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Abstract—Heat flow 8Q of the First Law of Thermodynamics is expressed in terms of the entropy flow

Q/T)
0Q = 8[T(Q/T)] = THQ/TY+(Q/T)dT

where T8(Q/T) denotes the energy equivalent of the entropy flow, and (Q/T}dT introduces the concept
of lost heat into entropy production. Here ¢ = QX+ QF where superscripts K and R indicate conduction
and radiation, respectively. In terms of the lost heat, dimensionless entropy productions on the wall of a
thermal boundary layer and in a quenched laminar flame are respectively shown to be

M, ~ (14+4%g)Nu? and T, ~ (1+4%/g") Pe?

where ¢® and ¢¥ are the one-dimensional fluxes associated with QF and 0, Nu, is a local Nusselt number,

and Pe is a Peclet number based on the laminar flame speed at the adiabatic flame temperature. The

tangency condition, dPe/dT, = 0, customarily used in the evaluation of minimum quench distance without
any physical justification, is shown to correspond to an extremum in entropy production.
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1. INTRODUCTION

THE FOUNDATIONS of entropy production go back to
Clausius and Kelvin’s studies on the irreversible
aspects of the Second Law of Thermodynamics. Sep-
arately, the foundations of gas radiation date back to
Rayleigh’s studies on the illumination and polar-
ization of the sunlit sky. Since then the theories based
on these foundations have rapidly grown first by the
efforts of natural philosophers followed by astro-
physicists, and later by those of applied scientists and
engineers. However, the entropy production associ-
ated with gas radiation apparently remained un-
treated and is the motivation of this study. Here the
difference between the enclosure radiation (which
neglects media participation) and the gas radiation
which involves some optical thickness (or volumetric
absorption) should be noted. This study deals only
with the entropy production associated with gas
radiation.

As is well known, the entropy production results
from dissipative processes (involving mass, species,
momentum and/or heat transfer, electromagnetic or
nuclear transport). Less known is the fact that the
dissipation may have a diffusive or hysteretic origin,
the diffusion being directional and the hysteresis being
cyclic. However, except for a few cases (such as strain
hardening and the magnetic saturation), the majority
of dissipative processes, including the dissipation of
radiation, is of diffusive nature. A recent study by
Arpaci [1] shows, in terms of the radiative stress
obtained from the specular (kinetic) moments of the
transfer equation, the diffusive nature of radiation for
any optical thickness. Accordingly, the expression to
be developed for entropy production is in terms of
this stress, and includes also the dissipation result-

ing from conduction of heat and other diffusion
processes.

The study consists of eight sections: following this
introduction, Section 2 explains the thermodynamic
foundations of the entropy production, Section 3
deals with a brief review of the radiative stress, Section
4 develops the transport aspects of entropy pro-
duction in terms of this stress, Section § introduces
some dimensionless numbers for radiation, Section
6 applies the entropy production to radiative heat
transfer, Section 7 employs an extremum in entropy
production for the interpretation of the tangency con-
dition of laminar flame quenching, and Section 8 con-
cludes the study.

2. THERMODYNAMIC FOUNDATIONS

There is a renewed interest in the Second Law of
Thermodynamics, especially in its application to
engineering problems. Because of its size, no attempt
is made here for a review of the literature. However
Bejan’s extensive work {2, 3} on the interpretation of
a variety of heat and fluid flow problems in terms of
entropy production deserves special recognition. An
inspection of this literature reveals that the concept of
lost heat as opposed to that of lost work appears to
remain untreated except for the recent presentations
by Arpaci [4, 5] and Arpaci and Selamet [6]. The
purpose of this section is to introduce the concept of
lost heat, show the relation between this concept and
the entropy production, and include the effect of radi-
ation to this production.

