfor tuna te ly , most instruct ional software is of this "short-
circui t ing" type. If we think that our s tudents ei ther a l ready have the skills we want to
teach and s imply need to refine them or are gifted enough to invent them on their own,
we can provide "act ivat ing" tasks, complex tasks that require students to exercise the skills
we wish to teach. Final ly , we can use the compute r to "model" menta l activities tbr the
s tudent , giving them a clear example of how par t icu lar menta l strategies can help resolve
difficult problems (Corno & Snow, 1986). I hope that considerat ion of"shor t -c i rcu i t ing ,"
"model ing ," and "act ivat ing" mental strategies becomes as much a part of instruct ional
design as per formance and content analyses should also be.

The second part of the development model described in Computer-Based Instruction involves
the product ion of instructional materials . This section is good, though one caution should
be added. The model advocates the use of s toryboards, separate sheets of paper represent-
ing individual displays that learners will see. Though this would be useful for simple pro-
grams, s to ryboard ing will almost inevi tably result in p rograms resembl ing what tbrmer
Secretary of Educat ion T. H. Bell called "electronic page- turn ing ," and this is especially
true for novice developers. Granted, the computer will be able to "turn pages" quickly and
in complex ways, but we should be able to expect more from such sophist icated devices.
S to ryboard ing can be especially cumbersome if not impossible to use when the p rogram
involves complex animation, or when users have control over the appearance of the screen,
as in the mul t ip le window capaci ty of the Apple Macin tosh .

For a book that is meant to help software developers and users improve on the poor
showing of instructional p rogramming to date, it is strange that the authors do not expound
on how the efforts to date have failed. To change the way they work, designers and

238 Book Review

programmers need both an ideal to pursue and a clear conception of what to avoid, of
what has been tried and what needs to be improved. Bork (1984) gives a helpful list of
13 factors that characterize poor instructional software. These include "failure to make use
of the interactive capabilities of the computer, failure to make use of the capabilities of
the computer to individualize instruction, too-heavy reliance on text, treatment of the com-
puter screen as though it were a book page, content that does not fit anywhere in the cur-
riculum, and use of long sets of instructions at the beginning of programs that are difficuh
to follow and difficult to recall" (p. 241). A list like this would be a good place to start a
book on improving instructional software, and I 'm afraid that the present book does not
examine these problems in much detail.

For developers and evaluators of instructional software, Alessi and Trollip's book
Computer-Based Instruction is a good book to have on hand. It gives a handy reference to
criteria tot evaluat ing instructional software and is full of tips for software development,
the kind of tips that one discovers only after years of work in the area. But readers are
also advised of its l imitations. It is short on theory, a little outdated in places (something
that is ahnost unavoidable in such a fast-changing field), and somewhat conserwttive in
its conception of computer-based instruction.

Robert L. Bangert-Drowns
Center tbr Research on Learning and Teaching
Universi ty of Michigan
Ann Arbor, MI

REFERENCES

Becket, H.J. (1983). &hool uses ofmicrocornputer~, issue no. l . Baltimore, MD: Center for Social Orga-
nization of Schools, The Johns Hopkins University.

Bork, A. (1984). Computers in education today--And some possible thturcs. Phi Delta Kappan, 66,
239-243.

Corno, L., & Snow, R.E. (1986). Adapting teaching to individual difterences among learners. In
M. Wittrock (Ed.), Handbook of research on teachin& New York: Macmillan.

Corporation tor Public Broadcasting. (1986). A national study of the educational uses of telecom-
munications technology in America's colleges and universities. Research Notes, No. 21. Washing-
ton, DC: Author.

Gagn~, R.M. (1970). 7"he conditions of learning. New York: Holt, Rinehart, and Winston.
GagnG R.M., Wager, W., & Rojas, A. (1981). Planning and authoring computer-assisted instrut tion

lessons. Educational Technology, 21, 17-21.
Komoski, P.K. (1984). Educational computing: The burden of insuring quality. Phi Delta Kappan,

66, 244-248.
Reinhold, F. (1986). Micro marketers: How hardware vendors plan to woo schools. Electronic Learning,,

6, 30-36, 83-84.

