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ABSTRACT 

The interaction between an edge dislocation and a crack in the presence of 

uniform applied tension and shear is considered. Emphasis is placed on the effects 

of partial closure and crack-face friction. Representative results are given. 

1. INTRODUCTION 

The interaction between a dislocation with an arbitrary Burgers vector and 

a crack in an anisotropic elastic medium was studied first by Atkinson [1]. Con- 

sidering the case when the elastic fields are independent of one of the coordinate 

axes, he obtained closed form expressions for the stresses and the crack-opening 

displacement. Another relevant study is due to Solovev [2], who obtained the stress 

field near genera/dislocation pile-ups, including cracks, in presence of line defects 

in anisotropic elasticity. 

The generality of the previously cited papers obscures the effect a dislocation 

might have on crack closure. Consider, for instance, a crack placed in a uniform 

tensile field. The presence of a dislocation near the crack, perturbs the applied 

tension, and may cause the crack to be totally or partly placed in a compressive 

field. Thus the location and strength of the dislocation dictates whether crack 

closure will occur. In the present paper we restrict attention to isotropic elastic 

materials and focus on the crack closure problem allowing Coulomb friction to be 

transmitted through the crack-face contact. It should be noted that the solution 

involving a partially closed crack and a dislocation cannot be used as a Green's 

function for the study of more complex interactions. On the other hand, it exposes 
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the nonlinear nature inherent to such interactions, and shows that general solutions, 

such as in [I], may not be always applicable. Since closure becomes important 

when the dislocation is near the crack, the same approach can be used to model 

the damage zone surrounding a crack tip, or to study the interaction of dislocation 

pile-ups and a crack. 

2. I ~ O R M U L A T I O N  

A crack of length 2a is considered in an infinite, isotropic elastic solid. With 

no loss of generality, the axis x is taken along the crack, which is symmetric about 

the axis y. An edge dislocation with Burgers vector (bz, b~) is located at a point 

with coordinates (~, ~}), as shown in Fig. 1. The normal and shear tractions due to 

the dislocation on y = 0 are obtained from Dundurs [3] as 

crz) = 2# I 
,(~ + I)[(x - ~)2 + V27 [ b'I~ - ~) [ I~ - ~)2 + 3¢] + b~v [¢ - Ix - ~)~]] 

(1) 
I" D ._ 2/~ ] ~(~ + 13 l(" - ~)~ + V~] ~ [b"v [v~ - (~ - ~)~] + bx(- - ~)[(z - ~)2 - V~]] 

(2) 
The crack is represented by a distribution of glide, Bz(x), and a distribution oi 

climb,B~(x), dislocations. The climb distribution is zero everywhere except along 

the open part of the crack L0, and the glide distribution is zero everywhere except 

along the slipping regions of the crack, Ls. Denoting the applied normal and shear 

tractions at infinity by a ~ and r °°, we can express the total normal N(x) and shear 

8(z) tractions on y = 0 as 

2~, /L B~C~)d~ (3) 

2~ /L B,(~)d~ (4) S(z) = r °° + r D + Ir(~ + l) . x-f 

Note that in the contact region of the crack it is possible to have a combination 

of slip and stick zones. If we use the symbol L to denote the entire crack region, 
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we represent the stick region by L - L,, since Lg is contained in L,. We now write 

the boundary conditions for the genera] case in which the crack has separation, slip 

and stick sones: 

where 

N(=) -- 0 in Lg, (S) 

g(=) > 0 in Lg, (6) 

NCz) ~ 0 in L- L#, (7) 

s (~)  = plv(~) in L., (s) 

Is(,)l < -f#(=) in i:- L0, (0) 

p = - I s @ h ( , ) ,  (1o) 

f is the coefficient of friction, g(z) is the gap and h(z) the relative tangential shift 

between the crack faces. The two latter quantities are related to the dislocation 

densities of the crack by 

Bu - -@(z)ldz, Cll) 

nz = -dh(=)ld~. (12) 

The boundary conditions must also be complemented by two auxiliary conditions 

requiring thM the crock contains no net dislocations: 

/ B~(~)d~ = 0, (13) 
g 

/ B~(~)dx = 0. (14) 
# 

Note that for more generM llne defects, such as those considered by Solovev, the 

right sides of (13) and (14) need not vanish. Moreover, these conditions must be 

applied to inch disjoint gap and slip ~one. 

To solve the problem we must determine the unknown dislocation distributions 

and the unknown locations and extents of the various Bones along the crack. We 
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observe that By(z) and B=(z) are only coupled through the friction law (8). It 

is, therefore, possible to obtain the normal traction, the gap and/_,# independently 

using (I), (3), (5), (6), (7) and (II). Having obtained this part of the solution, we 

use the remaining boundary conditions to determine the shear tractions and L~. 

Although we can still proceed with generality, the method of solution we employ 

actually assumes an arrangement of zones, computes their extents, and determines 

limits within which the dimensionless combinations of the given parameters of the 

problem should lie so that the assumed arrangement is possible. Some of the ar- 

rangements that are possible in this problem are illustrated in Fig. 2. 