Under the influence of thermal effects only, the First
Law for a system with fixed boundaries gives

dU = 60 +dU, m
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NOMENCLATURE

B Boltzmann number ¢ specific volume
B equilibrium intensity, 4E, v, velocity in x;
¢ velocity of light W work
¢, specific heat at constant pressure x, coordinate axis.
d  thickness of reaction zone
E, black body emissive power Greek symbols
E, integro-exponential function of ordern = 2, x  thermal diffusivity

3,4 ¢ thickness of boundary layer
f;  body force A quench distance
H  heat transfer number & emissivity
i complex unit n  weighted nongrayness, (xp/kp)'?
I intensity Kk absorption coefficient
J averaged intensity I1, radiative tensor
k  thermal conductivity IT entropy number
k, wave number p density or reflectivity
k., wave number in x; ¢ Stefan-Boltzmann constant
! characteristic length T optical thickness
I, unit vector in x; T; stress
M, operator defined by equation (19) Q  solid angle.
Nu Nusselt number ‘
p. pressure Subscripts i
P Planck number b burned i
Pe Peclet number g generation
q; heatfluxin x; M mean
@ heat P Planck mean
s entropy/mass R Rosseland mean

" rate of entropy generation/volume s entropy

s; rate of deformation u unburned
S entropy w wall
S° laminar flame speed at adiabatic flame x local

temperature oo ambient.

time

temperature Superscripts

rate of energy generation/volume

t
T
u internal energy/mass or volume
o
U internal energy

C convection
K conduction
R radiation.

Fixed
Boundaries
dUg dS,
du dS
\ 5Q \ s(Qm
(@) (b)

FiG. 1. First and Second Laws of Thermodynamics for a
system of constant volume.

where dU, denotes implicitly the energy generation
resulting from dissipation of all non-thermal (mech-
anical, chemical, electromagnetic and nuclear) forms
of energy into heat (Fig. 1(a)). For the same system,
the Second Law is

dS = 8(Q/T)+dS, 2)

dS, being the entropy production (Fig. 1(b})). The
other notation in equations (1) and (2) is conven-
tional. Recognizing that the heat flow as a useful
practical concept but the entropy flows as a fun-
damental concept, express the former in terms of the
latter by considering the following identity

0Q = 0[T(Q/)] = THQ/T)+(Q/THdT.  (3)

Then, the First Law may be rearranged in terms of
the entropy flow as

dU = To(Q/T)+Q/T)dT+dU] (4)

where, the second term on the right can be interpreted
as the dissipation of heat into entropy (Fig. 2(a)).
Hereafter, the dissipated heat will be called the /os?
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dug TdSg
du TdS
@m)dT
T3(Q/M) T8(QM)
(a) (b)

FIG. 2. (a) The First Law in terms of entropy flow and lost
heat. (b) The energy equivalent of the Second Law.

heai. Also, for convenience to fo
equivalent of the Second Law (e
by T (Fig. 2(b))) as

.
1HOW,
quatio

=]
—~—
N
~—
B
=1
=3
=)
@
(=N

TdS = To(Q/T)+TdS,. %)
Now, consider the fundamental difference
First Law —(Second Law)T (6)

which gives
Energy dissipation = (Entropy production)T (7)
and, as a special case
Thermal energy dissipation = Lost heat
= (Thermal entropy production)T. (8)
Inserting equations (4) and (5) into equation (6) yields
dU—-TdS = (Q/T)dT+dU,—TdS,. ©®

For a reversible process, all forms of dissipation
vanish, and equation (9) is reduced to

dU-TdS =0 (10)

which is the Gibbs thermodynamic relation. For an
irreversible process, this relation among thermo-
dynamic properties continues to hold, and equation
(9) gives the entropy production

ng=v;—,[(Q/T)dT+dUg] ¢3))]
the first term in brackets being the lost heat to entropy
production. Clearly, the entropy production has two
parts, one resulting from the dissipation of all non-
thermal (mechanical, chemical, electromagnetic and
nuclear) forms of energy into heat and the other from
the dissipation of heat into entropy.

Now, consider the radiation to be an ideal gas inter-
acting with matter (gas). Let the internal energy, heat
and work associated with radiation gas be U®, QR
and WR, respectively. It can be shown by the con-
sideration of the explicit relations between (UR, QF,
WF) and the photon intensity that

UR« U, Q*~QX Wr«w

provided the characteristic transport velocity remains
much less than the velocity of light. Accordingly,
under the influence of radiation

2117

Q=0%+0" (12)

QX being the heat flow by conduction. The next sec-
tion is devoted to a brief review on the radiative stress
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and the description of the radiative heat transfer in
terms of this stress.

3. RADIATIVE STRESS

- The following brief review is in terms of spectrally
averaged radiative properties and applies to con-
tinuous radiation. In view of the basic nature of the
present study, the monochromatic aspects of radi-
ation which are needed for practical cases involving
approximate line (or band) models are not taken into
account (see, for example, Tien and Lee (7] for an
extensive review on these models).

