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Omitted variables in regression analysis can lead to the erroneous conclusion that autocorrelation 
or heteroscedasticity is present. The common response is to use the suggested GLS procedure, 
even if it is suspected that the error is a non-zero disturbance mean. The question addressed here 
is whether one is better off with the GLS or with the OLS estimator when the omitted portion of 
the regression cannot be incorporated into the regression. Using a loss function this paper relates 
the seriousness of OLS and GLS loss to identifiable parameters. With consistent estimators of 
these parameters the researcher can choose between OLS and GLS. 

1. Introduction 

It is well known (and often cited) that the omission of an explanatory 
variable(s) or use of an incorrect functional form in a regression that otherwise 

satisfies the full ideal conditions, can lead to the erroneous conclusion that 
autocorrelation or heteroscedasticity is present among the disturbances.’ The 
common practice, however, is to use some generalized least squares (GLS) 
technique. The question remains as to whether and under what conditions 
such a practice is warranted. Sims (1972) noted that attempts to achieve 
efficient estimates may have perverse effects on approximation error in distrib- 
uted lag models. His arguments involve approximations of (possibly) infinite 
lag distributions. In a general context he argued that the ‘distance’ between the 
actual and estimated lag distribution depends on autocovariance properties of 
the independent variables so that it may be undesirable to modify data in a 
search for efficiency. As an example, Sims notes that use of quasi-differenced 
data to account for autocorrelated residuals can make estimates worse if 
approximation error is present. Grether and Maddala (1973) examined the 

*I wish to express my appreciation to Richard Anderson, Hashem Dezhbakhsh, David Grether, 
Richard Jensen, CA. Knox Lovell, G.S. Maddala, J. Huston McCulloch, Randall Olsen, and 
Mehmet Ozturk for helpful comments. I remain solely responsible for errors. 

‘See, for example, Judge et al. (1985, p. 329) Kmenta (1971, p. 296), and Maddala (1977, 
p. 291). 
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consistency of GLS estimators when errors in variables lead to the appearance 
of autocorrelation. They make the same point as Sims that quasi-differencing 
data in an effort to gain efficiency can increase the error in estimation of 
regression coefficients. McCallum (1976) compared the consistency of GLS 
using an autocorrelation correction technique and ordinary least squares 
(OLS) in the presence of an omitted variable for several cases based on specific 
assumptions about the relation between the included and excluded variables in 
a simple regression context. He also found that quasi-differencing data can 
lead to greater estimation error. 

This paper builds upon the previous work in three ways: 

(i) We use a loss function in analysis of the choice between OLS and GLS. 
By taking expectations of a loss function with respect to the unidentified 
parameters of the model we can relate the size of the loss under OLS and 
GLS to the identifiable parameters of the model. This provides a basis on 

which researchers can choose between OLS and GLS in particular set- 
tings. 

(ii) We consider multiple regressions. It is shown in Thursby (1985a) that the 
loss associated with OLS in the presence of omitted variables rises sharply 
as the collinearity between included regressors increases. The same will be 
seen to hold for the GLS loss. Plosser (1981) extended Grether and 
Maddala’s (1973) analysis to more than one independent variable and 
found more ambiguity in multiple regressions than in simple regressions. 

(iii) We also consider a case wherein the omitted variable or incorrect func- 
tional form suggests that heteroscedasticity is present as well as when the 
error suggests the presence of autocorrelation. 

An overall question addressed by this paper is whether the researcher is 
better off or worse off with the OLS estimator than with the GLS estimator. 
Ideally, of course, the researcher would incorporate the omitted portion of the 
regression directly into the estimation process. This is not always possible; for 
example, the problem may be that some regressor is unobservable and no 
reasonable proxy exists. What we wish to ascertain here is whether OLS or 
GLS should be used conditional on the omitted portion of the regression not 

being directly incorporated into the regression. The OLS/GLS choice is then a 
choice between the lessor of two evils (inconsistent estimators). 

