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Abstract-The analysis of elasto-plastic plate bending using a boundary integral equation for- 
mulation is described. The integral equations are solved using standard boundary element 
techniques. The plasticity, as well as the external lateral load, appears in a domain integral. The 
solution is obtained by an incremental loading procedure with the initial incremental plastic 
moments calculated by an iterative method. Several study cases are examined and good agreement 
is shown with published results obtained by the finite element method. 

NOMENCLATURE 

u plate half thickness 
[Al, WI, WI, [“A”] matrices 

PI, WI, PI, [es” 
symbol for the mth comer 
matrices 

[cl* [Cl matrices 
D plate stiffness 

PI. PI 

ID]‘* K 
E 

[F”]. [F{ 
G 

k 
K 
L 

M”, M”,, w, MA, 
M!, w, 

M.!, WY, M,p 
WY 

A 

; 

r 

[RI 

r: 
r 

matrices 
matrices for stress-strain relations 
matrix relating plastic and total strain 
Young’s modulus 
yield surface 
mWiccu . . 
shear modulus 
matrices 
slope of the uniaxial stress-strain curve 
matrices 
number of boundary elements 
hardening parameter 
number of domain elements 
number of corners 
moments 
plastic moments 
plastic moments 
matrix of plastic moments 
outward unit normal 
lateral load 
a point 
point on the boundary 
a load vector 
a point 
matrices 
radius vector 
a matrix 
plate area 
a matrix 
tangential unit vector 
matrices 
fundamental solutions 
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equivalent shears 
deflection 
boundary displacement and slope vectors 
vector of domain unknowns 
coordinate system 
vcclor of boundary unknowns 
vector of boundary knowns 
plate bound;1ry 
increment symbol 
delta function 
Laplacian operalor 
total, elastic and plastic strain vectors 
proportionality coefficient 
Poisson’s ratio 
yield stress 
stress vector 
angle 
coordinate system 

INTRODUCTION 

The Green’s function, or boundary integral equation method, is well known as a competitive 
method of solving linear elastic plate bending problems. Several authors have suggested 
different ways of formulating the boundary integrals for plate bending (Massonnet[l], 
Jawson and Maiti[Z], Maiti and Chakrabarty[3], Hansen[4], Altiero and Sikarskie[S]). The 
formulation suggested by Bezine, and independently by Stern, has the advantage of being 
suitable for solving cases of general boundary conditions while the other methods are 
restricted to more special configurations (Bezine[6], Stern[7]). The current work extends 
Stern’s formulation to include plasticity. 

Through the use of the generalized Rayleigh-Green identity, Bezine and Stern have 
shown that the boundary integral equations can be obtained in terms of the relevant physical 
conditions existing along the boundaries. According to this direct approach, a pair of 
integral equations involving displacement, normal slope, bending moment and equivalent 
shear on the boundary are defined. Usually two of the above quantities are known for a 
given boundary. Generally, the suggested pair of equations is reformulated by means of 
boundary discretization. A discretization involving N elements along the boundary creates 
a system of equations in 2N unknowns. 

Although the boundary element method is naturally suitable for linear problems, it is 
also useful for solving elasto-plastic problems of two and three dimensions by means of 
initial strain or stress (Banerjee and Butterfield[8]). Usually when using these methods an 
incremental approach is applied in which the load is divided into increments. An iterative 
method is then used to evaluate the plastic strain existing at each increment. This basic 
approach of successive elastic approximations is commonly used in solving elasto-plastic 
problems by the finite element method, and has been used with the boundary element 
method. A positive feature is that the matrix involved in the solution does not change 
during the incrementation and can therefore be inverted in advance and retained. 

A boundary element solution for the nonlinear plate bending problem was recently 
suggested and demonstrated by Morjaria and Mukherjee[9]. The formulation given there 
has the major drawback that only restricted boundary conditions can be used. The current 
paper extends the general elastic plate bending formulation of Stern to the elasto-plastic 
case (Stern[7]). It is shown that this extension retains the advantage of dealing with the 
physical quantities of displacement, normal slope, normal moment and equivalent shear 
along the boundary. 