The spectrally averaged definitions of the radiative
internal energy, heat flux and stress in terms of the
intensity [ are

1 1
ot f raa=1s a3
C Ja c
o~ = J 1de (14)
Q
R 1 1
o= 011i1jd9=znij 1%

where the J-scalar and the I -tensor are introduced
for notational convenience, c¢ is the velocity of light,
and Q is the solid angle. In terms of these definitions,
the first three specular moments of the transfer
equation are

oqF
o kp(B—J) (16)
oy R

I —KrY; amn

J

1 | 0 0
“mB{Sv*El@;(Mm--aaz)B (%)

with

1
M, = GL G, . ) dQ. 19)
Here B=4E,, E, = ¢T* being the Stefan-Boltzmann
law for the black body emissive power, xp and xy are
the Planck and Rosseland means of the absorption
coefficient, respectively, and xy = (kpkg)'/?is the geo-
metric mean of these coefficients. The incorporation
of kp and &y, into the foregoing equations is discussed
by Traugott [8], Cogley et al. [9], and their use in a
variety of problems by Arpaci and co-workers [10—
15]. Clearly, equation (16) denotes the thermal
balance, equation (17) the momentum balance associ-
ated with radiation, and equation (18) gives the IT,-
tensor in terms of a series based on specular moments.
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Note that the radiative heat flux given by equation
(17), rearranged as

1 oIl

KR Ox;

9 = (20
can be interpreted as a generalized diffusion process
for any optical thickness. A procedure for the evalu-
ation of equation (19) in terms of the Wallis integrals
is described in Unno and Spiegel [16]. After lengthy
manipulations, this procedure leads to

_ ivznfl(zna,.a_,ﬂuvzaij)s
i k& (n+1)(2n+3)

n=0

@n

where 8, = 8/0x,and ¢, = ¢/0x; are used for notational
convenience. The same result may be found also in
earlier works (see, for example, Milne [17]). The for-
mal similarity of equation (21) to the Hookean con-
stitution for elastic solids should be noted.

An alternate form for this stress may be given in
terms of the isotropic radiative pressure. First, invok-
ing the assumption of isotropy, equations (13) and
(15) are related as

= 1uRd, (22)
which implies
n,=J (23)
where
3; My = —p 24

is the (isotropic) pressure of radiation. Then, from the
trace of I1,, noting that ./, = 1

o VZ B
I, = | .
e n§0 <K§A)‘(2n + 1)
Now, in a manner similar to the inclusion of the
isotropic pressure to the development of viscous stress

from elastic stress (see, for example, Arpaci and
Larsen [18]), adding the identity

% Jéij—%nkkéij =0

i

@5

(26)

to equation (21), the I1;-tensor may be rearranged in
terms of the radiation pressure

< MY 2(0,0,— \V25,)B
J—. - Lf) 27
=300+ L = moninanes = &)

The formal similarity of equation (27) to the viscous
(Stokesean) stress and the electromagnetic (Maxwell)
stress should be noted. This similarity is to be expected
in view of the assumed isotropy for the elastic, viscous
and electromagnetic continua (see, for example, Strat-
ton [19] and Prager [20]). The use of the first term of
equation (27) in place of equation (21) is the well-
known Eddington approximation which leads to a
diffusive heat flux
1 aJ

R = 28
L 3kg Ox; (28)
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for any optical thickness. The maximum deviation of
this flux from the exact flux given by equation (20) is
about 29% at v = 1/,/3 (see Arpaci [4]). The next
section develops an expression for the radiative
entropy production in terms of I, given by equations
(21) and (28).

