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Abstract-Heat flow SQ of the First Law of Thermodynamics is expressed in terms of the entropy flow 
&Q/T) 

SQ = SIT(QIT)I = ~~(Q/~+(Q~~d~ 

where T&Q/T) denotes the energy equivalent of the entropy flow, and (Q/T)dT introduces the concept 
of lost heat into entropy production. Here Q = QK f Q R where superscripts K and R indicate conduction 
and radiation, respectively. In terms of the lost heat, dimensionless entropy productions on the wall of a 
thermal boundary layer and in a quenched laminar flame are respectively shown to be 

l-I, - (1 +qF/q$)Nu,’ and IIs - (1 +qR/qK) Pe-* 

where gR and q” are the one-dimensional fluxes associated with QR and QK, Nu, is a local Nusselt number, 
and Pe is a Peclet number based on the laminar flame speed at the adiabatic flame temperature. The 
tangency condition, aPe/aTb = 0, customarily used in the evaluation of minimum quench distance without 

any physical justification, is shown to correspond to an extremum in entropy production. 

1. INTRODUCTION 

THE FO~~A~ONS of entropy production go back to 

Clausius and Kelvin’s studies on the irreversible 
aspects of the Second Law of Thermodynamics. Sep- 
arately, the foundations of gas radiation date back to 
Rayleigh’s studies on the illumination and polar- 
ization of the sunlit sky. Since then the theories based 
on these foundations have rapidly grown first by the 
efforts of natural philosophers followed by astro- 
physicists, and later by those of applied scientists and 
engineers. However, the entropy production associ- 
ated with gas radiation apparently remained un- 
treated and is the motivation of this study. Here the 
difference between the enclosure radiation (which 
neglects media participation) and the gas radiation 
which involves some optical thickness (or volumetric 
absorption) should be noted. This study deals only 
with the entropy production associated with gas 
radiation. 

As is well known, the entropy production results 
from dissipative processes (invol~ng mass, species, 
momentum and/or heat transfer, electromagnetic or 
nuclear transport). Less known is the fact that the 
dissipation may have a diffusive or hysteretic origin, 
the diffusion being directional and the hysteresis being 
cyclic. However, except for a few cases (such as strain 
hardening and the magnetic saturation), the majority 
of dissipative processes, including the dissipation of 
radiation, is of diffusive nature. A recent study by 
Arpaci [l] shows, in terms of the radiative stress 
obtained from the specular (kinetic) moments of the 
transfer equation, the diffusive nature of radiation for 
any optical thickness. Accordingly, the expression to 
be developed for entropy production is in terms of 
this stress, and includes also the dissipation result- 

ing from conduction of heat and other diffusion 

processes. 
The study consists of eight sections : following this 

introduction, Section 2 explains the thermodynamic 
foundations of the entropy production, Section 3 
deals with a brief review of the radiative stress, Section 
4 develops the transport aspects of entropy pro- 
duction in terms of this stress, Section 5 introduces 
some dimensionless numbers for radiation, Section 
6 applies the entropy production to radiative heat 
transfer, Section 7 employs an extremum in entropy 
production for the interpretation of the tangency con- 
dition of laminar flame quenching, and Section 8 con- 
cludes the study. 

2. THERMODYNAMIC FOUNDATIONS 

There is a renewed interest in the Second Law of 
Thermodynamics, especially in its application to 
engineering problems. Because of its size, no attempt 
is made here for a review of the literature. However 
Bejan’s extensive work [Z, 31 on the inte~~tation of 
a variety of heat and fluid flow problems in terms of 
entropy production deserves special recognition. An 
inspection of this literature reveals that the concept of 
lost heat as opposed to that of lost work appears to 
remain untreated except for the recent presentations 
by Arpaci [4, 51 and Arpaci and Selamet [4]. The 
purpose of this section is to introduce the concept of 
lost heat, show the relation between this concept and 
the entropy production, and include the effect of radi- 
ation to this production. 