Morjaria and Mukherjee used numerical second derivatives of the nonlinear strains in 
their formulation. In this paper, the problem is formulated such that no derivatives of the 
plastic strains are needed. 

Three study cases are described and a comparison with published results obtained by 
the finite element method are presented (Popov et af.[lO, 111, Owen and Figueiras[l2]). 
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GOVERNING EQUATION 
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Following KirchoWs assumptions based on the small deflections theory of thin plates, 
the biha~oni~ equation for the elastic plate bending can be refo~ulated in incremental 
form to include the plastic strain increments. It is assumed that any in-plane effects are 
neglected and that the midplane of the plate is a plane of symmetry even in the presence of 
plastic strains. 

The increment of the total strain can be written as a superposition of increments of 
the elastic strain and the plastic strain as follows : 

6(&J = b(&:)‘i-b(&)C (1) 

For the elastic component under plane stress : 

According to the kinematic assumptions the increments of the total strain are given in 
terms of the partial derivatives of the deflection increment as follows : 

Following the derivation procedure of the elastic plate bending equation, the incremen- 
tal form of the equi~jbrium equation gives 

where the increments of the moments are defined as 

(I 

bM, = J Sa,z dz, 
-(t 

P 
6M,, = 

s 
So,,z dz, 

-(I II 
6M,, = J SQ,Z dz. 

-0 

Using eqns (1) and (2) the stresses can be expressed as follows : 

(4) 

(5) 

(6) 
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Substituting eqn (6) into eqn (5). the incrcmcnts of the plastic moments bccomc defined as 

s a 

6Mcy = 2G&j:,.z dz. 
--(I 

Substituting the plastic and elastic moment increments into the equilibrium eqn (4) and 
using eqns (3), (5), (6) and (7) the governing equation for the elasto-plastic plate bending 
in an incremental form is obtained : 

DAASw = Sp - VV6[iMjp, (8) 

where A is the Laplacian operator and V is dclincd as 

v= AC 
[ 1 ax’ay 9 

also 

(9) 

The plate bending equation as obtained in eqn (8) includes lateral loading and plastic 
effects. The plastic moment tensor, which must be unknown at any increment, simply 
appears in the equation as an additional effective lateral load. 

Next, following a short description of the constitutive relations, the governing equation, 
(g), is transformed into a boundary integral form, with special treatment required for the 
plasticity terms. 

CONSTITUTIVE RELATIONS 

The elasto-plastic analysis requires appropriate constitutive relations. The Prandtl- 
Reuss stress strain relations based on Von Mises’ yield condition is used. The formulation 
given by Zienkiewicz et af.[ 131 is adopted. 

A general yield surface F is given in terms of the stress space and a hardening par- 
ameter k, 

F({a), k) = 0. 

Using the normality principle, require : 

(12) 

Rewriting eqn (2) in matrix form using [D]’ as the elasticity matrix and combining the 
increments of the elastic and the plastic strain results in the increment of the total strain as 
follows : 

6(c) = [D]‘-‘d{c~}+&& (13) 
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Plasticity occurs on the yield surface F of the stress space. This requires : 

J(a)+ gdk. (14) 
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Using eqns (13) and (14), the following stress-strain relationship is obtained, 

d{a} = [Dps{&), (1% 

where 

It can be shown that H’, in eqn (16), is the slope of the uniaxial stress 5 = C(k) versus the 
uniaxial plastic strain as obtained in a uniaxial yield test. The Von Mises’ yield surface for 
the plane stress case is given as 

Equations (I), (2) and (15) are used to arrive at the equation 

b{&}P = [D]V{&}, 

where 

(18) 

(1% 

Equation (18) is needed for the iterative procedure. It relates the increments of the plastic 
strain to the increments of the total strain. The plastic strains are required in eqn (7), and 
subsequently in the integral equation solution for w(x, u) as presented in the following 
sections. 

