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ABSTRACT 

Boyd, J.P. and Christidis, Z.D., 1987. The algebraic decay of equatorial Rossby waves in a 
shear flow. Dyn. Atmos. Oceans, 11: 139-151. 

Through numerical integration, we show that equatorial Rossby waves, like their midlati- 
tude counterparts, decay algebraically in the limit t --, co in a linear shear flow. For small 
times, the growth expected for some components does not translate into any growth of the 
wave disturbance as a whole when the initial condition has a broad Fourier spectrum. The 
conclusion is that’ Rossby waves will amplify with time only when the mean flow has an 
inflection point or when the initial eddy field is strongly concentrated in long waves tilted 
against the shear. 

1. INTRODUCTION 

Midlatitude Rossby waves in a linear shear flow decay algebraically with 
time, perhaps after a temporary episode of growth. Orr’s (1907) analytic 
solution was independently generalized to the midlatitude beta-plane by 
Yamagata (1976), Tung (1983), and Boyd (1983). In this work, we solve the 
same problem on the equatorial beta-plane. 

In the next section, we briefly review Rossby waves in a shear flow in the 
middle latitudes. We will later show that many conclusions of the papers 
mentioned above extend to the tropics. In the following three sections, we 
discuss our basic equations and the two independent numerical methods we 
used to solve them. Section 6 analyzes the lack of lateral spreading and the 
absence of growth in the equatorial solutions. The last part of the paper is a 
brief summary. 
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2. R E V I E W  O F  R E S U L T S  ON T H E  M I D L A T I T U D E  B E T A - P L A N E  

The main conclusions of Yamagata (1976), Tung (1983), Farrell (1982), 
and Boyd (1983) are the following: 

(1) the Rossby wave spectrum in a linear shear is continuous, not discrete. 
(2) The wave energy decays algebraically with time as 1 / t  2 as t ---, 0o. 
(3) Lines of constant phase rotate clockwise as viewed from above (for 

shear S > 0). 
(4) Latitudinal scale tends to 0 as t ~ ~ .  
(5) Little latitudinal spreading of the initial disturbance. 
(6) A latitudinally-concentrated wavepacket will move north while grow- 

ing and south while decaying (when S > 0); the southward motion will 
eventually cease, leaving the packet 'stalled out' at a particular latitude. 

(7) A sinusoidal wave tilted against the shear (phase lines running north- 
west-southeast for S > 0) will amplify for a finite time before entering the 
asymptotic decay stage. 

The second and seventh conclusions are not true for equatorial waves, at 
least not without important qualifiers. Before trying to explain these 
surprises, we will first describe our models. 

3. T H E  PROBLEM:  L I N E A R  S H E A R  O N  T H E  E Q U A T O R I A L  B E T A - P L A N E  

The physical model  is identical to the model of Boyd and Christidis (1982, 
1983): the wave equations linearized about a mean flow U(y) which is a 
function only of latitude, which allows the separation-of-variables. If we 
nondimensionalize in such a way that the nondimensional Lamb's parameter 
is set equal to 1--usual  in oceanography, uncommon in meteorology-- the  
equations we must solve are the linearized shallow water wave equations 

u , + i k  U(y) u - [ y - d U / d y l v + i k  q~=O (3.1) 

v, + i k V(y)  v+ yu+q~y=O (3.2) 

q,, + i k U(y) ~ + i k u+ oy=O (3.3) 

where k is the zonal wavenumber. Note that we always assume a particular 
zonal wavenumber and a given vertical wavelength (the latter is buried in the 
nondimensionalization) so that u, v, and q~ in (3.1)-(3.3) are functions only 
of latitude. 

We have already discussed the discrete unstable modes of (3.1)-(3.3) in 
our earlier work. When U(y) has an inflection point, that is, 1 - Uyy changes 
sign *, the interesting Rossby waves are the barotropically unstable modes, 

* Note  that  fl = 1 in our nondimensional iza t ion.  
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which are discrete. To explore the continuous spectrum of Rossby waves, 
and the transient growth phase, we shall therefore confine our attention to 
barotropically stable mean currents. 

