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INTRODUCTION 

Heavy tubular columns are prone to global static instability 
under the combined action of their weight, tension or com- 
pression exerted at their upper end and internal and external 
static pressure forces due to fluids in gravity field. The 
initial postbuckling behavior of such column, after static 
instability occurs, affects the sensitivity of  the buckling 
loads to lateral load and initial deformation, the magnitude 
of the prebuckling deformation and the shape of  the 
equilibrium path of the laterally loaded column. The latter 
determines the relationship between slope at the column's 
lower end and applied top tension. 

Koiter 1 developed a theory for the initial postbuckling 
behavior of structures subject to conservative loading. 
According to this theory an analysis of the potential energy 
of the structure in the neighborhood of the bifurcation 
point under the assumption that the deformation has the 
form of the buckling mode shape can determine the initial 
slope and curvature of the secondary equilibrium path. 2 
On the basis of slope and curvature the effect of imperfec- 
tions can be judged. 

The buckling of heavy columns has received a lot of 
attention in the past. Greenhill 3 found the critical density 
or height of a uniformly weighted column. Willers 4 studied 
heavy columns with end load and attempted an asymptotic 
solution for infinitely long columns. Biezeno and Koch s 
studied the buckling of  a submerged tube with closed ends. 

6,7 Huang and Dareing considered the buckling of long verti- 
cal pipes subject to external hydrostatic pressure. Bernitsas 
and Kokkinis 8 Studied the elastic stability of marine risers, 
subject to internal and external fluid static pressure, and 
proved that heavy columns may buckle globally due to 
internal pressure while they are in tension over their entire 
length. 9 In addition they determined the stability boundaries 
for very long columns using asymptotic and quasiasymptotic 
techniques. 19 All the aforementioned papers deal with the 
derivation of stability boundaries and buckling loads. 

The analytical solution of the problem of the post- 
buckling behavior of a weightless column subject to end 
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load (elastica) in terms of elliptic functions is well estab- 
lished. 1° This same problem has been tackled using various 
approximate techniques by Sewell, u Croll, 12 Thompson and 
Hunt 13 and Berkey and Friedman. 14 Plaut Is considered the 
postbuckling of a cantilever subject to two independent 
compressive loads. Wang 1~ found postbuckling shapes for 
suspended heavy columns with end load using a shooting 
technique to integrate the nonlinear equation of  equili. 
brium. Kokklnis and Bernitsas 17 used a finite element tech- 
nique to determine the initial portion of the secondary 
equilibrium path of heavy columns and risers. The numerical 
results derived indicated the possibility of unstable post- 
buckling behavior. The present work was undertaken in 
order to verify these results using an analytical method and 
to derive conditions for the occurrence of  unstable behavior. 

The fluid static pressure forces acting on heavy columns 
are nonconservative, therefore Koiter's method of analyzing 
the potential energy is inapplicable in this case. An analogous 
technique is adopted starting from the nonlinear equation 
of equilibrium. Inequality conditions for unstable initial 
postbuckling behavior are developed between the various 
dimensionless parameters of the problem. These conditions 
can be used to determine whether the immediate post- 
buckling behavior of a column if stable or unstable. 

The present work was initiated as part of the study of 
the elastic stability of marine risers. The results derived are 
general enough to be applicable to many types of hydraulic 
columns. They are, however, primarily applicable to marine 
risers. A marine drilling riser is treated in a numerical 
example. It is shown that the the initial postbuckling 
behavior of the riser is unstable for relatively low values of 
the drilling mud density. As a result the riser will buckle at 
a top tension higher than the theoretically predicted if it 
has initial deformation and is loaded laterally as is usually 
the case in practice. This also results in greater prebuckling 
deformation and particularly at the bottom. 

MATHEMATICAL MODEL 

The model employed to study the initial postbuckling 
behavior of tubular columns consists of a nonlinear integro- 
differential equation governing the slope of the centerline 
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and two rotation conditions at the ends. It is based on the 
following assumptions: 

1. Shear deformations are small. Consequently, the column 
can be modelled as an Euler-Bernoulli beam. 

2. The column material is isotropic, homogeneous and 
linearly elastic. 

3. Torsional deformation and extension of the column are 
small and can be neglected. 

4. The column ends are open. 
5. Strains in the column are small, although slopes and 

deflections may be large. 
6. The deformation of the column is planar. 