THE BOUNDARY INTEGRALS 

The generalized Rayleigh-Green identity has been used in the past to obtain boundary 
integral equations for the biharmonic equation governing elastic plate bending (Bezine[6], 
Stern[7]). The identity can be written in incremental form as follows : 

(vAA6w-6wAAo)dS= -D-’ r{uW:,(6w)TGwv,(u)} ds 
s 

-D- ’ & (Gw)M,(v)- $W,(dw) (20) 

The above relation holds for all functions u and bw which are four times continuously 
differentiable. Let S be the domain occupied by the plate and r be its boundary. Also let s 
be the arc length along the boundary, A the outward unit normal vector and i the unit 
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vector in the tangential direction of the boundary (see Fig. 1 for notation). On the boundary 
T define M,, M,,, and V, as the actual distributions of bending moment, twisting moment 
and equivalent transverse shear force, respectively. The corresponding components MA, 
MA, and VA are defined as functions of the deflection field 6~’ as obtained in an elastic case. 
In other words, the above functions can be obtained from eqns (3), (2) and (5) when the 
total strain is taken equal to the elastic strain. Also M,(U), M,,,(Y) and V,,(u) are defined as 
in the elastic case corresponding to a deflection field u. The last summation term in the 
above equation is a result of possible discontinuities in L corners. The jump at a corner A, 
is defined by 

PI”, = (9”: - (.)A,. 

Consider two points P(xP, yP) and Q(x,, uo) of the region S and let 

(21) 

where 

v(P,Q) = &’ log r, 

r = ((xp~xp)~+~p~_yp)~~-~‘~. 

(22) 

(23) 

The Green’s function v is a fundamental solution such that 

AAW, Q> = W, Q). (24) 

Substitute the governing eqn (8) and the above eqn (24), into eqn (20), and get for any 
internal point P, 

&v(P) = D-' us lqhv) - an bag;+ $%v)M.(v)-sWv.(v) 

+D-' ss 0~ - VWn//l”} dS, -D- ’ i { [~w&@)L, - MWWL,}. (25) 
S m-1 

Here, dS, and dsp denote integration over Sand I- with respect to the coordinates of point 
Q. Equation (25) is of an inconvenient form since it requires derivatives of the plastic 
moments and it does not include the actual physical components along the boundary. A 
better form can be achieved by the following integration by parts : 

ss vVVG[iWj* dS= 
S 

Fig. 1. Notation for the boundary integrals formulation. 
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Substituting eqn (26) into eqn (25) results in 

b(P) = D-' r{v(6V:(6tv)-S~~)-Swv,(v)) ds, 
I 

+D-' ; (~w)M,(v) - ; (6~; (bw) - 6M:) dsQ 

-D- ’ a% ---a,&,+$ dM;-6pv ax ay 

(27) 

Using eqns (5), (6) and (7) the increment of the bending moment CM,, normal to the 
boundary is 

SM,, = SM;-SM;. (28) 
Similarly it can be shown that the increment of the effective shear force 6 V, on the boundary 
is 

SV” = SV:,-sv; (29) 

and the increment of the twisting moment 6M,, is 

6M”, = lW;,- IW:,. (30) 
Therefore eqn (27) can be rewritten as 

J,(P) = D- ’ r {vSV,(S~~~)-S~~~V,(v)} ds, 
s 

-D- ’ a% -&4~,.+$Uf;-dpv ax ay 

+ D- ’ ,,$, { [~~~‘M,,(dl~,,, - b~WhWl~_j. (31) 

Equation (31) gives the value of 8~ at any interior point P of S in terms of the physical 
quantities 6w, (a/&r) (Jw), 6M, and 6 V. on r. 