All the graphs we shall show here are for the special case of a linear shear 

U ( y ) = S y  (3.4) 

where the shear parameter S is a constant. Besides being simple and 
representative of barotropically stable flows, this will permit comparison 
with analytic solutions for this same current on the midlatitude beta-plane. 

Unfortunately, we have not been able to analytically solve (3.1)-(3.3) 
even for the particular flow (3.4), so we applied two different numerical 
methods. The next two sections describe each in turn. 

4. NUMERICAL CALCULATIONS: EIGENVALUE ANALYSIS 

One theoretical observation greatly reduces the amount of computation: 
equatorial Rossby waves can be increasingly well-modeled by the usual 
midlatitude beta-plane approximation as the mode number n goes to 
infinity. One justification is WKB/method-of-multiple-scales reasoning. As 
n ~ oo, the scale on which the mode is oscillating becomes smaller and 
smaller. Therefore, the change in the Coriolis parameter between neighbor- 
ing peaks of the mode becomes smaller and smaller. This in turn implies that 
the approximation of taking f to be locally constant except where differenti- 
a t e d - t h e  midlatitude beta-plane--becomes more and more accurate. 
Another argument is more pragmatic: Rossby modes always span the 
equator, so the midlatitude beta-pane would be a useless approximation 
unless it was accurate for at least the high order equatorial modes. A more 
detailed justification of this limiting behavior is given in Boyd (1988). 

It follows that it is the low order equatorial Rossby waves which differ 
most from their midlatitude counterparts. Consequently, it is sufficient to 
give numerical results only for the lowest symmetric and lowest antisymmet- 
ric modes. 

Our first set of computations used the same eigensolver as our previous 
articles, Boyd and Christidis (1982, 1983). We calculated unstable Kelvin 
waves by deforming the path of integration into the complex y-plane to 
detour around the 'critical latitude' singularity, where the phase speed c is 
equal to the mean current U(y). To obtain the needed first guess for the 
iteration, we began with the known solutions for no shear--simple Kelvin 
and Rossby modes as described in Holton (1975)--and then increased the 
strength of the shear S in small steps. We then extrapolated a first guess for 
each new value of S by using the previously computed c(S) for smaller 
shear. 
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Fig. 1. A schematic of the complex y-plane with the path of numerical integration looping 
below the real axis. (Complex latitudes have no physical meaning, but this detour around the 
critical latitude singularity makes it possible to track the modes right down to zero mean 
shear.) The branch cuts from the critical latitude to infinity are also shown for an unstable 
Kelvin mode and a Rossby mode. Note that the branch cut for the Rossby wave is forced to 
cut the real axis, implying that the computed solution has a jump discontinuity at that point 
--and is therefore unphysical. From Boyd and Christidis (1983). 

Figure 1 shows what happens when we calculate Rossby and Kelvin 
waves in linear shear. As the shear increases, the eigenvalue of the Kelvin 
wave develops a positive imaginary part. This implies that the mode is 
unstable, but it also legitimizes the choice of complex contour. The critical 
latitude moves into the upper half of the complex y-plane so that we can 
draw the branch cut from the critical latitude singularity to infinity without 
crossing either (a) the real y-axis or (b) the contour of integration. 

For the Rossby modes, it is a different story. As shown in Fig. 2 of Boyd 
(1983), Ira(c) for a Rossby mode is negative, shifting the branch point into 
the lower half-plane. Since the path of integration is also deformed into the 
lower half-plane, the code implicitly calculates a solution of the differential 
equations which has the branch cut crossing the real y-axis. This follows 
because the program will necessarily compute a solution which is single-val- 
ued on the contour of integration, regardless of whether or not this is the 
physical solution. If the branch cut does not cross the contour of integration, 
then Fig. 1 shows that somewhere, it must cut the real axis instead. 

Thus, the eigenvalue calculation gives evidence of a negative kind: dis- 
crete Rossby modes do not exist in a linear shear flow. This implies that 
equatorial Rossby modes form a continuous spect rum-- jus t  as one can 
analytically show for their midlatitude counterparts. Instead of an infinite 
sum over the latitudinal mode number n, the Rossby wave component  of a 
general initial-value problem must be expressed as an integral over a 
continuous phase speed c. 