The lower end of the column is assumed to be fixed for 
translation in any direction. The upper end is subject to a 
vertical tension/compression, while its horizontal transla- 
tion is resisted by a linear spring. 

The governing nonlinear integrodifferential equation 
derived in the Appendix is: 

L 

d ( E I d O ]  [ do+Tt,  a]sinO ~k --d/-L- Y we 
s 

-- Tt.y sin [0 -- 0 (L)] -- ktx(L)  cos 0 = 0 (1) 

where 0 is the slope of the column centerline, L is the 
length, E1 is the bending rigidity, w e is the effective weight 
per unit length, Tt, a is the applied tension at the top, k t is 
the linear spring stiffness at the top, 

r~,1=Ow(L)[hw--z(L)]--wm(L)[hm--Z(L)] (2) 

is the fictitious fluidic tension at the top and 

L L 

x(L)= f sinO ds and z (L)= I cosO ds (3) 

0 0 

are the horizontal and vertical displacements of the upper 
end. Furthermore bw is the weight of the displaced fluid 
and Wm the weight of the contained fluid per unit length. 
Also h w is the water depth and hm the free surface ordinate 
of the contained fluid. The rotation condition at either end 
can be either hinged 

d0 I 0 (4a) 
ds s=O,L 

or clamped 

0 [ = 0 (4b) 
I s = O , L  

For small slopes and deflections the governing equation 
can be linearised 

d Tta] 0 

L 

- (Tt, j,h [0 - 0 (L)] -- k, | 0 do = 0 (5) 

0 

where (Tt, f)l is the linearised expression for the fictitious 
fluidic tension at the top 

(Tt, f)t = bw(L )(hw -- L) -- Wm (L )(hm -- L) (6) 

In this linearised equation (5) we can substitute x, the 
co-ordinate along the undeformed axis of the column, for s, 
the co-ordinate along the deformed axis of the column, as 
the independent variable, because of the assumption of 
small slopes and deflections. This is not possible for the 
general equation (1) which is derived for large slopes and 
deflections. 

The linearised equation (5) together with boundary 
conditions (4a) and (4b) constitutes an eigenvalue problem, 
which in general is nonselfadjoint. An eigenvalue problem 
consisting of the linear homogeneous differential equation 
L ( 0 ) = 0  and associated linear homogeneous boundary 
conditions is self-adjoint, according to the def'mition given 
by Bolotin, TM if 

L 

I [L(0) 0 --L(0) 0] (is = 0 (7) 

o 

where 0 and 0 satisfy the boundary conditions. In the case 
of the heavy tubular column the expression in equation (7) 
is 

L 

I [ L ( 0 I ~ - L ( 0 ) 0 ]  ds =--(r , , r )1(0~--~x)[s--L (8) 
0 

This expression is in general nonzero and thus the riser 
eigenvalue problem is nonselfadjoint. A nonselfadjoint 
eigenvalue problem corresponds to a physical system with 
nonconservative forces. The nonconservative forces in the 
riser system are the fluid pressure forces, as demonstrated 
by equation (8). The expression in equation (8)becomes 
zero and therefore the eigenvalue problem becomes self- 
adjoint if the linearised expression for the fluidic tension at 
the top is zero. A sufficient condition for this is 

h m = h w = L (9) 

This assumption is adopted in this work because it is 
approximately valid for many riser installations. Although 
under this assumption the eigenvalue problem becomes self- 
adjoint, the nonconservative forces from fluid pressure are 
still present and manifest themselves in the nonlinear equa- 
tion (1). The linearised differential equation under assump- 
tion (9) becomes 

L L 

fw  o+ ,o]o  ,iOdo ° 
s 0 

(10) 

The solution of the eigenvalue problem consisting of 
(10) and boundary conditions (4a) and]or (4b)yields the 
critical top tension (Tt, a)c and the buckling mode shape 
oc(s). 

