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Abstract-An efastic half-plane containing a su~ace-b~ak~og crack normal to the free surface, 
subjected to loading by uniform tractions over a given length af its surface, is considered. The 
tractions consist of pressure, constant in time, and a shear load, varying sinu~idaily in time, 
both applied adjacent to the crack. This geometry approximates the classical fretting problem 
with a resulting fatigue crack. The faces of the crack are allowed to transmit Coulomb friction. 

In this paper it is assumed that the pressure has already been applied, and that the shear 
traction has been increased contin~ousiy from zero to a m~imum value. The effect of varying 
the shear traction through the rest of one load cycle is considered. Stress intensity factors are 
computed for various crack Iengths, friction coefftcients, and ratios of applied tractions. The 
history of stick and slip zones found along the crack faces is monitored. 

The geometry of the surface-breaking crack is shown in Fi. l(a). The half-space x > 0 
is assumed to be loaded by constant normal pressure pi over a small portion (0 < y < 
t) of its surface. A shear traction q = MO veil ha~onic~Iy with time is then 
applied over L. This configuration is used to model a fatigue crack emanating from a 
fretting contact. References included in Part 1 [l] describe ex~~ments which com- 
monly result in this type of failure. It was expected that a severe stress intensity would 
develop at the crack tip as the shear traction was increased in the positive sense [Fig. 
l(b)]. This was studied in Part 1. Although the absolute maximum stress intensity factor 
is certainly important and probably indicates the portion of the loading cycle where 
most crack growth occurs, it is the range of stress intensity which is required by a 
growth rate/stress intensity law such as that due to Formanf2J. Therefore, in the present 
paper we aim to extend the resufts of [lf by following the stress intensity experienced 
by the crack tip throughout its loading cycle. The four quadrants of one cycie of loading 
are shown in Fig. I(b) and are denoted by Roman numerals. The vertical crack (0 -C 
x < c) is located along the y =e 0 axis, and during part of the cycle it may be open in 
the interval 0 C= x < a. 

It will be assumed in the present paper that the magnitude of A,,,, the ratio of 
shear to normal tractive loads, is suffrcientiy great to open the crack to its tip in region 
I. It is felt that for practical purposes this is not likely to be a restriction, since a 
signi~cant crack growth inurement will be experienced when the crack is fully open 
and suffering combined modes I and II loading, and this condition will therefore prob- 
ably obtain for all cracks which are not experiencing self-arrest. A consequence of this 
assumption is that ah residual shear tractions developed at the end of each cycle of 
loading will be relaxed out, and therefore the crack will experience the same interfacial 
tractions in the first loading cycle as in the steady state. To assist in our description 
of crack response throu~out a cycle, it is convenient if we classify cracks as one of 
two types, as shown in Fig. 2. Thus, long cracks with a low coefficient of interfaciat 
friction f, which fall betow the dividing line shown, are denoted type A, while short 
cracks with high coefficients of friction will Lie above that line and are hence denoted 
type B. Norm~ized crack lengths (c/L) are used. In the foIlowing development, ref- 
erence should be made to Table 1. 

t Permanent address: event of E~nee~~ Science, Oxford University, Parks Road, Oxford OXf 
3PJ, U.K. 



S. D. SHEPPARD et al. 

crack closed 

Fig. 1. Crack geometry and variation of A with time. 

REGION I 

We first summarize the crack behavior in region I, details of which are given in 
[l], Initially, under the application of normal pressure alone, the crack slips along its 
entire length. Type B cracks, when loaded by an increasing shear traction Xpo, ex- 
perience continued forward slip along their entire length and, Conse~uentIy, an increas- 
ingly positive mode II stress intensity factor (J&i). Eventuaily, the gap extends to the 
crack tip [i.e. a coincides with c in Fig. l(a)], whereupon an opening mode stress 
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Fig. 2. Curve separating two types of crack response found. Also shown is KII for type A cracks 
which are just on the point of sticking during region II. 
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Table I. Loading history and crack response 

Pressure alone Region I Region If Region III 

389 

Region IV 

Forward slip to Crack tip sticks, Forward slip to Surface stick Stick. Small zone 
crack tip. Backs@ zone tip. Crack zone. of backslip at 

to tip. Crack closes. Continued 
tip opens. Kjt forward slip 

ytffe if 1 h 1 

becomes less. to tip for rest 
of crack. 