Now let point P tend to PO on r. Taking the limiting values of the integrals, the 
following equation for point PO on r is obtained : 

0.56w(Po) = D- ’ r {vW,(6w)-6wV,(v)} dSP 
s 

-D- ’ a20 
-dMPxy+ f$dMf,-13pv ax ay dS, 

(32) 

where v = v(P,, Q). 
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A second independent equation is needed since two conditions will always be unknown 
on the boundary. According to Stern a second equation, for the normal derivative of M’ at 
point PO along the boundary, can be derived as follows (Stern[7]). A local rq-coordinate 
system is introduced at a point P, as illustrated in Fig. 2. The following fundamental 
solution is used : 

Vi=&rlnrcos& (33) 

where 4 is the angle of rotation of r with respect to the [ direction. It is noted that the 
above fundamental solution gives the following kernel due to the equivalent shear: 

3-v cos 4 
I’(@ = -Dx yz. 

Due to the l/9 behavior of this kernel, as Q approaches PO the boundary integral does not 
converge in general. Stem suggested substituting w-w(P) into the generalized Rayleigh- 
Green identity to achieve convergence (Stem[‘/l). The second boundary integral equation 
for a regular point PO along the boundary as given by Stern is herewith modified to 
incremental form with the inclusion of the plastic effects : 

- f (dw(P,)) = D- ’ qd J’:,(dw) - 2 bM;@w) ds, 

+D-’ ss L+{~~-VVG[~~} dS, 
s 

-t D- ’ ,;, ([(~~-G~(P~))M,,(~c)IA,- b,~M:,@W)l~~h (35) 

where r is taken in the normal direction to the boundary at PO. Replacing v with vC in eqn 
(26) and substituting into eqn (35), the following equation is obtained : 

- &w(P,)) = D-' r ~v,~V,(~W)-(~W-~W(P,))~,(U~)} dsa 
s 

-f-D- ’ f (Gw)M,,(o,) - 2 dM,@w) 

a2vt 
-dMfl,+ $dM$-dpvt ax aJ1 

+D- ’ j, {[(Sw-Gw(P,))M,,(uc)l~, - b&fn,@w)l~,}. (36) 

P 

Fig. 2. Notation for (v-coordinate system 
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Using eqn 132) and eqn (36), the unknowns along the boundary can be expressed in 
terms of the known boundary conditions, the given increment of lateral load, and the 
increments of the plastic moments. In general the increments of the plastic moments are 
unknowns but can be found by an iterative procedure. With respect to the iterative procedure 
it should be noted that the increments of the plastic moments are related to the increments 
of the plastic strains which are rclatcd to the increments of the total strains [eqn (7) and 
cqn (Iti)]. To get the incrcmcnts of the total strains, equations for the second dcrivativcs of 
the deflection increment are obtained. In general, the above information is needed for a 
point P inside the domain. Equation (31) is hcncc di~erenti~lted twice with respect to x,, 
and yp at the internal point P giving the following equations : 

also 

-D- ’ 

+D-’ 2 
VI-1 

and 

(37) 

(38) 

-&$N = D- I &WW-~~ &- 
I’ ’ P P 

$-D-I (Map - ~(~)~M"~~~~~ c& 

-I)-' 
a% 

&VP,+2 
a% 

ax, ay, ax:, ax, ah ax, aYp 

-D-' a40 a% 

ax, ay, ay:, 
6M$-c+---- 

axp ay, 
dSQ 

-i-D-’ i 6w ~ a2 tM~,(u)) 
nt- I axp JY, I [ 

- 
A II 

(39) 
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The behavior of the kernels of the domain integral as P -+ Q is required in the plastic 

moment evaluations using (37) to (39). Using Green’s theorem it can be shown that 

JJ d4V 

P-Z s ax; ax; 
d&=;, 

j-Z s ay: ax; JJ a41;ds, = f, 

* JJ a% 
k? s axp ay, ax, ayQ 

dSQ =;, 

. JJ a% 
%i s ax: ax, ayQ 

dS, = 0, 

Jfi s ay:, ax, ayQ 
dS, = 0, s JJ a% 

lim 
JJ 

a% 
P-0 s ax, ay, ayz, 

dSQ = 0, 

PZ .s ax, ay, ax; dS, = 0. JJ a% 

(40) 