IMMEDIATE POSTBUCKLING ANALYSIS 

The analysis of the immediate postbuckling behavior of the 
column is carried out by solving the nonlinear equation (I) 
approximately using the assumption that in the neighbor- 
hood of the bifurcation point the deformation is of the 
form of the buckling mode, namely that 

O(s) = eOc(s ) (11) 

where e is small. 
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Let us introduce the following notation 

L 

I We do = We, o(S) (12) 

a 

Then applying (11) to the governing equation (1) we get 

d--[EI d(eOe) l - - [Tra  --We, o(S)] sin(eO¢) 
dsk d5 _! ' 

L 

L 

x sin {e[Oc--Oc(L)]} --kt  [ f sin(cOo)deices(cOo) 
0 

= E( s )  (13) 

A scalar equation for e is obtained by demanding that 
the global error he zero with weighting function Oc(S) 

L 

r E(s) at(s) ds = f (Tt,,, e) = 0 (14) 

0 

This is a Galerkin-type solution with one term in the 
Galerkin series. Equation (14) can be regarded as an implicit 
equation of the secondary equilibrium path, which is exact 
at the bifurcation point and approximate away from it. 

After introducing Taylor expansions of the sine and 
cosine functions and further manipulation, equation (14) 
becomes 

Ao -- e2A2 + 0 (e 4) 
Tt, a - (15) 

Be -- caB2 + 0 (e 4) 

where 

L 2 L L 2 

A o : - -  f El(dO---c'~ ds+  IWe, o O } d s - - k r ( f  Oeds) (16) 
j \ d s /  
0 0 0 

L 

1 I A2 = "~ We, oO4e ds + t [bw(L)--wm(L)l 

0 

L L 

,( I o: o) {I ,oo-o.,'.,, o, o } 
0 0 

L L 

o o 

L 

Be = I o~ d~ 

(17) 

( 1 8 )  

and 

L 

B= = e~ ds 

0 

(19) 

As e "+ 0, (15) becomes 

Ao 
llm Tt ,  a = -  

e - +  0 B 2 

= -- E l ~ - - ~ ) d s +  We, oO2eds 

o o 

L 2 L 

o 0 

This can be verified by multiplying equation (10) by 
O c and integrating over the domain. 

The column is stable if the applied tension is greater 
than the critical 

r,,, > (r,,.), (21) 

and becomes unstable if the applied tension is decreased 
below the critical. Bifurcation of the equilibrium path 
occurs at 

r,,. = (r,..)~ (22) 
After bifurcation the column follows the secondary 

equilibrium path, which near the bifurcation point has 
slope 

dTt, a -- 2e (A2Bo -- AoB2) + 0 (e 3) 
- -  - -  ( 2 3 )  
d e B2o + 0 (e 2) 

At the bifurcation point itself 

lim dTt'a = 0 (24) 
e-+o de 

as expected for a symmetric structure. Thus the stability of  
the column's initial postbuckling behavior is to be judged 
on the basis of the curvature of the secondary equilibrium 
path at the bifurcation point. This is 

d 2 Tt,_______~a _ - 2B2o (A2 Be -- AoB2) + 0 (e 2) (25) 

de: B~ + O(e 2) 

which in the limit becomes 

lim d2Tt'a AoB2--A2Bo 
= 2 (26) 

e~o  de 2 B~ 

If this expression is negative, the equilibrium path curves 
downward, that is nontrivial equilibrium configurations are 
possible only for applied tension less than critical. This 
indicates a stable postbuckling behavior. 

If on the other hand this expression is positive, the 
equilibrium path curves upward and nontrivial equilibrium 
configurations are possible for applied tension greater than 
critical. This indicates an unstable postbuclding behavior. 
If the initial postbuckling behavior is unstable the buckling 
of an initially deformed and/or laterally loaded column will 
not occur at the theoretically predicted critical top tension 
but at a higher tension. The value of this actual buckling 
tension is dependent on the imperfections and the lateral 
loads} This indicates that the buckling loads are sensitive to 
imperfections. Moreover, in this case prebuckling slopes 
and deflections are greater than in the case of stable 
behavior. Specifically, in the case of marine risers the slope 
at the lower ball joint will be affected. 
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The transition from stable to unstable postbuckling 
behavior occurs when the numerator on the right hand side 
of equation (26) changes from negative to positive. That is 
the transition occurs when 

AoB2 -- A2Bo = 0 (27) 

Using (16)-(19) in (27) we find that the condition for 
unstable initial postbuckling behavior can be transformed 
to equation (28) which is a condition on the weight of the 
contained fluid per unit length. 