5. NUMERICAL CALCULATIONS: INITIAL VALUE ANALYSIS 

Since we numerically showed (to no one's surprise!) that a discrete 
spectrum of Rossby waves does not exist, our second numerical approach 
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was to solve the linearized shallow water wave equations as an initial value 
problem using a fully implicit time-stepping method with fourth order 
accuracy in y. As in the eigenvalue calculation, we assumed the x-depen- 
dence was sinusoidal with some particular wavenumber k. 

Initialization is important since the generality of our results depends on 
the generality of our initial conditions. Since the problem is linear, its 
general solution is the superposition of the particular solutions obtained by 
setting the initial condition equal to a given member of a set of complete, 
orthogonal basis functions. Consequently, letting u denote the vector with 
components (u, v, q,), the general solution to the initial value problem (for a 
given wavenumber k) is 

3 oo 

ugc~er~a = E • am,etmr(X, Y, t; k) (5.1) 
r = l  m = 0  

where the { amr) are arbitrary constants and where the initial conditions for 
the a-functions are 

amr(X, y, / = 0 ;  k ) =  cos(kx) exp ( -0 .5  y2) × ( 81r(nm ' O, 0) T 

+ 2r(0, 0) 7 +  3r(0, 0, T (5.2) 

where 6~j is the usual Kronecker delta, superscript-T denotes the matrix 
transpose, and Hm(y) is the m-th Hermite polynomial. 

However, solving the linearized wave equations for all possible a,,r is very 
wasteful. First, as explained in the previous section, solutions with small 
latitudinal scale and broad latitudinal extent will closely mimic the corre- 
sponding solutions on the midlatitude beta-plane. Consequently, we should 
concentrate our attention on small m, i.e. the low order Hermite functions. 

Second, initial conditions such as (5.2) will excite a mixture of the m-th 
Rossby wave, eastward-travelling gravity wave, and westward-travelling 
gravity wave. This is rather silly because our previous work (Boyd and 
Christidis, 1982, 1983) has already studied the behavior of the discrete 
gravity, mixed Rossby-gravity, and Kelvin waves under shear. Furthermore, 
these modes are unstable (if the shear is strong enough), so their exponential 
growth with time will ultimately swamp the algebraic growth or decay of the 
Rossby waves. What we really want is the most general initial condition that 
is orthogonal to the gravity and Kelvin modes. 

The way to realize this is to use vector Hough-harmonics (Kasahara, 
1976) as the basis, and study what happens when the initial condition is one 
of the low order Rossby Hough functions. As noted in the previous section, 
there are no discrete Rossby modes in the presence of shear because the 
Rossby modes form a continuous spectrum (true in spherical geometry as 
well as the equatorial beta-plane). Nonetheless, the vectors whose compo- 
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nents are the zonal velocity, latitudinal current, and height field for mean- 
shear-free equatorial Rossby modes are still members of an orthogonal basis 
that is complete for all flows on the equatorial beta-plane, linear and 
nonlinear, stable and unstable. More important, since the high frequency 
gravity and Kelvin modes are little affected by shears of t he  strengths used 
here, the Rossby Hough-harmonics will still be orthogonal (strictly speaking, 
almost orthogonal) to the Kelvin and gravity modes even in the presence of 
the mean flow. 

Consequently, it is sufficient to study just two cases: the results of 
initializing with the lowest Rossby Hough-harmonic of each symmetry class, 
m = 1 (symmetric about the equator) and m -- 2 (antisymmetric about the 
equator). For the sake of caution, we made integrations using initial condi- 
tions proportional to higher order Rossby Hough-harmonics, too, but the 
results were similar to those for m = 1, 2, and therefore only these two 
solutions will be discussed. 

The strength of the shear, S, and the zonal wavenumber, k, remain as 
parameters. However, the analysis for the midlatitude beta-plane, given in 
the next section, suggests that growth is largest for small k. Although we 
performed numerical calculations for various k, we show only results for the 
small but otherwise arbitrary case of k = 0.1 since this is quite representa- 
tive. The strength of the shear seems to determine only the time scale of the 
tilt of the phase lines, not the pattern, so we offer graphs only for a single 
value of S. 