4. LOCAL ENTROPY PRODUCTION

The entropy production discussed in Section 2 is
extended here to moving media which requires as well
the consideration of the momentum balance. For the
Stokesean fluid, this balance in terms of the usual
nomenclature is

Dv (7p

2
b~ ax (29)

U
Ox;

The entropy balance (the Second Law balanced by the
local entropy production) is

Ds ¢ q, g

D~ T ox, g
where 5" denotes the local entropy production. Also,
the conservation of total (thermomechanical) energy

(or the First Law) including the heat flux expressed in
terms of the entropy flux

oq; _ 0| (a\ . |_ 2 (4 oT

P axm)ﬂ =Tox, (T) * ( )ax
D 1,2y -6_ g_‘ —

pﬁ(u+zvi)_ _ﬁx,[<T) :I 8»( )

¢
+ i (rp)+pfo+u”. (32)

(30)

st

(3h

Now, the fundamental difference
Total energy — (Momentum)y,—{(Entropy)T  (33)

in terms of equations (29), (30), (32) and the conserva-
tion of mass

%‘t’ %} 0 (34)
yields
Du Ds Dv g:\oT
p (B? TR Dt) (?) ox,
+r8,+uw=Ts" (35)

where 5, is the rate of deformation. For a reversible
process, all forms of dissipation vanish, and

Du Ds Dv o
(Dt Tb_i +17‘13't) =0 (36)

which is the Gibbs thermodynamic relation. For an
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irreversible process, equation (36) continues to hold
provided the process can be assumed in local equi-
librium. Then, the local entropy production is found

to be
srs 1 ql' aT 217
§ == [ _ <_.> (5—)6,) + 18+ U ] (37

where the first term in brackets denotes the dissipation
of thermal energy into entropy (lost heat), the second
term denotes the dissipation of mechanical energy
into heat (lost work), and the third term denotes the
dissipation of any (except thermomechanical) energy
into heat. When radiation is appreciable, ¢; denotes
the total flux involving the sum of the conductive flux
and the radiative flux

4 =q +q. (3%)

In terms of the usual conductive constitution and
the radiative constitution given by equation (20), the
local entropy production is found to be

///_l l ka___T+_1_aHU g + +u”
S ETI T\ "%, Tk ox; )\ 0x, TSy TU

(39)

the radiative part of which needs to be related to
temperature through equation (21) or (27). Also, the
considerations of only the first term of equation (27)

yields
”’__1_ i ka_:z:_’_i_a_" a_T +u’
S =TT\ ax, T 3xg om o, ) T
(40)

the radiative part of which is Eddington approximated
and needs to be coupled with
(V2=3x%)J = —12x}4E, “41)

(see, for example, Arpaci and Géziim [11]).

5. QUALITATIVE RADIATION

This section is devoted to some qualitative argu-
ments which will prove useful in the following two
sections. Reconsider only the thermal part of equation

(40)
L _1[1fer, 1 g\fer
o= TI:T <k6x,~ + 3Kg 6x,>(5;,)] “2)

Introduce an entropy production number

s///IZ

I, =—

43)

I being a characteristic length, and a heat transfer
number

2119

_ (@Jfox)3r  qF
T k@Tlex) 4K

In terms of these numbers, equation (42) becomes

12 foT\(oT
m=a+m () ),
To proceed further, a dimensional interpretation
of g} is needed. From equation (28)

Jo—J
R w ©
7 3KRd

where 9 is the thickness of thermal boundary layer, J,,
and J,, are the wall and ambient values of J, respec-
tively. To relate J to temperature, consider the radi-
ative constitution given by equation (41). By the help
of Fourier transforms, for example

)

45)

(46)

exp (ik;x;)
1= \/ —1 and k; being the wave number vector
Vi= —ki, ki=ki+ki+k}
or, in view of kg ~ 67!
Vi~ —672
and equation (41) yields

672+ 3xd)J ~ 124 E, 47)
Then, in terms of the optical thickness
T ~ k6 (48)
1272
I~ (m‘)E )

which, together with equation (46), leads to the radi-
ative heat flux

T

qR ~ 47’ <*>(Ebw~Ebco) (50)

1+31°
valid for any optical thickness. However, this relation
does not include any boundary effect.