L L 

w m ( L ) ~ b w ( ' L ) + l t [ [  \-~-S: d$](I@)~ 
o o 

L L 

o o 

L L 
- - (~We,  oO2cd$)(IO4cds ) 

0 o 

L L 

0 0 

L L L 

-- 4 ( ~  Oc ds) ( f  ®c2 ds) ( I Oe3 ds) ] } 

o o 0 

L L I,o.-o.,.,ooo} 
o o 

(28) 

Furthermore setting 

s =Lo ,  0 < a ~ <  1 (29) 

and multiplying (28) by the factor L3/Elo (where EIo is the 
bending rigidity at o = 0) we get a dimensionless counter- 
part for (28) 

1 I 

Om ) Otw 3 ( L d \E Io]  \ do ] 
o o 

1 1 Io ,o) 
o o 

1 1 

o o 

1 1 

o o 

1 1 1 

o o o 

1 1 

/ ( I O C  2 d s ) 2 { I  [ O c - - O c (  1)] Oe do}=tXw-Fq(~e) 
o o 

(30) 

where ~m is the dimensionless weight of the contained fluid 
per unit length 

Wm La IrD~ L 3 
#m -~ = Pmg - -  - -  (31) 

EIo 4 EIo 

~'w is the dimensionless weight of the displaced fluid per 
unit length. 

bw L3 7rD~o L 3 
Otw = = Pwg - -  - -  (32) 

Elo 4 EIo 

and/]e,o is the dimensionless overhead effective weight 

1 
I We, oL3 

/3e, o = 13 e do = (33) 
Elo 

o 

Using the mode shape to evaluate the integrals in (28) or 
(30) we drive an inequality condition between the various 
parameters of the problem. 

Inequality (30) can be transformed using equations (31) 
and (32) to one involving the densities of the fluids inside 
and outside the column 

Pm~(Do~2[1 q([Je) 
Pw \D-~t/ + °tw ] (34) 

Inequality (34) clearly shows that unstable behavior is 
observed when the ratio of the densities of  the fluids inside 
and outside the column exceeds a certain value. 

NUMERICAL IMPLEMENTATION BY FINITE 
ELEMENTS 

The finite element method can be used to discretise the 
linearised equation (10). The discretised equation has the 
form 17 

([Kx] + Tt, a[K2]){O} = {0) (35) 

[K1] is the sum of the elastic stiffness matrix and the 
geometric stiffness matrix due to effective weight. [K2] is 
a scaled geometric stiffness matrix due to top tension. The 
solution of (35) yields the critical top tension (Tt, a) c and 
the buckling mode vector {Oo}. This vector can be used to 
evaluate the integrals in (28) or (30) numerically. To 
improve the approximation we use (10) to eliminate the 
bending stiffness term in (30). The inequality condition 
(36) becomes 

1 

f lm--OCw~-bl[( I  ~e,o@)4do) 
0 

1 1 1 

oc do) (I do) - dg] 
o o o 

1 1 

o o 

(36) 
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The integrals in inequality (36) were evaluated numeri- 
cally using the critical top tension and buckling mode 
vector of  the finite element solution for a uniform column. 
The limiting value of/3 m --t~ w was calculated for various 
values of the dimensionless top spring stiffness. This value is 
plotted versus the column's dimensionless effective weight 
i n  Figs. 1 and 2 for hinged-hinged and clamped-clamped 
columns respectively. Results for hinged-clamped columns 
are within 1% of  those for hinged-hinged columns for 
/3 e ~> 500. Similarly the results for clamped-hinged columns 
are within 1% of  those for clamped-clamped columns for 
/~¢ ~> 500. Figure 3 shows the results for all four combina- 
tions of end rotation conditions in the range 0 ~</3 e < 500 
for 3't = l0 s. 