Under the influence of thermal effects only, the First 
Law for a system with tied boundaries gives 

dU = 6Q+dUg (1) 
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NOMENCLATURE 

Boitzmann number 
equilibriunl intensity, 4& 
velocity of light 
specific heat at constant pressure 
thickness of reaction zone 
black body emissive power 
integro-exponential function of order n = 2, I 

1’ specific volume 
c velocity in _r, 
& work 
X, coordinate axis. 

Greek symbols 
thermal diffusivity 
thickness of boundary layer 
quench distance 
emissivity 
weighted nongrayness, (ti,,/~~)“’ 
absorption coefftcient 
radiative tensor 
entropy number 
density or reflectivity 
Stefan-Rohzmann constant 
optical thickness 
stress 
solid angle. 

3,4 

body force 
heat transfer number 
complex unit 
intensity 
averaged intensity 
thermal conductivity 
wave number 
wave number in x, 
characteristic length 
unit vector in xi 

M,,... operator defined by equation (19) 
Nu Nusselt number 

P. 
P 
PC? 

4i 

Q 
s 
s 

,,I 

Si, 
S 
so 

t 
T 
U 

pressure 
Planck number 
Pectet number 
heat flux in .xi 
heat 
entropy/mass 
rate of entropy generation/volume 
rate of deformation 
entropy 
laminar flame speed at adiabatic flame 
temperature 
time 
temperature 
internal energy/mass or volume 

u “’ rate of energy generation~vo~ume 
ll internal energy 

Subscripts 
b burned 
g generation 
M mean 
P Planck mean 
R Rosseland mean 
s entropy 
u unburned 
w wall 
.Y lOCd 

m ambient. 

Superscripts 
C convection 
K conduction 
R radiation. 

Fixed 

(a) (‘4 

FIG. 1. First and Second Laws of Thermodynamics for a 
system of constant volume. 

where dU, denotes implicitly the energy generation 
resulting from dissipation of all non-thermal (mech- 
anical, chemical, electromagnetic and nuclear) forms 
of energy into heat (Fig. 1 (a)). For the same system, 
the Second Law is 

dU = TG(Q/T)+[(QlT)dT+dCkl (4) 

where, the second term on the right can be interpreted 
as the dissipation of heat into entropy (Fig. 2(a)). 
Hereafter, the dissipated heat will be called the hf 

dS = S(Q!‘7)+dS, !2) 

dS, being the entropy production (Fig. I(b)). The 
other notation in equations (1) and (2) is conven- 
tional. Recognizing that the heat flow as a useful 
practical concept but the entropy flows as a fun- 
damental concept, express the former in terms of the 
latter by considering the following identity 

SQ = 6[T(Q/T)] = Z-fi(Q/T)+(Q,‘T)dT: (3) 

Then, the First Law may be rearranged in terms of 
the entropy flow as 
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Q = QK+QR (12) 

QK being the heat flow by conduction. The next sec- 
tion is devoted to a brief review on the radiative stress 
and the description of the radiative heat transfer in 
terms of this stress. 

(a) (b) 

FIG. 2. (a) The First Law in terms of entropy flow and lost 
heat. (b) The energy equivalent of the Second Law. 

heat. Also, for convenience to follow, write the energy 
equivalent of the Second Law (equation (2) multiplied 
by T (Fig. 2(b))) as 

TdS = T&Q/T)+ TdS,. (5) 

Now, consider the fundamental difference 

First Law -(Second Law)T (6) 

which gives 

Energy dissipation = (Entropy production)T (7) 

and, as a special case 

Thermal energy dissipation = Lost heat 

= (Thermal entropy production)T. (8) 

Inserting equations (4) and (5) into equation (6) yields 

dU- TdS = (Q/T)dT+dU,- TdS,. (9) 

For a reversible process, all forms of dissipation 
vanish, and equation (9) is reduced to 

dU- TdS = 0 (10) 

which is the Gibbs thermodynamic relation. For an 
irreversible process, this relation among thermo- 
dynamic properties continues to hold, and equation 
(9) gives the entropy production 

dS, = ;[(Q,‘T)dT+dUJ (11) 

the first term in brackets being the lost heat to entropy 
production. Clearly, the entropy production has two 
parts, one resulting from the dissipation of all non- 
thermal (mechanical, chemical, electromagnetic and 
nuclear) forms of energy into heat and the other from 
the dissipation of heat into entropy. 