Figure 2 is a log-log plot of the energy as a function of time for two runs 
that were initialized using the lowest two Rossby Hough-harmonics; the 
mean current is (2.1) with S = 0.3. The analytical midlatitude theory pre- 
dicts that the energy will decay as 1 / t  2 as t ~ o¢. The graph shows that the 
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Fig. 2. A log-log plot of kinetic energy versus time for runs initialized ~th the (unsheared) 
n = 1 and  n = 2 Rossby modes  for zonal  wavenumber  k = 0.1. The  m e a n  flow U(y) = 0.3 y. 
The  dot ted  lines have a slope of 1/t; the dashed lines decrease as 1/t  2. F o r  the ra ther  large 
range of t imes shown, the decay of the equator ial  waves is in te rmedia te  be tween  these two 
slopes for bo th  modes. 
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Fig. 3. Isobaric contours, plotted as functions of x and y, for three different times: t -- 0, 30, 
and 90. The initial condition was the analytic solution for an n = 1 Rossby wave for zero 
shear. The zonal wavenumber k = 0.1, and the mean current is U(y) = S y where S = 0.3. 
Note that for the sake of visual clarity, the x-scale is compressed; if both coordinates were 
plotted on the same scale, the rectangle would be greatly elongated in the x-direction. For the 
same reason, the contour interval was resealed with time; the wave amplitude at t = 90 is only 
a fraction ( ~ 40%) of its incident value. 

rate of decay for equatorial waves is intermediate in slope between 1 / t  and 
1 / t  2 for fairly large times. It is possible that the slope does asymptote to 
1 / t  2 for very, very large t, but  the wave develops finer and finer length 
scales as t becomes large, so it is difficult to follow the calculation beyond 
t = 500 without using thousands of grid points. It is also physically pointless 
since viscous dissipation will surely become important  for such large times * 

It is quite clear, however, that the energy does decay algebraically as 
t ---, oo. The surprise--interesting but not profoundly impor tan t - - i s  that  the 
midlati tude prediction of a 1 / t  2 rate of decrease is misleading. 

Figure 3 illustrates the time evolution of the pressure. The graph is 
strikingly similar to the analogous midlati tude plots given in Boyd (1983). 
The linear shear tilts the contours of pressure so that  the lati tudinal scale 
steadily becomes smaller and smaller. 

The wave disturbance drifts southward during the early part  of decay and 
then stalls ou t - -exac t ly  as predicted by the midlati tude analytic theory of 
Yamagata  (1976), who calculated a final latitudinal shift of - f l / [ S ( k 2 +  

* Haynes (1985) argues that the flow will become unstable for large times as well. 
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m2)] where fl is the y-derivative of the Coriolis parameter and m is the 
latitudinal wavenumber. Our initial condition does not generate a simple 
wavepacket, but the solution can be represented as the superposition of 
many wavepackets, so the southward drift is hardly surprising. 

The one difference from previous midlatitude results which is surprising 
is the absence of a temporary growth phase. Boyd (1983) has argued that for 
a midlatitude disturbance, the wave will amplify at the expense of the mean 
flow for a finite time, perhaps growing by many orders of magnitude if the 
zonal scale is very large in comparison to the latitudinal scale, before 
succumbing to the inevitable asymptotic decay. Strictly speaking, this argu- 
ment only applies to plane waves with an initial tilt against the shear (that 
is, with lines of constant phase running NW SE if dU/dy  > 0), but Boyd 
(1983, fig. 2) shows that if we superimpose two such components, one tilted 
against the shear and one tilted with the shear so that their sum is 
proportional to cos(my), the tilted-against wave will still amplify, and may 
dominate the large time disturbance since the other component  is decaying. 

There is no sign of this growth in our results, even when we take k very 
small. (Note that both the length of the period of growth, m/(kS) ,  and the 
ratio of maximum to initial energy for the tilted-against-the-shear compo- 
nent, (m E + kE)/k 2, can be arbitrarily large if the initial latitudinal scale is 
sufficiently small in comparison to the zonal wavelength.) In the next 
section, we examine this surprise using the analytic solution which is 
available for midlatitude Rossby waves to find that they, too, exhibit this 
same behavior. 