For columns with large I~e equation (1) becomes singular.19 
The slope of the centedine develops a region near the lower 
end in which most of the deformation is contained. This 
region for /3 e -* = becomes a boundary layer. The finite 
element model can yield accurate results if sufficient 
number of  elements is used in this region. Obviously beyond 
some value of/3 e the required element length decreases 
(dimensionless problem) or the required number of ele- 
ments increases (dimensional problem) prohibitively. 

In the numerical implementation the results presented in 
Figs. 1 and 2 are a satisfactory approximation up to/3 e 
8000. Beyond this point the finite element solution provides 
a lower bound to the exact solution. 

ASYMPTOTIC SOLUTION 

Uniform columns with movable top support, that is with 
zero top spring stiffness, attain an asymptotic behavior for 

t3 e ~ 100.19 Columns with nonmovable top support attain 
the same asymptotic behavior for Be ~> 10 sl. The dimension- 
less governing hnear differential equation in this case is 

d20 
d °  2 [6 --/]e(1 -- o)] ® = 0 (37) 

where 6 is the dimensionless top tension 

= Tt, a La 
EIo (38) 

The asymptotic solution of the eigenvalue problem 19 has 
critical dimensionless top tension 

~c =/3e - -  Xo/~2/a (39) 

and buckling mode shape 

ec(o ) = Ai(xo + [~1e/3 O ) (40) 

Ai is the Airy function of the first kind and xo is the 
first root of Ai  for columns with clamped lower end or the 
first route of Ai' for columns with hinged lower end. These 
values are -- 2.338 and - 1.018 respe ctively. 

In the case of this asymptotic solution the inequality 
condition (36) becomes: 

1 

I e~e; 2 do 
o 

1 

o 

2000. I 

i000" I 
O. 

so'oo, loc • 

-I000. 

-2000. 

HH 
AIRY ASYMPTOTIC SOLUTION 
FINITE ELEMENT SOLUTION 

)00. 

10 4 
o 

io. s 

Figure 1. Limiting value o f  ~m- Otw for hinged-hinged columns 
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Figure 2. Limiting value of  ~ m --t~w for clamped.clamped columns 
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Figure 3. Limiting value O f  ~ m - -  O~ w for 0 <~ Be ~ 500 
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Figure 4. Secondary equilibrium paths o f  drilling riser 

RISER L=500 M 

p . / p : i ,  i 

I 

O. 015 O. 020 

further using (40) in (41) 

I Ai2(x)Af2(x) dx 

Xo 

I Ai2(x) d 

Care must be exercised in the numedcal evaluation of 
the integrals in (42), because of the exponential decay of  
the Airy function of the first kind and its derivative. 
Namely, a Laguerre integration rule must be used in the 
interval [2,Xo + l~eu3], while a Gauss integration rule may be 
used in the interval [xo, 21. The result is 

~m -- •w ~ ~ef([3,) (43) 

where f~e)  is a weakly increasing function of/3 e. The pro- 
duct #ef(~e) is indicated by the dashed curves in Figs. 1 
and 2. 

APPBCATION 

The results of  this analysis were used to examine the initial 
postbuckling behavior of  a 500 m long hinged-movably 
hinged marine drilling riser with inner diameter 0.46 m 
and outer diameter 0.5 m, made of  steel. The dimensionless 
effective weight is Be = 1413. Using the asymptotic solution 
the limiting value of13 m -- o~ w was found to be 312. 

The limiting value of  the drilling mud density is 1366 kg/ 
m s or 1.33 times the density of salt water. Therefore it is 
well within the range of practical applications. Furthermore 
we must observe that this value will be even lower if the top 
of  the riser is restrained horizontally. 

Figure 4 shows the secondary equilibrium path for the 
riser of  the above example for two different values of  the 
drilling mud density, one below and one beyond the limiting 
value. 

CONCLUSIONS 

It was shown in this work that the initial postbuckling 
behavior of  heavy tubular columns becomes unstable if the 
ratio of  the densities of  the fluids inside and outside the 
column exceeds a certain value. In such a case initial imper- 
fections and lateral loads can affect the critical top tension 
of  the column. 