Now, consider the radiation to be an ideal gas inter- 
acting with matter (gas). Let the internal energy, heat 
and work associated with radiation gas be UR, QR 
and WR, respectively. It can be shown by the con- 
sideration of the explicit relations between (U”, QR, 
W”) and the photon intensity that 

UR<<U, QRmQK, WR<<W 

provided the characteristic transport velocity remains 
much less than the velocity of light. Accordingly, 
under the influence of radiation 

3. RADIATIVE STRESS 

The following brief review is in terms of spectrally 
averaged radiative properties and applies to con- 
tinuous radiation. In view of the basic nature of the 
present study, the monochromatic aspects of radi- 
ation which are needed for practical cases involving 
approximate line (or band) models are not taken into 
account (see, for example, Tien and Lee [7] for an 
extensive review on these models). 

The spectrally averaged definitions of the radiative 
internal energy, heat flux and stress in terms of the 
intensity Z are 

(13) 

q; = 
s 

Zli dR (14) 
n 

(15) 

where the J-scalar and the I&-tensor are introduced 
for notational convenience, c is the velocity of light, 
and R is the solid angle. In terms of these definitions, 
the first three specular moments of the transfer 
equation are 

(16) 

(17) 

with 

Mjp,.., = & s (liljlPl,. . .) dfi. (19) 
n 

Here B = 4E,, Eb = aT4 being the Stefan-Boltzmann 
law for the black body emissive power, rep and icR are 
the Planck and Rosseland means of the absorption 
coefficient, respectively, and ICY = (+K~)“’ is the geo- 
metric mean of these coefficients. The incorporation 
of rep and rcR into the foregoing equations is discussed 
by Traugott [8], Cogley et al. [9], and their use in a 
variety of problems by Arpaci and co-workers [l& 
151. Clearly, equation (16) denotes the thermal 
balance, equation (17) the momentum balance associ- 
ated with radiation, and equation (18) gives the II,- 
tensor in terms of a series based on specular moments. 
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Note that the radiative heat flux given by equation 
(17) rearranged as 

can be interpreted as a generalized diffusion process 
for any optical thickness. A procedure for the evalu- 

ation of equation (19) in terms of the Wallis integrals 
is described in Unno and Spiegel [16]. After lengthy 
manipulations, this procedure leads to 

=, = f v*- *(2na,a, + v*a,p 
,,zO $(2n+l)(2n+3) (21) 

where a, = a/ax, and a, = a/ax, are used for notational 

convenience. The same result may be found also in 
earlier works (see, for example, Milne [17]). The for- 

mal similarity of equation (21) to the Hookean con- 
stitution for elastic solids should be noted. 

An alternate form for this stress may be given in 
terms of the isotropic radiative pressure. First, invok- 
ing the assumption of isotropy, equations (13) and 

(15) are related as 

which implies 

ZP = lUR6. ,, 3 1, (22) 

Hkk = J (23) 

where 

is the (isotropic) pressure of radiation. Then, from the 
trace of II,, noting that ZkZk = 1 

(25) 

Now, in a manner similar to the inclusion of the 
isotropic pressure to the development of viscous stress 
from elastic stress (see, for example, Arpaci and 
Larsen [ 18]), adding the identity 

4 Jh,, - $IkkSi, = 0 6’6) 

to equation (21), the &-tensor may be rearranged in 
terms of the radiation pressure 

XI 2nV*“- ‘(a,a, - :V26,)B 
Hii= :JS,+nTO K*fl(2n+l)(2n+3) (27) 

M 

The formal similarity of equation (27) to the viscous 
(Stokesean) stress and the electromagnetic (Maxwell) 
stress should be noted. This similarity is to be expected 
in view of the assumed isotropy for the elastic, viscous 
and electromagnetic continua (see, for example, Strat- 
ton [19] and Prager [20]). The use of the first term of 
equation (27) in place of equation (21) is the well- 
known Eddington approximation which leads to a 
diffusive heat flux 

1 aJ 
qp= -Ggg (28) 

for any optical thickness. The maximum deviation of 
this flux from the exact flux given by equation (20) is 
about 29% at z = l/J3 (see Arpaci [4]). The next 
section develops an expression for the radiative 
entropy production in terms of II,, given by equations 

(21) and (28). 