Examination of the OLS/GLS trade-off requires that structure be placed on 
the regressors of the model. We consider two models examined by the author 
in Thursby (1985a). The first is a model that is fairly representative of time 
series regressions and the other is fairly representative of regressions on 
cross-sections of data. The issue addressed in the earlier paper is the magni- 
tude of OLS loss conditional on parameters of the included regressor covari- 
ante matrix. Here we compare that loss with the GLS loss. 
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In the next section a general outline of the procedure is presented, following 
which the time series and cross-section models are considered. 

2. A general regression model 

Consider the model 

y, = &Xl, + #8*X*, + z:a + fJ,> t=1,2 T, ,..-, (1) 

where the regressors Xi, and X,, are scalars, Z, is a column vector of 
regressors, and t refers to the observational unit. For expositional ease define 
X,, = Zja. Without loss of generality, all variables are assumed to have zero 
means. pi, & and (Y are composed of unknown regression coefficients, and the 
U, are independent and identically distributed with mean zero and variance 
u,“. Let X;, (i = 1,2,3) be stochastic and independent of U, and let the vector 
X, = ( Xit, Xzr, X,,)’ be identically distributed across t with covariance matrix 
2’. The researcher is assumed to erroneously omit X3, from the regression 
either because it is unobservable or because the researcher is unaware that it 
belongs in the model (1). The omission of X,, can refer to either omitted 
variables or incorrect functional form [in which case X,, represents the sum of 
second- and higher-order terms in the Taylor series expansion of the true 
function (if it is analytic)]. 

The covariance matrix JJ is a function of both an identified parameter 
vector 6 of order m (e.g., it includes the correlation between Xi, and X,,) and 
an unidentified parameter vector y of order n (e.g., it includes the correlation 
between Xi, and X,,). Depending on the specification of 1 the researcher can 
be led erroneously to the conclusion that heteroscedasticity or autocorrelation 
is present in the disturbance u,. 

In general the omission of X,, will cause the OLS and GLS estimators of /3i 
and ,B2 to be inconsistent (as well as biased). Concentrate on estimation of /3i 
and consider the loss function’ 

L(6, y) = (plim& -Pi)‘, (2) 

for some estimator pi. Loosely speaking, define the loss in estimation of a 
coefficient to be the squared systematic error. 

As noted in section 1 we wish to relate the seriousness of the inconsistency 
to the identifiable parameters S. Denote the prior conditional density of y as 

‘We choose the function L rather than more commonly used loss functions such as the squared 
error loss function (& - p,)* because we_ wish to concentrate on the systematic error in 
estimation of & and ignore the variance of &. 
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p(y IS) and the expectation of L with respect to the unidentified parameters is 

E[L(S,y)lG] =I . ../L(6.y)p(ylS)dy,...dy,. 
Yl Y, 

For a suitable choice of the prior density this can be evaluated conditional on 
various values of 8, the vector of identified parameters. 

We now turn to specifications of 2 which will generally lead the researcher 
to conclude that u,, the disturbance in (1) has a non-scalar covariance matrix. 
The question is whether the expected loss, for various values of S, from using 
OLS is greater or less than the expected loss from using whatever GLS 
estimator is suggested by the omission of X,,. Define L(OLS) and L(GLS) to 
be the loss associated with OLS and GLS, respectively. For each alternative 
specification of Z we shall consider 

E[L@LS)I~l 
R = E[L(GLS)IG] ’ 

3. A time series model 

We use the regression model (1) and add the further assumption that the X,, 
(i = 1,2,3) follow the multiple time series model 

Xl, = Plxl,-l+ El19 

x2, = P2x*t-l+ E2t2 (3) 

x3, = P3X3,-I + E3r. 

The E, = (qt, tZt, Ebb)’ are independent, identically distributed random vectors 
with mean vector zero and covariance matrix 

E(v:) = {a;,)> i, j= 1,2,3, 

where 

a;, = a’(1 - Pf), 

and 

a,, = qDjyi,((l - P?)(l - p:)Y2. 
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ei2 is the variance of X,, and y,, is the simple correlation between E;, and E,,. 
To preserve positive definiteness of E(E,E~) it is necessary that 

1 + 2Y,,Y,3Y23 - v:2 - u:, - u: ’ 0. 