To include this effect into equation (50), first con-
sider the boundary affected thick gas and thin gas
approximations. For the thick gas, from Arpaci [21]
and Arpaci and Larsen {22]

4 OE,
=~ 5 (-ipE—iE) 22 (D)
where p,, is the wall reflectivity, E; and E, are the
usual exponential integrals of order three and four.
On boundaries

4 (e, \OE
#=1(3)% 2
or, dimensionally
4n (ey
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where y = (xp/xg)'/%. For the thin gas, from Lord and
Arpaci [10]

oqF . .
‘E%‘ = 4xp [(Eb"‘bbrn) 5 (Ep— Ebm)ﬁ’l“] (54)

where E, is the exponential integral of order two.
Outside of a thermal boundary layer, E, ~ E,.., and
equation {54} is reduced to

0 e[ (B EuE 55

ay - Kp 2 ( bw bx.) 2 ( )
or, near boundaries

~ 4R

oqy | &y B

ﬁy ” - 4KP ( 2 ) (Ehw Ebcx;) (56)
which, on dimensional grounds, yields

R gw -
Gw ™~ 41?1“ Tz (Ebwv'ﬁhm) (57)

The comparison of equations {53) and (57) with the
thick gas and thin gas limits of equation (50) identifies
the boundary effect by the emissivity factor e,/2.
Accordingly, the radiative heat flux including the wall
as well as the emission and absorption effects is found
to be

g* ~ 41 (%)(1— 30 EnmE). (B)

Furthermore, introducing the Planck number

Emission E,.—E..
= TR T Thee 59
Py Conduction k(T —T.)/ (39
equation (44) may be rearranged as
R
qv-‘ SW T
S PNT- ] B | e 6
o= 4"(2><1+3TZ)PW 0

Finally, equation (45) yields in terms of equation

{60)
T.—T,\
M~ (7" ) (1+H,) (61)

or, explicitly

T.—7T. ¥ e\ T "
~ v * DA | R . 62
n~ (B a5 ) )} @

The smallest value of this production is on the hot
boundary, and its radiative part becomes, after some
rearrangement

n"\ T“*—’I“X’ ] .Az’ -
e P\ T, 14372 )

For a proportionality constant of unity (chosen arbi-
trarily for a graphical representation of equation
(63)), Fig. 3 shows the boundary production of radi-
ative entropy vs the optical thickness and the tem-

(63)

V. 8. Arraci

FiG. 3. Radiative entropy production.

perature ratio. The foregoing dimensional con-
siderations will prove useful in the next two sections
on the evaluation of entropy production near a
boundary, and across a discontinuity (such as flames).

6. HEAT TRANSFER

Consider a thermal boundary layer of local thick-
ness 6 next to a wall (Fig. 4). On dimensional grounds,
the local thermal entropy production (recall equations
(37) and (38)) on the wall is

REas 1 q:j _i_qs}(T\\ AAAA T)C)
R TN N T A R R

subscripts w and oo indicating wall and ambient.
Rearrange equation (64) as

(64)

K RY /-
e M o \( Tw— T) 2

s~ T§ (l + {{{f)( 5 i 63

or, in terms of the convective heat flux
. T, N
¢S =qn ~k ( T ) (66)

N 0 /

as
rer k 9 q& 'TW“MTK ¥
(g P5) @
0 x nm, T

FiG. 4. Wall entropy production.
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Reaction

Luminous

F1G. 5. Quenched laminar flame.

Furthermore, with the definition of local Nusselt
number

& g KT, T8
T ¢ KT, —tl)x

equation (67) may be rearranged as

57 x? To¥ o\ 2

Introducing a local entropy production number

11, = s x%/k

Nu, (68)

(70)

and, for hot wall and small 7,—T,, noting
T./T, « 1, equation (67} may be further rearranged
as

qR
I, ~ (1+q—§)Nu§ (7

w

or, in terms of equations (58), (59) and (66), as

m, ~ [1 tdn (%W)(ﬁ%?) Pw] M2 (T2

Clearly, the wall entropy production being pro-
portional to Nu? provides no new information. How-
ever, if Nu, was to be obtained from some approxi-
mate temperature profiles, the principle of the ‘least
entropy production’ provides an Nu, closest to the
actual Nu,. These considerations are related to the
well-known theory of variational calculus which is not
the concern of this study. The next section deals with
another example illustrating the application of
entropy production to flames.