5peB Forward slip to Forward slip to Gap/forward/ Crack may stick Continued stick. 
crack tip. tip. Crack tip stick zone ~ro~~~~th Full stick. 

opens. recedes to 
surface. slip from tip 
Crack closes. up towards 

surface. 

CfL f K,*fps~ K&oV(;;;‘ A KdPil~ K,rfpiJvz A KUfPtG 

A 0.3 0.4 0.168 sticks 0.41 0.169 0.198 -0.41 sticks 
A 1.0 0.4 0.163 sticks 0.60 0.164 0.210 -0.60 sticks 
B 1.0 0.79 0.067 0.112 sticks 0.123 -0.60 sticks 
i9 1.0 0.7 0.091 t&l12 :: 

0:49 
sticks 0.143 -0.60 sticks 

B 0.5 0.7 0.067 0.158 sticks sticks -0.49 sticks 

intensity (Ki) is also experienced. The tip of a type A crack initially sticks as an in- 
finitesimal shear traction is applied. Further increase in the value of A gives rise to a 
backslip zone in the nei~~rh~d of the crack tip, so that the mode II stress intensity 
factor is reduced and may even become negative if c/L is small, As for type B cracks, 
when a 3 c an opening mode stress intensity is also ex~~enced, 

REGION II 

If the crack tip is experiencing mode I loading, the initial part of the urdoading 
(region II) will be reversible, regardless of whether the crack is of type A or B. Thus, 
the loading and ~nIoading paths will be identical until the crack faces come into contact 
and frictional effects introduce irreversibilities. The value of the mode If stress intensity 
factor at the onset of closure is indicated by the dashed line in Fig. 2. The line separating 
types A and B also gives the value of h at this point, if the value of f given on the 
ordinate is interpreted as h. 

For type A cracks, further unloading leads to forward slip between the contacting 
crack faces, and results in a positive increase in the mode 11 stress intensity factor. 
Figure 3 shows the vatues when a11 surface shear tractions have been ~moved, i.e. X 
= 0. As forward sfip occurs along the entire crack face in region 11, the calculation is 
essenti~~y the same as that desc~bing forward slip; which is detailed in Part I tl] 
and will not be repeated here. 

The response of type B cracks to a reduction in the vaiue of h is more complicated. 
It was found that the crack faces stick over most of their length, while a small portion 
adjacent to the closure point remains in a state of forward slip. As the shear load APO 
is removed, any point on the crack faces within the initial gap experiences closure with 
forward slip and then subsequently stick as A is reduced to zero. This figuration 
must be solved incrementally because the dislocation density at a point in the stick 
zone can only be dete~ined from that previous stage in the process when the point 
in question experienced the transition from slip to stick. Recently, Dundurs and Gau- 
tesen[3] solved a problem of this type invo~viog two half-spaces pressed together and 
locally separated by two point forces travelling at constant speed. in their analysis it 
was possible to write down in closed form an expression for the normal traction across 
the crack face, and this facilitated a solution for &(?J, the derivative of dislocation 
density with respect to time. This is not possible for the present problem, since the 
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Fig. 3. Stress intensity factor for type A cracks at the end of region II. Points to the left below 
the bounding curve correspond to type B sotutions. 

normal traction N(x) must itself be written as an integral equation in terms of distributed 
climb dislocations[ 1 J, and an alternative procedure is adopted which involves unloading 
in a series of increments. 

Suppose that the unloading process has been solved to some general (i - 11th 
stage, at which the end of the separation zone and the stick-slip t~sition point are 
denoted by ai- 1, bi- I ) respectively, as shown in Fig. 4(a). At this point the shear and 
narmal interfacial tractions S(x) and N(x) are given by 

I 

W-1 
Ni- I (xl = (&TZ(x) f hi- @3(x)lPO + 13,(0&x, 0 4. (1) 

0 

Si-g(X) = -fNi-1, 0 s x s bj-,, (2) 

(i-l) th stage i th. stage 

Fig. 4. incremental fo~ulation for type B cracks, region II. 
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where the functions g*(x), g&) are the bilateral (Flamant) solutions due to normal and 
tangential tractions, respectively, and the kernel K(x, 5) gives the normal stress at point 
x due to a unit climb dislocation at point &‘#. 