An inequality was derived for the difference between the 
dimensionless weight per unit length of  the contained and 
the displaced fluid, 13m- aw, which if satisfied indicates 
unstable postbuckling behavior. The limiting value for this 
difference was calculated for a uniform column for various 
end conditions and plotted versus the column's dimension. 
less effective weight. Both a Finite element solution and an 
asymptotic analytical solution for very long columns were 
implemented. This inequality was transformed to another 
one providing a limiting value for the ratio Pm/Pw. 

Comparison of the results yielded by the finite dement 
and the asymptotic solution for columns with movable top 
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support  indicates that the finite element solution provides 
an accurate approximation for # e ~  < 8000 and a lower 
bound beyond that  for the limiting value of  the difference 

#m -- °~w- 
For columns with movable top support the limiting 

value of  ~ m -  aw is almost proport ional  to the column's 
dimensionless effective weight /~e- The proport ionali ty 
factor depends on the rotat ion condit ion at the lower end 
of  the column and increases very slightly with/3 e. 

An elastic restraint o f  the column's top support has an 
appreciable effect on the limiting value of  ~m --  °lw- 
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APPENDIX 

The centerline o f  the column at equilibrium is a two dimen- 
sional curve as shown in Fig. 5a. The effective tension and 
the effective weight o f  the column are given by  17 

Pe (s) = T(s) -- bw (s) [h w -- z (s)] - -  w m (s) [hm -- z (s)] 

(A1) 

We(S) -- Wst(S) + win(s) -- bw(S) - -  bm(S) (A2) 

where T is the actual tension in the column, h m and h w are 
the free surface ordinates of  the fluids inside and outside 
the column, Wst is the weight o f  the tube per unit length 
and b m is addit ional buoyancy per unit length. 

The equations of  equilibrium are 

dee 
- - - - K Q  - -  w e cosO = 0 (A3) 
ds 

KPe + d Q +  We sin O = 0 (A4) 
ds 

dM 
- - +  a = 0 (A5)  
ds 

where K is the curvature of  the centefline, Q the shear force 
and M the bending moment .  The equations are derived by  
cosidering the equilibrium of  a differential element o f  the 
column in the deformed configuration. This is necessary in 
order to properly model  the geometric nonlinearity without  
introducing any approximation at this point.  

Use o f  the Euler-Bernoulii constitutive relationship for 
bending 

dO 
M = E I K  = E 1  - -  (A6) 

ds 

and elimination of  variables between (A3), (A4),  and (AS) 
yield the equation governing O, the slope o f  the centerline. 

d{[d (eldO /dO]sinO--cosod(eldO 
ds ~s 2 \ d s /  / ds d ds \ ds / 

= / d O )  -w sin o/ i--o (A7) 

Figure 5b shows the internal and external forces at the 
upper end o f  the column. Tt, a is the applied tension at the 
top.  Ht, s is the horizontal  linear spring force and Tt, f is a 
fictitious fluidic tension which appears as a result o f  the 
method used to represent the fluid pressure forces. 17 Tt, f is 
always tangent to the deformed eenterline o f  the riser and 
therefore is a follower force. A follower force is non- 
conservative. Since T t j  is a resultant o f  the fluid pressure 
forces these are nonconservative too.  The latter two are 
given by  

L 

= -- k t x ( L )  = -- kt  I sinO ds (A8) H,,s 
0 

T t j  = bw(L) [hw -- z (L)] - -  w m (L) [h m -- z (L)] (A9) 

Usually h w -~ h m ~-- L,  so that 

Tt,¢= [bw(L)] [ £ - - z ( / ) ]  ( h l 0 )  
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Figure 5. 
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(a) Column equilibrium configuration. (b) Free body diagram o f  upper end element 
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The following are the equations of  equilibrium of  
internal and external forces at the upper end of  the column. 

Pc(L)  = Tt, f +  Tt, a cos •(L) +['it, $ sinO(L) (All) 

Q(L) = -- Tt, a sin @(L) + Ht,$ cos @(L) (A12) 

Equation (A7) can be integrated twice and the two 

constants 
(A12). This yields the following equation 

L 

ds \ ds / L f wedo + 
$ 

-- It, f sin [0 -- O(L)] -- ktx  (L) cos O = 0 

of  integration can be found from (A11) and 

(A13) 
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