4. LOCAL ENTROPY PRODUCTION 

The entropy production discussed in Section 2 is 
extended here to moving media which requires as well 
the consideration of the momentum balance. For the 
Stokesean fluid, this balance in terms of the usual 
nomenclature is 

p$ = - g + g +pf. (29) 

The entropy balance (the Second Law balanced by the 
local entropy production) is 

(30) 

where s”’ denotes the local entropy production. Also, 
the conservation of total (thermomechanical) energy 
(or the First Law) including the heat flux expressed in 

terms of the entropy flux 

is 

Now, the fundamental difference 

Total energy - (Momentum)v, - (Entropy)T (33) 

in terms of equations (29), (30), (32) and the conserva- 
tion of mass 

(34) 

yields 

p ;-T$+p; 

+t,si,+u”‘- Ts”’ (35) 

where s,, is the rate of deformation. For a reversible 
process, all forms of dissipation vanish, and 

Du 
E-T;+p; =0 

i 
(36) 

which is the Gibbs thermodynamic relation. For an 
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irreversible process, equation (36) continues to hold 
provided the process can be assumed in local equi- 
librium. Then, the local entropy production is found 
to be 

s/lfl = ;[ -($(g)+rijSij+Uj (37) 

where the first term in brackets denotes the dissipation 
of thermal energy into entropy (lost heat), the second 
term denotes the dissipation of mechanical energy 
into heat (lost work), and the third term denotes the 
dissipation of any (except thermomechanical) energy 
into heat. When radiation is appreciable, qi denotes 
the total flux involving the sum of the conductive flux 
and the radiative flux 

qi = qK+qR. (38) 

In terms of the usual conductive constitution and 
the radiative constitution given by equation (20) the 
local entropy production is found to be 

,I, 
1 1 

s =- - 
[( 

T T kg + $p)(~)+ri,s,,+dq 
(3% 

the radiative part of which needs to be related to 
temperature through equation (21) or (27). Also, the 
considerations of only the first term of equation (27) 
yields 

s 111 

w> 
the radiative part of which is Eddington approximated 
and needs to be coupled with 

(VZ-3&J = -12&E, 

(see, for example, Arpaci and Giiztim [ 111). 

(41) 

5. QUALITATIVE RADIATION 

This section is devoted to some qualitative argu- 
ments which will prove useful in the following two 
sections. Reconsider only the thermal part of equation 

(40) 

. (42) 

Introduce an entropy production number 

l-J, - “‘f 

I being a characteristic length, and a heat transfer 
number 

H _ (aJ/aXi)/3KR = g 
k(aT/axi) 4:. (W 

In terms of these numbers, equation (42) becomes 

IIp(l+ff)~ g g . ( >( > (45) 
I I 

To proceed further, a dimensional interpretation 
of q: is needed. From equation (28) 

Jw-Jco qR N ___ 
3lc,6 

where 6 is the thickness of thermal boundary layer, J,,, 
and J, are the wall and ambient values of J, respec- 
tively. To relate J to temperature, consider the radi- 
ative constitution given by equation (41). By the help 
of Fourier transforms, for example 

exp (ikjx,) 

i = ,/- 1 and kj being the wave number vector 

V2 = -k;, k,2 = k:+k;+k; 

or, in view of kO N 6-l 

V2 N -6-2 

and equation (41) yields 

(6-2+3rc&)J~ 12&E, (47) 

Then, in terms of the optical thickness 

r N kM,6 (48) 

J- (4% 

which, together with equation (46), leads to the radi- 
ative heat flux 

qR N 41 (50) 

valid for any optical thickness. However, this relation 
does not include any boundary effect. 