The distribution of climb dislocations, BY(~) is found by imposing the condition 

and choosing the bounded solution to the resulting singular integral equation, since 
there is a smooth t~nsition between the gap and the closed portion of the crack, as 
discussed in [S]. To solve for the ith stage [Fig. 4(b)], we first need to establish the new 
nor~i traction distribution. This is possible as the normal and shear lractions arc 
uncoupled for this problem, i.e. climb dislocations do not give rise to a shear stress 
on the crack, and glide dislocations do not give rise to normal stress. We then add an 
array of glide dislocations A&(c) in the interval 0 < x < bi to restore the slip condition; 
i.e. 

= -fNj, O SX 5 bit (4) 

where K(x, f;) now gives the shear traction at point x due to a unit glide dislocation at 
point 5. Thus, we seek a solution to the integral equation 

Since slip is giving way to stick, a bounded solution is requiredl41, and this yields 
an extra equation, enabling bi to be found. Note that the singular integral equation (1) 
for normal tractions is Cauchy only in the interval 0 < x C ai_ I, so that we are free 
to choose collocation points appropriate to the bounded integral (5) in the range ai- I c 
x<b,,andiVr-I(X) = O,forOcx<ai- I. A running total is kept of the shear stresses 
present in the stick zone as A is reduced to zero. The residual shear tractions present 
when X has once again become zero are shown in Fig. 5 for representative cases, 

An obvious disadvant~e with this technique is that the continuous v~ation of 
B,([), B&) and b with h cannot be represented, though the error was reduced by 
averaging the A&&) contribution from adjacent steps, equivalent to assuming a piece- 
wise-linear variation of these variables. The p~blem is aggravated by the presence of 
“hooks” in the shear stress distribution[4]. 

It was found that for long cracks (c/L > 1 .O) and coefficients of friction just above 
the critical line of Fig. 2, there was a tendency for a second region of forward sfip to 
develop near the crack tip as A approached zero. A formal analysis of these cases would 
involve simultaneously adding glide dislocations in two zones and coupled iterations 
between these two zones to find the extent of the stick zone; therefore, they were not 
pursued. The necessity of using an incremental solution for type B cracks means that 
it is not feasible to obtain a comprehensive range of results, owing to limitations on 
computing time. 

REGhN III 

For type A cracks the starting conditions at the onset of reversed loading are 



392 S. D. SHEPPARD et al. 

f807 c&=1*0 
(broken) 

0' 
e, 0:2 0:4 06 O--S 19 x/c 

Fig. 5. Curves showing typical residual curve tractions at the end of region II for type B cracks. 

Subsequently, the normal stress is given by 

iw) = Po(g2(4 + &3(x% (8) 

It should be noted that g&) has a logarithmic siugula~ty at x = 0, so that for any h 
< 0 there will be a zone of very high compression near the surface and, hence, a stick 
region, as depicted in Fig. 6(a). It is instructive to formulate a solution on the basis of 

(a) a-L-- 

i” b 

c I 

(b) --- 

Fig. 6. Crack geometries to be solved: (a) for type A cracks, region Ill; (b) for type B cracks, 
region IV. 
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the problem being incremental. At the (i - l)th stage we have 

At the ith stage, 

The right-hand side of eqn (12) is simply proportional to the increment in A; hence 
the solution for A&(<), which is singular at c and bounded at bi, is also propo~ion~ 
to the increment, and the value of b is constant (i.e. bi = bi- $1. Similarly, the value 
of Ku is also proportionai to the change in A. Results for the change in &I resulting 
from full reloading through region III and for the extent of the stick zone are given in 
Fig. 7 as functions of the interfacial friction coefficient and crack length. Values for 
coefficients of friction of 0.5 and 0.6 are shown only for large cracks because shorter 
ones are relevant to type B (see Figs. 2 and 3). Low coefficients of friction values are 
not shown for long cracks since b becomes extremely small, and there are difficulties 
in attuning s~cient numerical accuracy. 