7. FLAME QUENCHING

Consider the entropy production in a steady flame
stabilized on a porous flat flame burner as depicted in
Fig. 5. On dimensional grounds, in a manner similar
to equation (64)

2121

s l qK+qR Tmen
YT\ T A

A being the quench distance (the thickness of the
reaction zone is d, and d « A). Rearrange equation

3

(73) as
pef (DB oo
or, in terms of
P Kt 75)
as
R

In view of the fact that most of the reaction occurs
close to the highest temperature, use T, for the char-
acteristic temperature in equation (76). Accordingly

227 Tu ’ qR k
o (g (e )

or, in terms of a characteristic length [ = 2/S?, « being
the thermal diffusivity and S the laminar flame speed
at the adiabatic flame temperature, and assume

an

TJTy < 1
s"];lz ~ (1 + g) Pe? (78)
where
Pe = % = SiA 79)

is the flame Peclet number. Separately, when based on
the characteristic length / = «/S?, the Planck number
given by equation (57) yields (in terms of temperatures
T,and T,)

Ebb ~-Elsu

o= T = TIISY)

(80)

which, after some arrangement, becomes the flame
Boltzmann number

B = E,—E,, Emission @1)
* " pc,S3T,—T,) Flame enthalpy flow’
Thus, in view of the relation
P,

ey )

equations (60), (79) and (81) lead to
1 . T B,
ML~ g+ (2)(1 +312>Fé‘ ®3)

The linearized B, is independent of the flame tem-
perature, or, with the approximation
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E,—E, Ey—E,
T,-T, Ti-T.,

B, itself becomes independent of this temperature.
Thus

H.\' =f(’76wa 7, Bbs Pe) (84)

where
Pe=f(A) and A =f(T})

and I, depends on the flame temperature only
through the Peclet number (dimensionless quench dis-
tance).

The U-shaped nature of A = f(T,) is well docu-
mented in the literature (see Ferguson and Keck [23,
24} for the case of excluding radiation and Arpaci and
Tabaczynski {14, 15] for the case with radiation ; also,
see Kooker [25] and Sohrab and Law [26] for the
importance of radiation on the quenching process,
and Lee and Tien [27] for the effect of condensed fuels
on this process). References [14, 15, 23, 24] follow
the usual practice and evaluate the minimum quench
distance from the tangency condition

o

57, (P =0.

(85)
Actually, an extremum of the entropy production

2 (BN VB | 9 ey =0
P T\5 N3 ) per a7, (PO =

(86)

on,

provides the physical justification for this condition
(note that the terms in brackets are positive).

8. CONCLUSIONS

The concept of lost heat is originated as opposed
to that of lost work. It is shown that all forms of
energy are dissipated into heat and describe the non-
thermal part of entropy production while the heat
energy is dissipated into entropy and describes the
thermal part of this production. A dimensionless
number for entropy production is introduced. This
number is evaluated in terms of two illustrative cases.
The first case involves the entropy production on the
wall of a thermal boundary layer. This production is
found to be proportional to the square of the Nusselt
number., Unless it is tied to a variational problem
which selects the physically meaningful solution
among all mathematically possible solutions, the
entropy production provides no new information for
this case. The second case involves the entropy pro-
duction in the luminous zone of a quenched flame.
The production is found to be inversely proportional
to the Peclet number. The tangency condition, usually
considered in the literature to determine the minimum
quench distance, is related to an extremum in entropy
production.

V. S. ARPACI

Although the entropy production in radialing gases
continues to remain untreated, it is worth mentioning
the considerable size of the literature on entropy pro-
duction in enclosure radiation (non-participating
media) and its solar application. For early works,
refer to Spanner [28] and Petela [29]. For the latest
studies, see Gribik and Osterle [30] and the references
cited therein.

REFERENCES

I. V. S. Arpaci, Hookean and Stokesean implications of
radiative stress, ASME, HTD Vol. 40, pp. 1--5 (1984).

2. A. Bejan, Entropy Generation through Heat and Fluid
Flow. Wiley, New York (1982).

3. A. Bejan, Second law analysis in heat transfer and ther-
mal design, Adv. Heat Transfer 15, 1 -58 (1982).

4. V. S. Arpaci, Radiative entropy production. 4SME.
HTD Vol. 49, pp. 59-63 (1985).

5. V.S. Arpaci, Radiative entropy production. A744 .J. 24,
1859--1860 (1986).

6. V. S. Arpaci and A. Selamet, Radiative entropy pro-
duction, Proc. 8th Int. Heat Transfer Conf., Vol. 2, pp.
729-734 (1986).

7. C. L. Tien and S. C. Lee, Flame radiation, Prog. Energy
Combust. Sci. 8, 41-59 (1982).

8. S. C. Traugott, Radiative heat-flux potential for a non-
grey gas, AIAA J. 4, 541-542 (1966).

9. A. C. Cogley, W. G. Vincenti and S. E. Gilles, Differ-
ential approximation for radiative transfer in a nongrey
gas near equilibrium, 4744 J. 6, 551-553 (1968).