(41) 

(42) 

(45) 

(47) 

(48) 

NUMERICAL SOLUTION 

The boundary integrals are discretized into a linear system of algebraic equations. The 
boundary is approximated by J straight boundary elements. Along thejth element 6 V,(~W), 
6M,(6w), (a/an) (6~) and SW are assumed to be constants and are denoted as 5, Mj, W,Bj 
and Wj. It is suggested that for analyzing plates with general boundary conditions higher 
order interpolation functions should be used (Stern[lrl]). For the numerical evaluation of 
the domain integrals appearing in eqns (32), (36), (37), (38) and (39), the plate field is 
approximated by K domain elements (see Fig. 3). For the kth domain element the values 
of BMP,, 6M$, 6M$ and Sp are assumed to be constants and have been denoted as c~MP,~, 
6Mck, SM& and 6pk. A detailed discussion on the incorporation of the twisting moment 
jumps at corners can be found in Stern[7]. For the sake of simplicity only cases with no 
corner effects are discussed in the following sections. 

Using the above approximations eqn (32) can be written with respect to a point PO = Pi 
corresponding to the ith element on the boundary as follows : 

O*SWi = i (u$ Wj+bij Waj+cijMj+dijV,) 
j- I 

+ i @nSM~~+hil,6M~k+q~SM~~~+ui~6p~) (i= I,2 ,...) J). (49) 
k= I 

Here, the coefficients are the result of integration over the corresponding elements. This 
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Fig. 3. Illustration of discretization method. 

last set of equations, (49), can be written in matrix form as 

[A]{ w}+[B]{ w,}+[~{M}+[D]{ v} = [c;l{bMPx}+[~(bM~}+[Ql{sM~~:,)+tvl(sp>, 

where 

aii = a; - 0.5. 

Similarly, discretizing eqn (36) results in 

+ & @&6MpX~ + hkJM$ +q,iSh4$~ +u;~P,) (i= 1,2 ,...) J). (52) 

This last set of equations can be written in matrix form as 

[A’] { W} + PI I W,J + [C’l {Ml + WI { v> 
= VI (6W) + WI W;) + [Q’l @WJ + WI @P), 

where 

(50) 

(51) 

(53) 

(54) 

and 

b{i = 6;*+1. (55) 

Combine eqns (50) and (53) and rearrange them according to known and unknown 
boundary displacement and load conditions to obtain 

For example, in a clamped plate case the unknown boundary vector is {x”} = {M, VjT and 
the known one is { YB} = { W, W,}‘. The load vector is {I@} = {JMP,, 6Mfh bM&, 6~)‘. 
Equation (56) is solved as 

{P} = [Aq-‘[F~{P~}+[A~]-‘[~{Y8}. (57) 
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Using a similar approach, a vector of unknown increments of displacements and second 
partial derivatives inside the domain { WD} can be found using eqns (31) (37), (38) and 
(39) in a discretized form to be 

{Fq = [AD]{XB}+[FD]{PD}+[BD]{YB}. (58) 

Substituting eqn (57) in eqn (58) results in 

where 

[R] = [P][fP]-‘[P]+[P] (60) 

and 

[5-j = [A “1 [A “I- ’ [P] + [B”]. (61) 

It should be noted that only {P”} in eqn (59) changes during the incremental procedure. 
The rest of the matrices are found in advance. Gaussian quadrature is used for evaluation 
of the coefficients. In the case of the domain integrals of eqns (37), (38) and (39), the limiting 
forms, eqns (40), (41), (42) (43) and (44), are applied in way of the singularities. 

The solution procedure is : 
1. Apply a load increment Sp and calculate the corresponding increments of elastic 

strains {&s}’ at the chosen integration points using eqns (58) and (3). 
2. Determine increments of stress {So} corresponding to (6s) by eqn (2). Define a 

multiplication factor r,, which when multiplied by I&J} will give the elastic limit. Substitute 
ry{6a) into eqn (17) and solve for the multiplication factor ru. Repeat for all elements. 
Determine the multiplication factor for the onset of yielding by the smallest r,, obtained. 