2. METHOD OF SOLUTION 

Assuming the extents of the various zones as given, the problem reduces to the 

determination of By and Bx by inversion of a Cauchy singular integral equation, 

respectively. The unknown ends of the zones are then determined by using the 

auxiliary conditions iteratively. Since the problem has a unique solution, Fichera 

[4], there is always a sufficient number of conditions for the computation of all the 

unknowns. Consider, for instance, the arrangement of Fig. 2(a). In addition to the 

dislocation densities, the parameters b and c are unknown; they will be determined 

by using (13) and (14) iteratively. The dislocation densities are completely deter- 

mined by (5) and (8), because they are bounded at their left end and unbounded at 

their right end, [6]. Consider now the case in which there is no stick zone, i.e c coin- 

cides with -a. Then B~ is singular at both ends, and inversion of the corresponding 

Cauchy integral equation introduces an unknown constant, Muskhelishvili [5]. This 

constant is determined by using (14); there is no other unknown associated with 

slip. At this point one might ask what is the role of the inequalities. Their role 

is twofold: on one hand, they dictate the behavior of the dislocation densities and 

of the elastic fields at the endpoints of the various zones, and on the other, they 

delineate the various configurations of the zones by placing limits in their range of 

applicability. 
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To Uhmtrate, let us consider an example for which W = 0, that k the dislocation 

is on the z axis, but outside the crack. Using (3) and (5) we compute Br: 

c [.<'+'1"" I t=-'/ it ]. =<,<b (is) 

Using (15) and (13), we obtain a relation between b and the applied normal traction 

tim: 

Zpb, =~-L--b_ 5 1-  ~ - b  " (16) 

The normal tractions outside the gap are then obtained from (15) and (3): 

i t  b, I z - b l  '/2 
N(z) = -z'(, + I) ~ + I~Z"~I ' z > a,z < b (17) 

It is not worthwhile to solve (16) for b. Instead, since the applied tractions appear 

necessarily in a linear manner, it is computatlonally simpler to take b as given, 

and solve for croo. To proceed, let us fix c: asmime, for instance, thai we have an 

arl-lngement with no slip zone, or b = c in Fig. 2a. Using (4) and (8) we obtain 

an expression for B= which is analogous to (15). Similarly, (14) produces a relation 

between b= and u °°, which simplifies to 

1'°°/o'°° = bffi/b•, (18) 

when (16) is taken into account. Whether this configuration is possible depends on 

whether there is a feasible choice of the remaining parameters that win .ati.  the 

inequalities (6), (7) and (9). 

The results presented in the next section were obtained by numerical integra- 

tion of the Cauchy integrals using the method of Erdogan et al [7], and by monitoring 

all the inequalities. 

4. RESULTS 

To present the results in dimensionless form we have used the following nor- 

realizations: 
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• normalised applied normal stress = a°°a(s + l)/(2~bu) , 

• normalized applied shear stress = r°°a(~ + l)/(2/zbx), 

• nommlized stress intensity factor KI = K~/(a°°~/(a - b)/2), 

• normalized stress intensity factor KII = Kll/(o°°~/(a- c)/2). 

The results also depend on the parameters (, 7, bx/by and f. An exhaustive para- 

metric study was not attempted, but the results are meant to be representative. 

Fig. 3 shows a map of the various regions in the normalized a o° and r °° plane for 

~/a = -2, ~/a = I, b~/by = 0 and f = 0-.5. It is important to note that in our 

normalization the applied normal stress is positive. The negative normalized value 

necessarily implies that by is negative. All the inequalities were verified with this 

assumption in mind. It is certainly possible to obtain results for the the case of 

a pre-compressed crack which is partially opened by a dislocation using the same 

analysis. In Fig. 3 the gap region is confined between the two vertical lines marked 

b/a = -I and b/a = I. The lines of constant c, i.e of fixed slip extent, are straight 

lines with slope equal to f. Negative slope corresponds to positive (forward) slip 

direction and positive slope corresponds to backslip. It is easy to prove that the 

loci of constant c are straight lines if there is no gap by examining the auxiliary 

condition (14), in which Bx is substituted after solving (8). The curve marked b = c 

markes the boundary between sllp and backslip and corresponds to a configuration 

of stick-gap. Only the lines c/a = I and c/a = -l have been drawn. The lines 

c/a = I bound the region of complete stick, and the lines c/a = - 1 bound the region 

of slip (with or without gap). Between the two pairs we have regions corresponding 

to stick- (bark)slip-gap or stick-(back)slip. 

A map of the type of Fig. 3 is obtained if we fix r/ and (, and vary bx/b,, in 

the range (0, 1.5) approximately. An example with b~/b,  -- --0.2 is shown in Fig. 

4. The map is similar to the previous one in the region of forward slip. However, 

forward slip is not replaced by backslip. Instead a new backslip zone starts from the 

left tip of the crack. The two ~ones of opposite slip co-exist in the shaded region, 
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until forward slip disappears and another backslip zone starts from the left end 

of the gap. The region of two backslip zones lles above the envelope of b -- c and 

c/a = -0.6. For bf/by positive and greater than apprcsdmately 1.5 the region of two 

backslips starts near the center of the curve b = c and expands in both directions. 

Some examples of the stress intensity factors are given in Figs. 5 and 6. Fig. 

5 shows the variation of K; at a as a function of the gap extent for three values of 

bz/by. Fig. 6 shows the variation of KH at ~ with ¢/a for three different values of 

gap length. The three curves marked with symbols correspond to backslip, and the 

three plain ones to forward slip. The two sets meet at the points b = c (stick-gap 

configuration). 

Changing the location of the dislocation changes the configuration of the zones. 

One important difference is that for some locations the contact zone is detached from 

both ends leaving both crack tips open and creating two disjoint gaps, Fig.2(d). The 

boundary between the region of one gap and two gaps is shown in Fig. 7 in the ~, t/ 

plane. Two boundaries are shown, one for the case b~ < 0 and the other for the 

case by > 0. The results are given for the case b= - 0, for which there is symmetry 

about the axis ~/. 
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