10. H. A. Lord and V. S. Arpaci, Effect of nongray thermai
radiation on laminar forced convection over a heated
horizontal plate, Int. J. Heat Mass Transfer 13, 1737
1750 (1970).

11. V. S. Arpaci and D. Géziim, Thermal stability of radi-
ating fluids : the Benard problem, Physics Fluids 16, 581
588 (1973).

12. V. S. Arpaci and Y. Bayazitoglu, Thermal stability of
radiating fluids : asymmetric slot problem. Physics Fluids
16, 589-593 (1973).

13. W. G. Phillips and V. S. Arpaci, Monatomic plasma
thermal radiation interaction: a weakly-ionized Kinctic
model, J. Plasma Phys. 13, 523--537 (1975).

14. V. S. Arpaci and R. J. Tabaczynski, Radiation-affected
laminar flame propagation, Combust. Flame 46, 315.-322
(1982).

15. V. S. Arpaci and R. J. Tabaczynski, Radiation-aftected
laminar flame quenching, Combust. Flame 57, 169178
(1984).

16. W. Unno and E. A. Spiegel, The Eddington approxi-
mation in the radiative heat equation, Publ. Astr. Soc.
Japan 18, 85-95 (1966).

17. E. A. Milne, Thermodynamics of stars. In Handbuch der
Astrophysik, Vol. 3, Chap. 2, pp. 65-255. Springer, Berlin
(1930).

18. V.S. Arpaci and P. S. Larsen, Convection Heat Transfer.
pp. 40-46. Prentice-Hall, Englewood Cliffs, New Jersey
(1984).

19. J. A. Stratton, Electromagnetic Theory. McGraw-Hill,
New York (1941).

20. W. Prager, Introduction to Mechanics of Continua. Ginn,
Boston, Massachusetts (1961).

21. V.S. Arpaci, Effect of thermal radiation on the laminar
free convection from a heated vertical plate, Int. J. Heat
Mass Transfer 11, 871--881 (1968).

22. V. S. Arpaci and P. S. Larsen, A thick gas model near
boundaries, ATAA J. 7, 602-606 (1969).

23. C. R. Ferguson and J. C. Keck, On laminar {lame
quenching and its application to spark ignition engines.
Combust. Flame 28, 197-205 (1977).



Radiative entropy production—Ilost heat into entropy 2123

24. C. R. Ferguson and J. C. Keck, Stand-off distances on
a flat flame burner, Combust. Flame 34, 85-98 (1979).

radiation and conduction in combustion of condensed
fuels, Combust. Sci. Technol. 43, 167-182 (1985).

25. D. E. Kooker, Numerical study of a confined premixed  28. D. C. Spanner, Introduction to Thermodynamics. Aca-
laminar flame: oscillatory propagation and wall demic Press, London (1964).
quenching, Combust. Flame 49, 141-149 (1983). 29. R. Petela, Exergy of heat radiation, J. Heat Transfer 86,
26. S. H. Sohrab and C. K. Law, Extinction of premixed 187-192 (1964).
flames by stretch and radiative loss, Int. J. Heat Mass  30. J. A. Gribik and I. F. Osterle, The Second Law efficiency

Transfer 27, 291300 (1984).
27. K. Y. Lee and C. L. Tien, Flame wall-quenching by

of solar energy conversion, Solar Energy 106, 16-21
(1984).

PRODUCTION D’ENTROPIE PAR RAYONNEMENT—PERTE DE CHALEUR
ET ENTROPIE

Résumé—Le flux thermique 6Q du premier principe de la thermodynamique est exprimé en fonction du
flux d’entropie (Q/T):

0Q = §T(Q/T)] = THQ/T) +(Q/T) dT

ou T&(Q]T) est 'équivalent énergétique du flux d’entropie et (Q/7) dT introduit le concept de production
d’entropie par flux de chaleur. Ici Q = Q¥+ @R, ou K et R indiquent respectivement conduction et
rayonnement. En terme de chaleur perdue, les productions d’entropie adimensionnelles sur la paroi d’une
couche limite thermique et dans une flamme laminaire sont respectivement

O~ (1+¢}gNul et T~ (1+4%g")Pe™?

ot g* et ¢* sont les flux monodimensionnels associés & Q8 et QF, Nu, est un nombre de Nusselt local et

Pe est un nombre de Peclet basé sur la vitesse de flamme laminaire 4 la température adiabatique. La

condition de tangente 0Pe/0T, = 0, habituellement utilisée sans justification physique dans evaluation de
la distance est montrée correspondre 4 un extrénmum de production d'entropie.