3. Update p, w, {E}’ and {c} for the onset of yielding, at all domain elements and 
integration points, using the multiplication factor as obtained in step 3. 

4. Apply a load increment Sp and assume b[MP] = 0 for all domain elements. If 
returned from step 11, the final value of b[MP] from last increment can be chosen as a first 
approximation. 

5. Evaluate (8s) by eqns (58) and (3) for all integration points using the assumed 6[Mp] 
and the load increment. 

6. Evaluate the corresponding increments of stress {da} by eqn (2). 
7. Add {So} to {c} and check yielding using eqn (17). When yield is checked along the 

plate thickness it is possible to save computational time by starting with integration points 
closest to the plate surfaces. Whenever yield does not occur stop checking along the thickness 
at that point. If the point has yielded at the start of the increment, calculate {b~}~ by eqn (18). 
If the point yields during the increment at r(&), use (1 - r){Se) to evaluate {bsjP by eqn 
(18) and add r{&} to {o}. 

8. Using (6~)~ calculate SIMIP by eqn (7). 
9. Check convergence. Convergence occurs if changes in 6[MJP are sufficiently small. 

If convergence was not achieved re’place assumed 6[MjP by calculated b[MjP and return to 
step 5. 

10. If convergence has been obtained, update {a}, {w} and p. In a case of hardening, 
the yield stress should be updated too. 

11. Return to step 4 unless p = pmpx or a predetermined maximum number of iterations 
has been reached. 

NUMERICAL STUDIES 

Based on the above approach, a Fortran program was prepared and executed on an 
Apollo DN320 of the Computer Aided Engineering Network (CAEN) of the University 
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Fig. 4. Study A-Problem description. 

of Michigan. Three typical elasto-plastic plate bending problems were studied to illustrate 
the effectiveness of the method. The first problem consists of a clamped square plate with 
linear strain hardening subject to uniform lateral load. The second case is an elastic perfectly 
plastic simply supported circular plate subject to uniform lateral load. The third case is the 
bending of a circular clamped plate of hardening material subject to uniform load. 

Following the incremental loading procedure described in the preceding section, the 
deflection curves and plastic zones were found. Due to the asymptotic behavior of the 
deflection the number of iterations needed for each load increment increases as plasticity 
develops and therefore the process is generally stopped at some practical load below the 
limit load. The numerical studies are explained below. 

Study A : A clamped square plate of linear hardening material subject to uniform lateral load 
A clamped square plate is subject to an increasing uniform load as described in Fig. 

4. A linear strain hardening material is assumed. The boundary of the square plate is divided 
into 4 x 10 straight boundary elements of equal lengths. The domain of the plate area is 
divided into 12 x 12 square elements of equal size. Each domain element has 10 integration 
points along the thickness for calculating the plastic moments. 

The results of the calculations are shown in Figs 5 and 6. In Fig. 5 the deflection of 

~-.d- OWEN6FIGUEIRAS 83 

P 
t 

-- PRESENT SOLUTION 

Fig. 5. Study A-Central deflection vs load. 
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# =NO. OF PLASTIC INTEGRATION PTS. 
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Fig. 6. Study A-Elastic plastic boundaries. 
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Fig. 7. Study B-Problem description. 
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Fig. 8. Study B-Distributions of delkctions. 
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Fig. 9. Study B-Elastic plastic boundaries. 

the plate center is given vs the load. The nonlinear behavior, following the linear elastic 
deflection, is readily observed. The good agreement with finite element results published by 
Owen and Figueiras[l2] is obvious from Fig. 5. Figure 6 indicates the predicted spread of 
plasticity through the plate volume at a given load close to the limit load. The numbers 
appearing inside the domain elements indicate the level of plasticity through the thickness, 
and correspond to the number of integration points at which yielding was reached. Elements 
that are left blank indicate elastic zones. 