Consider the OLS estimator of pl. For the loss function (2) 

(4) 

L(OLS) = $ [ “1;:P2;;12]‘, (5) 

where p,, is the simple correlation between X,, and X,, and 

(6) 

It is almost universal practice in a time series regression to test for 
first-order autocorrelation among the disturbances. The most common test is 
the Durbin-Watson test with test statistic 

d= i (e,-e,_l)2 
r=2 

where the e, are OLS residuals, e, = q - p^,X,, - @2X2t. The statistic d is 
approximately 2(1 - r), where 

T T 

r = C e,e,_, 

r=2 1 

C ef. 

r=2 

Unless plim r = 0 the probability of rejecting the null hypothesis of uncorre- 
lated disturbances will be greater than the chosen significance level in large 
samples. In the present circumstance, 

p = plim r = A/B, 

where 

A = P3 - P~B,P,~ + B2p23) - 4~1~13 - B2P2P23 

+B:P, + B;P, + ~B,P,,(P, + ~2), 

B = u,‘/u,” + 1 - 2( B,p,, + B,p,,) + B: + B2” + 2B,B,p,,, 

B, = (~13 - P12P23Ml -pi,>, 

B2 = (~23 - p12p13)/$ -p:2). 
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In general, the Durbin-Watson test (as well as other tests for autocorrela- 
tion) will be biased toward rejection of the null hypothesis of uncorrelated 

disturbances. The usual response is to use a GLS estimator that is in the form 
of the least squares estimator in the regression of Y, - rY,_, onX,, - rX,, (- 1 

and X,, - 

distributions (conditional on yi2) wherein all values of the parameters are 
treated as equally likely. In some problems one may have notions that certain 
values are more likely than others and a prior distribution to reflect that 
knowledge is appropriate. We feel that the choice of a uniform prior represents 
the most common state of knowledge of researchers and the results presented 
below are quite general. Nonetheless, at the end of this section we examine the 
robustness of the results with respect to the choice of a uniform prior. 

The range of the parameter yi3 is (- 1, + 1) and for y23 the range is 

y12y13 f ((l - Y:2)@ - %2d)1’2’ 

which follows from the covariance restriction (4). For p3 we also use a uniform 
prior distribution but the range is restricted to (0,l) in conformance with the 
general observation that economic variables tend to be positively autocorre- 
lated. Note that we assume p3 to be independent of the other parameters and 
that the yii are related only through the covariance restriction. 

The choice of prior densities is not as clear for a; and ai, so we condition 
on them as well as on the identified parameters. This is not of any particular 
concern since IJ: enters multiplicatively 
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fashion into the GLS loss (7) as well as in a ratio with u,’ in the expression for 
p. u,’ enters only through the ratio with u3. * Since our interest lies in the 
relative magnitude of the OLS and GLS losses, the factor u: which premulti- 
plies (5) and (7) will not affect the comparison. Time series regressions 
typically have signal noise ratios around ten and uf is a portion of the ‘signal’ 
variance; this will be used as a basis for choices of u,‘/u,‘. 

The expected OLS loss conditional on the identified parameters and u: can 
be analytically derived. The expression is lengthy, complicated and not intu- 
itively revealing, hence it is not presented here and the interested reader is 
referred to Thursby (1985a). Unfortunately, the expected GLS loss is not 
analytically tractable and numerical integrations are used. Thus R, the ratio of 
expected OLS loss to expected GLS loss, is based on an analytically derived 
value of the expected OLS loss and a numerically derived value for the 

expected GLS loss. 
Before turning to the results, several points need to be made. First, R varies 