ENTROPIEERZEUGUNG BEI STRAHLUNG AUS “VERLORENER WARME”

Zusammenfassung—Der Wirmestrom 4Q aus dem 1. Hauptsatz der Thermodynamik wird mit Hilfe des
Entropiestromes 6(Q/T) ausgedriickt:

6Q = 8T(Q/T)] = THQ/T)+(Q/T) dT

wobei T3{Q/T) das Energicdquivalent zum Entropiestrom darstellt und (Q/T) dT die Konzeption der
“Entropieerzeugung aus verlorener Wirme” einfiihrt. Es gilt 0 = @+ QF, wobei die Indizes K und R
fir Leitung bzw. Strahlung stehen. Mit den Bezeichnungen der “verlorenen Wirme” lassen sich die
Entropieproduktion an der Wand unter einer thermischen Grenzschicht und in einer verloschten laminaren
Flamme folgendermaBen schreiben:

I~ (1+¢3/gONul und T~ (1-+4%/g¥)Pe?

¢* und ¢~ sind die flichenbezogenen Werte von QR und Q¥, Nu, die drtliche Nusselt-Zahl, Pe cine Peclet-

Zahl, gebildet mit der laminaren Flammengeschwindigkeit bei der adiabaten Flammentemperatur. Die

Tangentenbedingung, 8Pe/0T, = 0, iiblicherweise zur Berechnung von minimaler Kiihidistanz ohne jede
physikalische Rechtfertigung benutzt, erweist sich als Extremum bei der Entropicerzeugung.

NMPOU3IBOACTBO DHTPOINTUYM M3NTYUEHHUA—TEIUVIONOTEPU KAK IMPUPOCT
SHTPOITHU

Ausorauss—B COOTBETCTBHE C NEPBHIM 3AKOHOM TEPMOMMHAMMKH TEIUIOBOH MOTOK 60 MOXET GbITh
BBIP2XEH 4epe3 noTok duTponuu Q/T)

3Q = 5[T(Q/T)] = THQ/T) +(Q/T) 4T

rae TH(Q/T) obo3navaer 3HEPrHIO, IKBUBANEHTHYIO HOTOKY IHTPONHH, a (Q/T) dT BBORMT mousTHE
TEIIONOTEPH Kak IPHPOCT SHTpomky. 3ueck Q = Q% + QF, rae nepxane unnexcst K 1 R cooTpeTCTBEHHO
0603Ha%at0T TEMICNPOBOAHOCT B HTydenue. [lokasano, YTO NOMB3YHCH MOHITHEM Tenjonorepy, Gea-
pasMepHuIil NIPHPOCT SHTPONMH Ha BHEHIHeH TPAHMUC TEMNOBOrO NMOTPAHHYHOTO CJOA M B TACHyWIEM
JAMHHAPHOM NJIAMEHH MOXET GBITH IPEACTABIICH KaK

O~ (1 +q5/gONul 1 T, ~ (1 + g*/g")Pe?

rae g* u g*~—onnomepHsie noTokH, camsanusie ¢ QR u QX; Nu —nokansnoe wncno Hyccensta, a Pe—

sacio Tlexnie A4 CKOPOCTH NAaMHHADHOTO INaMeHH NDH aauabaTHYecKol TeMmepaType NiIaMeHw.

ToxasaHo TakKXe, YTO ycAoGue IKCIMPeMyMa 8Pe/0T, = 0, oGHIMHO HCHONL3YeMOE TPH ONpEHENCHHH

PAcCTOsHUSA, Ha KOTOPOM NPOUCXOMMT TAIUEHHE IIaMenH, 6e3 Kakoro-mubo pusnueckoro oGoCHOBaHES
COOTBETCTBYET IKCIMPEMANLHOMY IHAUSHUIO NPUPOCII INMPONUL.
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