To include this effect into equation (50) first con- 
sider the boundary affected thick gas and thin gas 
approximations. For the thick gas, from Arpaci [21] 
and Arpaci and Larsen [22] 

4 a-% 
9; = -,,(l-l,~wE,-&)- 

ay 
(51) 

R 

where pw is the wall reflectivity, E, and E., are the 
usual exponential integrals of order three and four. 
On boundaries 

or, dimensionally 

4: - 2 ? (&xv --&a) 0 (53) 
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where q = (I+/K~)‘:‘. For the thin gas, from Lord and 
Arpaci [IO] 

aq; 
--z,- = 4~~ 
i?J [ 

(Eb - Ii,,,) - $ (Ebu - Eb,)E2 
I 

(54) 

where E, is the exponential integral of order two. 
Outside of a thermal boundary layer, & _ EsX. and 
equation (54) is reduced to 

(&w - Ehx )‘% (55) 

or, near boundaries 

which, on dimensional grounds, yields 

q; - 4qz 2 (Ehw - I!&). 
ij 

(57) 

The comparison of equations (53) and (57) with the 
thick gas and thin gas limits of equation (SO) identifies 
the boundary effect by the emissivity factor s,J2. 
Accordingly, the radiative heat flux including the wall 
as well as the emission and absorption effects is found 
to be 

qK - 41 (;&&&&,J. (58) 

Furthermore, introducing the Planck number 

Emission -SW -Esx P, = ---- _ --~~----. --.-- 
Conduction kf T, - T, )/ii 

15% 

equation (44) may be rearranged as 

Finally, equation (45) yields in terms of equation 

(6’3) 

n,-- (61) 

or, expiicitly 

The smallest value of this production is on the hot 
boundary, and its radiative part becomes, after some 
rearrangement 

For a proportionality constant of unity (chosen arbi- 
trarily for a graphical representation of equation 
(63)), Fig. 3 shows the boundary production of radi- 
ative entropy vs the optical thickness and the tem- 

FIG. 3. Radiative entropy production 

perature ratio. The foregoing dimensional con- 
siderations will prove useful in the next two sections 
on the evaluation of entropy production near a 
boundary, and across a discontinuity (such as flamesj. 

6. HEAT TRANSFER 

Consider a thermai boundary layer of local thick- 
ness 6 next to a wall (Fig. 4). On dimensional grounds, 
the local thermal entropy production (recall equations 
(37) and (38)) on the wall is 

subscripts w and x; indicating wall and ambient. 
Rearrange equation (64) as 

or, in terms of the convective heat flux 

as 

F‘IG. 4. Wall entropy production 
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- Reaction 

FIG. 5. Quenched laminar flame. 

Furthermore, with the definition of Iocal Nusselt 
number 

equation (67) may be rearranged as 

Introducing a local entropy production number 

II, = s:“.x’/k (70) 

and, for hot wall and small T,-- T,, noting 
T,/T, << 1, equation (67) may be further rearranged 
as 

(71) 

or, in terms of equations (5X), (59) and (66), as 

K - [ 1+411 ($)(&+‘~]N&. (72) 

Clearly, the wall entropy production being pro- 
portional to N$ provides no new information. How- 
ever, if Nu, was to be obtained from some approxi- 
mate temperature profiles, the principle of the ‘least 
entropy production’ provides an Nu, closest to the 
actual Nu,. These considerations are related to the 
well-known theory of variational calculus which is not 
the concern of this study. The next section deals with 
another example illustrating the application of 
entropy production to flames. 

7. FLAME QUENCHING 

Consider the entropy production in a steady flame 
stabilized on a porous flat flame burner as depicted in 
Fig. 5. On dimensional grounds, in a manner similar 
to equation (64) 

(73) 