only as pl, pz, y12, and u,‘/u,’ vary. Since the most readily available measure 
of correlation among included regressors is pi2 (the correlation between Xi 
and X2) rather than yi2 (the correlation between the disturbances &i and Ed), 
the results are presented in terms of pi2. Note that certain combinations of pl, 
p2, and pi2 violate the condition - 1 < yi2 < 1, thus such combinations have 
no corresponding entry in the table of results. Second, we set u,“/u,’ = 0.2, a 
value we consider to be reasonable. Some exploration with u,‘/u,’ equal to 0.0 
and 1.0 reveal that the results are not very sensitive to the chosen value. 
Finally, in the calculations of R we considered all possible combinations of 
the values 0.0, 0.25, 0.5, 0.75, 0.90, 0.95, and 0.99 for the parameters pi, p2, 
and pi2. Positive values for p1 and p2 are used in keeping with the assumption 
p3 > 0, and the results are independent of the sign of p12. Only a subset of the 
complete results are necessary to characterize the relation of R to those 
parameter values and table 1, part (a), contains the subset of results. 

The results are clear. The values take by p2 and pi2 are not important in 
determining whether R $1 and they have hardly any impact on how far R 
deviates from 1. The key parameter is pi. If pr is small, then R > 1 and GLS is 
preferred. If pi is large, then R < 1 and OLS is preferred. Further exploration 
(not presented) reveals that pi = 0.6 is approximately the value for R = 1. The 
actual value varies close to 0.6 depending on the values of p2 and piz_ 

While it is the case that the value of p1 is the primary determinant of the 
value of R and p2 and pi2 have little impact, such is not the case for the levels 
of the expected OLS and GLS losses. In part (b) of table 1 are presented the 
values of the expected OLS loss for the parameter combinations used in part 
(a) and for u,‘/uT = 1.0. The primary determinant of the level of the expected 
loss is pi2. 

Finally, the expected value of p, conditional on the identified parameter 
values used in table 1, was calculated and found to vary in the narrow range 
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Table 1 

Time series model. 

Pl 0.0 0.5 

0.0 1.25 1.25 
0.25 1.18 1.18 
0.5 1.08 1.08 
0.75 0.92 0.91 
0.9 0.73 _a 
0.99 0.44 _a 

0.0 1.25 1.23 
0.25 1.17 1.17 
0.5 1.08 1.08 
0.75 0.93 0.92 
0.9 0.74 0.70 
0.99 0.45 _= 

0.0 1.26 
0.25 1.18 
0.5 1.08 
0.75 0.91 
0.9 0.73 
0.99 0.46 

a -_ 

1.09 
1.03 
0.90 
0.73 
0.52 

0.0 1.26 _a 

0.25 1.19 _a 

0.5 1.08 _a 

0.75 0.91 _a 

0.9 0.71 0.69 
0.99 0.44 0.43 

(4 E[~(OLSlS)l/E[L(GLSlS)l (b) E[.WLsIQI 

IPI 

0.9 0.99 

p2 = 0.0 

1.26 1.26 
1.12 _a 
_a _a 
_= _a 

a _a 
_= _a 

p2 = 0.5 
B _= 

1.08 _a 

1.08 1.08 
0.87 _a 
_= _a 

a _a 

p2 = 0.9 
B _a 
B _= 
a _= 

_a _= 

0.72 0.72 
_a _a 

p2 = 0.99 

_a _a 
a _= 
a _a 

_a _= 
_a _= 

0.43 0.43 

0.0 0.5 0.9 0.99 

0.22 0.27 0.85 1.52 
0.26 0.31 0.83 _= 

0.27 0.31 _a _a 

0.25 0.22 _= _a 

0.17 _= a _= 
0.04 _a _= _a 

0.22 0.24 B _a 

0.26 0.31 0.66 _a 

0.27 0.33 1.05 9.22 
0.25 0.28 0.33 _a 
0.17 0.15 _a _a 

0.04 _a -a _a 

0.22 
0.26 
0.27 
0.25 
0.17 
0.04 

a - 

0.22 
0.29 
0.29 
0.21 
0.02 

a 
a 

_= 
_= 

0.67 
_= 

0.22 
0.26 
0.27 
0.25 
0.17 
0.04 

_a 
a 
a 

_a 

0.20 
0.05 

a 

_a 
_a 
_= 

a 

0.16 

_a 
_a 
_a 
_a 

5.87 
_a 

_= 
_= 
_a 
_a 
_a 

1.45 
- - 

a Parameter combination implies I ylz 1 2 I 

0.35-0.40. Thus the observed value of p appears to offer no information 
regarding the OLS/GLS choice. 