Type B cracks may experience stick throughout region III, or may forward slip, 
depending on the coef%ient of interfacial friction and crack length. Detailed numerical 
calculations are necessary to establish the slip condition, but we may derive a sufficient 
condition for there to be no slip, At the end of region II the interfaciaf tractions satisfy 
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Fig. 7. Response of type A cracks, region 111. Shown is the change in stress intensity factor 
with CU., and the size of the surface stick tone. 
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0 < S(x) < - fN(x), OrxzSc. (13) 

Hence, if the increments in shear and normal tractions satisfy the inequalities 

0 < AS(x) < -fAN(x), 

there will certainly be no further forward slip. This is ensured if 

(14) 

f > - g2(&?3(c), (15) 

since the ratio g2(x)lgs(x) increases monotonically with x. The region where inequality 
(15) is satisfied is denoted by Br in Fig. 2. 

At the end of region II, it was found that in every case which was treated the crack 
tip showed the greatest tendency to slip forwards. It would seem, then, that if there 
is to be forward slip for type B cracks in region III, it will start at the crack tip and 
gradually extend towards the surface. This configuration is shown in Fig. 6(a). Thus, 
we have 

S(x) = s*(x) + Mogt(x) + 
I 

= A&W% 5) 4 = -fW), b 4 x I c, (16) 
b 

where S*(x) denotes the initial shear traction distribution resulting from region II anal- 
ysis, the normal traction N(x) = (p&x) + hgs(x)) < 0 and, hence, the crack remains 

. 

Fig. 8. Shear stresses remaining at the end of region III for type B cracks. 
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closed throughout regions 111 and IV. We seek a distribution for AD&) which is singular 
at c but bounded at b. It was found that for a crack length of c/L = 0.5 and f = 0.7, 
the crack continued to stick everywhere, until X was less than -0.6, even though 
inequality (15) does not hold. For the two cracks of length c/L = 1 .O considered, forward 
slip did occur, and the shear traction distributions are given for )I = -0.6 at the end 
of region III in Fig. 8. 

REGION IV 

The simpler cracks to consider are those of type A, It will be recalled that at the 
end of region II1 they are in a state of forward slip along most of their length [Figs. 
6(a) and 71, so that such a crack will stick or backslip as the value of X is increased to 
zero. It may be easily verified that further forward slip is impossible: suppose that 
some applied surface shear traction has been removed, so that h,, < X < 0. We 
continue to assume forward slip and recall that the solution is still proportional to AA. 
Thus, the same state of tractions exists as in region III, for any given A, but the slip 
direction is now inconsistent with the change in X; hence forward slip is impossible. 

Backslip will occur unless, when X is reduced to zero, 

This must hold for all h in the range h,,, < h c 0 and all x in the range b < x c c, A 
violation will first occur at b. This places the requirement that, for no ba~ks~p, 

it will be recognized that in practice A max is likely to be limited by the coefficient of 
friction between the contacting bodies. Since this wili probably be of the same order 
as f, this inequality should hold, although no account has been taken of what might 
happen wi~in the tiny stick zone present in region III [Fig. 6(a)]. 

A limited investigation was made of the extent of the backslip zone when inequality 
(18) is violated. Suppose that the stresses along the crack face at the end of region III 
are given by 

s*(x) = -P5~tgz(x~ + A~~~g3(~))~ (191 

From the form of the bilateral solutions it would apptir that any backslip would start 
at b and propagate both upwards and downwards slightly, reaching the surface as A -+ 
0 (and hence N(0) becomes finite) [Fig. d(b)]. Thus, when all surface shear tractions 
have been removed, we may write 

The solution for JJ&) is bounded at b2. For &rack lengths between cr’L = 0.4 and 1.0, 
1 A-, 1 = 1.0, f = 0.4, it was found that 62/L was about 0.20. If the coefficient of 
friction was taken to be 0.3, bdL fell to 0.16. Very short cracks, where a change in 
sign of the shear stress intensity factor would occur, were not considered. 

Type B cracks of length c/L = I .O and coefficient of friction f = 0.7 or 0.79 were 
considered, and these continued to stick. 
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CONCLUSION 

Within the limitations imposed by the incremental solution of type B cracks, it is 
possible to follow the stress intensity factor for a wide range of cracks during a load 
cycle. It should be emphasized that the treatment presented relates to cracks which 
are fully open during part of the loading cycle, and thus a general cycle in the loading 
history is the same as the first, as all residual shear tractions vanish during the time 
the crack faces are apart. As an example, the stress intensity factors experienced during 
one cycle by five sample cracks are appended to Table 1. 
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