6. BROAD WAVEPACKETS OF MIDLATITUDE ROSSBY WAVES: GROWTH AND 
SPREADING 

Our model is the barotropic vorticity equation on the midlatitude beta- 
plane, linearized about a zonal current U(y) which is a function of latitude 
only 

~Pxxt + ~pyyt + U(y)[~bxxx + +yyx] + [ f l -  Uyy] ~p:, = 0 (6.1) 

Since our goal is to make comparisons with equatorial waves, we will use the 
initial condition 

Lp(x, y , t = O )  = eikx e-(1/2)y2Hn(y ) (6.2) 

and restrict attention to the linear profile 

U(y) = S y  (6.3) 
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The Yamagata-Tung-Boyd solution is most easily expressed using the 

(6.4) 

(6.5) 

parameters 

r = - k S t  

B - f l / ( k  S )  

and the function 

-= tan-a[(  + m ) / k ]  - t a n - l ( m / k  ) 

then 

o O  

~b(x, y, t) -- (2~r) -a/2 ea'X-'Y'f dm 
" - - o 0  

(6.6) 

i n e-(a/2)m2Hn(m ) e- imy+iB'~(k  2 + m 2) 

k2 + (rn +,r )  2 

The Fourier spectrum of the initial condition is simply 

A(m)-- i"  e-O/2)m2H,(m) [t=0] 

(6.7) 

(6.8) 
since the Hermite functions are (to within the factor of i) their own 
transform. This implies that the wave is not a single latitudinal wavenumber 
as in Boyd (1983), but is rather a wave packet. Furthermore, it is not a 
spectrum which has a tall, narrow peak about some particular wavenumber 
m = m 0, as is required to rigorously justify the wave-tracing arguments of 
Yarnagata (1976), but is rather a disturbance with a broad latitudinal 
Fourier spectrum. 

As the wave evolves in response to the shear flow, the initial Fourier 
spectrum is modified by two factors. First, the exp[iB~] represents the usual 
westward phase propagation of Rossby waves. As noted in the previous 
section, the beta-effect causes the whole wave disturbance to shift southward 
(for S > 0) as predicted by Yamagata (1976). Figure 4, which shows the 
amplitude at • = 20 for three different values of B, illustrates this for 
midlatitude Rossby waves quite clearly. In spite of the fact that the Fourier 
spectrum is broad instead of narrow, the prediction of Yamagata's midlati- 
tude theory is qualitatively correct. It is not the phase behavior of the 
equatorial waves which is puzzling; it is their amplitude that is the surprise. 

This in turn is controlled by the factor 

A - (k 2 + m2)/[k 2 + (m + ~.)2] (6.9) 

In the limit • ~ oo for fixed m and k, the phase factor • is independent of 
and A -  ( k 2 +  m2)/~ -2. The 1/~ 2 dependence can be removed from the 

integral to show that the streamfunction decays algebraically with time for 
large t, and the rate of asymptotic decay is independent of the initial 
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Fig. 4. The absolute  value of the ampl i tude  of midlatitude Rossby waves in a l inear shear  flow 
for • = 20 and  three values of the be ta -paramete r  B. The  solid curve is B = 0, the dashes  are 
B = 1, and  the dots  trace B = 3. The  initial  condi t ion  for all three cases was tha t  Lk was such 
that  V 2 q~ = exp( ikx  -(1/2)  y 2), i.e. the initial vorticity was a Gauss ian  in lati tude. The  peak 
of the wave packet  stops at a lat i tude far ther  and  far ther  to the south  (dU/dy > 0) as the 
beta-effect increases. 

condition. As we have already seen, this midlati tude behavior is mimicked 
by equatorial Rossby waves, and needs no further discussion. 

The heart of the mystery lies in the behavior for small time. When k is 
small, A grows to a maximum of 

A = (k  2 + m Z ) / k  2 (6.10) 

= mZ/k  2 

which is reached at z = m[.  This implies that the contr/bution of a given 
wavenumber m will increase to a maximum of m 2 /k  2 a very large factor if 
k is small before finally succumbing to the 1/ 'r  2 decay for "r > I m  l- This 
is the transient growth phase discussed in Boyd (1983), but  as noted above, 
there is no sign of such growth in the equatorial solutions. 