A being the quench distance (the thickness of the 
reaction zone is d, and d << A). Rearrange equation 
(73) as 

~~~~~~(l+~)(~~ (74) 

or, in terms of 

T,-T, 
qK=k- (75) 

as 

s~+++~;( ) 
R T,-T, ’ 

~. 
A (76) 

In view of the fact that most of the reaction occurs 
close to the highest temperature, use Tb for the char- 
acteristic tem~rature in equation (76). Accordingly 

S/f*_ (l-$1+$)-$ (77) 

or, in terms of a characteristic length I = a/S:, dl being 
the thermal diffusivity and S,” the laminar flame speed 
at the adiabatic flame temperatu~, and assume 
TJT, << 1 

p12 

-w I,$ PfF2 
k ( ) 

(78) 

where 

p,_d=SZ 
1 u (79) 

is the flame Peclet number. Separately, when based on 
the characteristic length I = cc/S:, the Planck number 
given by equation (57) yields (in terms of tem~ratures 
Tb and Tu) 

EM -Et,, 
pb = k(T, - Tu)/(ct/S,o) (80) 

which, after some arrangement, becomes the flame 
Boltzmann number 

B, = 
Em - &u Emission 

pc,Si ( Tb - T,) N Flame enthalpy flow ’ (81) 

Thus, in view of the relation 

Pb 
4K(Pe)P & (82) 

equations (60), (79) and (81) lead to 

l-I~-j$+4~ 5 
(J(i&)% (83) 

The linearized & is independent of the flame tem- 
perature, or, with the approximation 
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.%---Eu E,O-E, 
PN 
Tb - T,, T,O 

Bb itself becomes independent of this temperature. 
Thus 

where 

n, = f (VW, 7?4v fw (84) 

Pe =f(A) and A =,f(T,,) 

and II, depends on the flame temperature only 
through the Peclet number (dimensionless quench dis- 
tance). 

The U-shaped nature of A =f(T,,) is well docu- 
mented in the literature (see Ferguson and Keck [23, 
241 for the case of excluding radiation and Arpaci and 
Tabaczynski [14, 151 for the case with radiation ; also, 
see Kooker [25] and Sohrab and Law [26] for the 
importance of radiation on the quenching process, 
and Lee and Tien [27] for the effect of condensed fuels 
on this process). References [14, 15, 23, 241 follow 
the usual practice and evaluate the minimum quench 
distance from the tangency condition 

& (Pe) = 0. (85) 
b 

Actually, an extremum of the entropy production 

(86) 

provides the physical justification for this condition 
(note that the terms in brackets are positive). 

8. CONCLUSIONS 

The concept of lost heat is originated as opposed 
to that of lost work. It is shown that all forms of 
energy are dissipated into heat and describe the non- 
thermal part of entropy production while the heat 
energy is dissipated into entropy and describes the 
thermal part of this production. A dimensionless 
number for entropy production is introduced. This 
number is evaluated in terms of two illustrative cases. 
The first case involves the entropy production on the 
wall of a thermal boundary layer. This production is 
found to be proportional to the square of the Nusselt 
number. Unless it is tied to a variational problem 
which selects the physically meaningful solution 
among all mathematically possible solutions, the 
entropy production provides no new information for 
this case. The second case involves the entropy pro- 
duction in the luminous zone of a quenched flame. 
The production is found to be inversely proportional 
to the Peclet number. The tangency condition, usually 
considered in the literature to determine the minimum 
quench distance, is related to an extremum in entropy 
production. 

Although the entropy production m radiating gases 
continues to remain untreated, it is worth mentioning 
the considerable size of the literature on entropy pro- 