Study B: Elastic perfectly plastic simply supported circular plate subject to uniform lateral 
load 

The bending of a simply supported circular plate subject to a uniform lateral load is 
studied here (see Fig. 7). The plate material is taken to be elastic perfectly plastic. This 
example of a simply supported circular plate was studied by Popov et al.[ lo] using a stiffness 
matrix of ring elements and taking advantage of the problem symmetry. Presently, the use 
of symmetry is not implemented in the program developed. The plate area was approximated 
by 144 square and trapezoidal domain elements. It was found that the approximation 
associated with these element shapes had no strong effects on the results. The boundary of 
the plate was divided into 48 straight boundary elements of equal length. The results are 
shown in Figs 8 and 9. In Fig. 8 the distributions of the deflections for three load levels 
are given. The plasticity starts at the plate center and spreads toward the circular boundary 
as shown in Fig. 9. The elastic plastic boundary lines in Fig. 9. are due to Popov et al.[lO] 
and are compared to the approximated stepped boundaries that were obtained here. Good 
agreement with the results obtained by Popov et al. is indicated. The small difference in the 
results shown in Fig. 8 is increasing with the load, and is believed to be mainly due to the 
flat asymptotic behavior of the deflections as plasticity spreads. 

Study C: Clamped circular plarc of hardening material subject to unijorm load 
This example of a clamped circular plate of hardening material was investigated by 

Popov cv a/.[1 I] and is illustrated in Fig. 10. For simplicity, linear hardening is taken; this 
approximates the material given in the above reference (see Fig. 11). The boundary and 
domain elements are taken the same as in Study B described above. The results are 
summarized in Figs 12 and 13. In Fig. 12 the distributions of the deflections for several 

tdC ISEE ~1~111 
yr0.33 

Fig. 10. Study C-Problem description. 
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Fig. 11. Study C-Uniaxial stress-strain curve. 

load levels are given. The elastic plastic boundary lines in Fig. 13 are due to Popov et af.[ 1 l] 
and are compared to the approximated stepped boundaries that were obtained here. The 
plasticity starts at the boundary and at the plate center and spreads from the plate surfaces 
toward the midplane as shown in Fig. 13. A good agreement is shown with the results 
obtained by Popov ef a/.[ 1 l] in spite of the linear hardening approximation used here. 

SUMMARY AND CONCLUSIONS 

In this work the effectiveness of boundary integrals to solve elasto-plastic plate bending 
problems using an incremental iterative procedure based on initial plastic moments is 
studied. The generalized Rayleigh-Green identity is used with the advantage of having the 
boundary integrals in terms of the actual physical components of deflection, slope, moment 
and equivalent shear along the boundary. This fact allows different admissible boundary 
conditions to be imposed. It is shown that the introduction of plastic moments does not 
change the above property. 

Boundary integrals for the second partial derivatives of the deflection are formulated 
and used for direct calculation of the strain components needed for the evaluation of the 
initial plastic moments in the iterative procedure. This semianalytical method for the 
evaluation of the derivatives is believed to give high accuracy in comparison to the methods 
used for stress evaluation in finite element analysis. Some difficulties which are encountered 
in plate bending analysis by the finite element method are avoided by the suggested method 
(Zienkiewicz[l5]). Other benefits of the method are the small number of unknowns and the 
invariance of the inverted matrix with progressive incrementation. 
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Fig. 12. Study C-Distributions of deflections. 
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Fig. 13. Study C-Elastic plastic boundaries. 

It is demonstrated through the use of several examples that the iterative method for 
finding the increments of the plastic moments converges. Good agreement with results 
obtnincd by the finite clcmcnt method is shown. 

Finally it is concluded that the method developed in this paper is capable of solving a 
variety of elasto-plastic plate bending problems. It can be easily used with different 
incremental constitutive relations and different plate shapes and boundary conditions. 
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