The rub with the reasoning of Boyd (1983) is that it applies only to a 
single latitudinal wavenumber. Here, however, we have a broad spectrum in 
latitude, and each wavenumber will undergo its own independent  cycle of 
growth and decay. They key question is not what is happening to a 
particular wavenumber, but rather: what is happening to the integrated 
spectrum of waves? 

The answer comes from the observation that as k ~ 0, the growth factor 
A has a very tall, narrow peak centered on m = - ' r ,  and A tends to a 
representation of the Dirac delta function, i.e. 

(6.11) 
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This gives the approximation 

#(x, Y, t) = (27r)-1’2ai” eikx eislr/‘Hn( -7)(7*/k) e-(“2)72 

which is valid for 

(6.12) 

k < T and k2 -=sz 72 exp[ - (1/2)T2] (6.13) 

Y - o(1) (6.14) 

What is striking about (6.12) is that far from predicting a transient growth 
phase for small k, it shows that the streamfunction will actually decay 
exponentially with time. The reason is that for m outside the turning points 
of the Hermite function, the initial amplitude of the growing wavenumbers 
is exponentially small. Multiplying an exponentially small amplitude by an 
algebraically large growth factor gives a tiny result. It is striking that the 
streamfunction decays rapidly during this stage of moderate time while some 
components of its spectrum are still growing. 

The Hermite function-of-time approximation cannot be uniform in time 
because for finite k, the peak of A has a finite width and magnitude. 
Eventually, multiplication by ( m2/k2) is no longer large enough to com- 
pensate for the smallness of exp[ - (1/2)m2] H,(m). For large times, the 
wave spectrum is dominated by small and moderate m, which decay steadily 
as l/r’. 

Overall, the situation is summarized schematically by Fig. 5. The growth 

Latitudinal Wovenumber m 

Fig. 5. The latitudinal wavenumber spectrum, A(m) h(m, T), for a midlatitude Rossby wave 
at three different times: 7 = 0 (dashed), T -1 (dotted), and r = 2 (solid curve) for a typical 
brwd initial spectrum. Although part of the spectrum does amplify, the integral A over m 
decreases monotonically with time, falling from 2.51 to 2.37 to 1.70 for the case shown. 
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of large m components is more than compensated for by the decay of small 
rn components so that the energy usually decays even for small times. 

Similar conclusions were independently obtained by Shepherd (1985). 
Although his arguments differ in detail from ours, the physical reasoning is 
very similar. 

Although we have not performed such experiments because of the limita- 
tions of our numerical model, there is little doubt that if we superimposed 
many Rossby modes to create an initial condition orthogonal to the gravity 
and Kelvin modes, but with a latitudinal Fourier spectrum peaked about 
some large negative wavenumber, we would observe growth. The point of 
our work (and Shepherd's) is that unless some forcing mechanism has 
'stacked the deck' by creating an initial condition with strong anisotropy, i.e. 
a few components of large latitudinal wavenumber, then the wave dis- 
turbance as  a w h o l e  will not amplify even though the high latitudinal 
wavenumber portions, tilted against the shear, may increase by orders of 
magnitude. 

7. SUMMARY 

We have shown through numerical integration that, unless the mean flow 
is barotropically unStable, equatorial Rossby waves decay algebraically with 
time in a shear flow, just like their midlatitude counterparts. Initial condi- 
tions in the form of Hermite functions, which describe the usual Rossby 
modes on a resting mean state, have a broad spectrum in latitudinal 
wavenumber. Because some wavenumbers m are decaying while others are 
growing, our numerical solutions show no signs of the transient growth 
phase discussed in Boyd (1983). We have explained why this is true of both 
midlatitude and equatorial Rossby waves. In either case, the energy of the 
wave disturbance will grow a noticeable amount only when the initial 
condition has a Fourier spectrum in latitudinal wavenumber m which is 
sharply peaked about some wavenumber m = m 0 such that m 0 >> k where k 
is the zonal wavenumber of the disturbance, and where the sign of m 0 is 
such that the waves are tilted against the mean flow. 

Our earlier work has shown that Kelvin and equatorial gravity waves 
display exotic and complicated behavior at low latitudes. It is refreshing to 
find that Rossby waves, at least, are not drastically altered by the shift to 
equatorial latitudes. 
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