duction in enclosure radiation (non-participating 
media) and its solar application. For early works. 
refer to Spanner [28] and Pctela [29]. For the latest 
studies, see Gribik and Osterle [30] and the rcfcrcnccs 
cited therein. 
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PRODUCTION D’ENTROPIE PAR ~YO~EM~~-PERTE DE CHALEUR 
ET ENTROPIE 

R&uun&--Le flux thermique SQ du premier principe de la thermodynamique est exprimk en fonction du 
flux d’entropie &Q/T) : 

SQ = ~[~(QJ~~ = ~~Ql~+(Q~~ a- 
od T&Q/T) est l’equivalent &r&tique du flux d’entropie et (Q/T) dT introduit le concept de production 
d’entropie par flux de chaleur. Ici Q = QK+QR, ou K et R indiquent respectivement conduction et 
rayonnement. En terme de dhaleur perdue, les productions d’entropie adimensiomrelles sur la paroi dune 
couche limite thermique et dans une fbunme laminaire sent respectivement 

II, _ (1 +q~~q~)~~~ et lI, - (1 +qR/qK)Pe-* 

oti qR et q” sont les flux monodimensionnels associb a QR et QK, Nu, est un nombre de Nusseh local et 
F’e est un nombre de Peclet base sur la vitesse de flamme la&u&e a la temp&ature adiabatique. La 
condition de tangente aPelaTh = 0, ~bituellem~t utili&e sans justification physique dans l’evaluation de 

la distance est mom& correspondre a un extr&m deproduction d’entropie. 

ENTROPI~~~EUGUNG BE1 ST~LUNG AUS “VERLO~NER WARME” 

Zusanunenfamung--Der Warmestrom SQ aus dem 1. Hauptsatz der Thermodynamik wird mit Hilfe des 
Entropiestromes 6(Q/T) ausgedrilckt : 

SQ = W(Q/T)l= WQ/T)+(Q/T)dT 
wobei T@Q/T) das Energie~q~v~ent zum Entropiestrom darstellt und (Q/T) dT die Konzeption der 
“Entropieerzeugung aus verlorener W&me” einl5h.rt. Es gilt Q = QK+ Q”, wobei die Indizes K und R 
fur Leitung bzw. Strahhmg stehen. Mit den Bezeichnungen der “veriorenen W&me” lassen sich die 
Entropieproduktion an der Wand unter einer therm&hen Grenzschicht und in einer verliischten laminaren 
Flamme folgende~a~n schreiben: 

II, N (1 +q~/q~)~u~ und II, * (I+ qR/qK)Pem2 

qR und qK sind die flachenbezogenen Werte von QR und QK, Nu, die iirtliche Nusselt-Zahl, Pe eine Peclet- 
Z&l, gebildet mit der laminaren Flammengeschwindiakeit bei der adiabaten Flammentemneratur. Die 
Tangenten~ingung, aPe/aT, = 0, ~b~che~ei~ zur ~r~hn~g von mi~maler K~hldist~~ ohne jede 

physikalische R~btferti~g benutzt, erweist sich als Extremum bei der Entropieerzeugung. 

lIPOH3BOACTBO 3HTPOI’IMH ~3~Y~EH~~-TE~~O~OT~PH KAK IIPHPOCT 
3~T~~~~ 

AUUOT~UIUI-B COOTBeTcTBUH c nepemi 3aKOHOM TepMO~HHaMHK~ Tennonoii IIOTOK &Q MOXeT 6brTb 

abtpa;dtea repes noToK sn~ponmi &Q/T) 

s-e T&Q/T) o603ua=raer arieprriro, axeriaanerirnyro norory 3si~pomiw, a (Q/T) dT BBO~HT noiix+ue 

Tennonorepn KaK np&ipOCT ss~ponuur. 3necb Q = QK + Q*, rfle sepxme usnemm K n R coorBeTcraenno 
06O3Ha~aWT TeUJIORpOBOiWWCTb H U3Jty¶eiiSie.~Orta3aHO,~TO llOJib3yWb ffOHXTHeM~lnOIlOTepH,6e3- 

pa3hiepmdfi np@~T 3qm1m sia wiemxefi rpaxme TennoBofo ~o~aH~~~or0 cnon B B rac~y~eM 

naM~napnoMnnaMennMolveT6bITbnpencfasnea KaK 

II, - (1 + qt/q!jIVu5 H II, - (1 + qR/qK)Pes2 

me qR w qK--omOMepHMe IIOTOKH, CBs3aHmde c QR lit QK; NUX--nOKanbHOe wcno HyccenbTa, a Pe- 
411~~10 &KJie nna CKO~OCTH ~aM~Hap~Or0 n.mMexH npH ~~a6aTmq~Ko~ Tehinepa~ype marsemi. 

noKa3aHo TaKxe, qT0 ycmme z%crnpeMyMa aPe,GTb = 0, o6arwro wnonbsyewe npn onpenenenm 

pXCTO5tliK~, Ha KOTOpOM U~HCXOJKET I’aKleHAC iLW&hieHH, 6~~23 KilKOi-0-nFi60 4EiSHWCKO~O o6ocHoBaHaK 

cooTnemmyei 3KcmpehfanbnoMy 3uavenuIo npnpupocma 3Hmponuu. 
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