To this point no knowledge has been assumed concerning the unidentified 
parameters (except p3 > 0). This is probably the most common situation, 
though there are cases when one has strong prior knowledge about the omitted 
portion of the regression (for example, the unobserved variable ‘ability’ in an 
earnings regression). To augment the above results to allow for more informa- 
tive priors consider the following. Define R* to be the ratio of OLS loss [given 
by (5)] to GLS loss [given by (7)], thus it is the ratio of expected losses using 
degenerate priors for the unidentified parameters. R* is a function of all 
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Table 2 

Regression results for dependent variable y (y = 1 if GLS loss smallest, y = 0 if OLS loss 
smallest). 

Regressor Coeff. 

(a) Coefficients (f-statistics) 

(f-stat.) Regressor Coeff. (t-stat.) 

Constant 

PI 

0.534 (19.67) 
0.775 (- 16.54) P: - 0.346 ( - 6.78) 

P2 - 0.003 ( - 0.06) Pi 0.007 (0.136) 

PX 0.619 (5.96) P: 0.320 (3.47) 

Pl2 - 0.003 (-0.41) P:2 - 0.037 (-2.51) 

PI3 0.00” (O.oo)a PT3 0.134 (9.10) 

P23 0.005 (0.62). PZ3 0.127 (8.86) 

Parameter 
value Pl 

(b) Partial effects 

Parameter 

Pz P3 PI2 PI3 P23 

- 0.9 0.063 - 0.242 ~ 0.224 
- 0.75 0.052 - 0.202 -0.186 
~ 0.25 0.015 ~ 0.067 -- 0.058 

0.0 - 0.775 ~ 0.003 0.619 - 0.003 0.000 0.005 
0.25 - 0.948 0.001 0.779 - 0.022 0.067 0.069 
0.75 - 1.295 0.008 1.098 ~ 0.059 0.202 0.196 
0.9 - 1.399 0.010 1.194 - 0.070 0.242 0.235 

a Positive but negligible. 

parameters with the exception of uf and ~2’. Values of R* were calculated for 
all combinations of pl, p2, and p3 in the set (0.0,0.25,0.5,0.75,0.9) and p12, 
p13, and pz3 in the set (- 0.9, - 0.75, -0.25,0.0,0.25,0.75,0.9), subject to the 
covariance restrictions (4) and 1 y,,] < 1. We also set u,‘/cJ, = 0.2. Define a 
qualitative variable J = 1 if R * > 1 and y = 0 if R* < 1 (cases of R * = 1 are 

dropped). The variable y was then regressed on the parameters pl, p2, p3, p12, 

p13, and p23 as well as on their squares and a constant term. There are a total 

of 6554 observations and the R2 is 0.574. Part (a) of table 2 gives the 
coefficient and t-statistics of the regression and part (b) gives partial effects on 
y of a change in each parameter, evaluated at different values for the 
parameters. 

It is observed from table 2 that the contribution of p2 to the value of y (i.e., 
the sign of R* - 1) is negligible, a finding in keeping with earlier results. 
Furthermore, it is only the magnitudes and not signs of p12, p13, and pz3 that 
matter and their contributions to the value of y are small compared with those 
of p1 and p3. From the values of the coefficients of pl, p3 and their squares it 
would appear that the effects of p1 and pj nearly cancel for p1 = p3. 

To investigate further this apparent relationship between p1 and p3 we 

examined 412,396 values of R* determined by varying the autoregressive 



368 J.G. Thursby, OLS or GLS? 

parameters pi and pz over the set (0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99), 
the autoregressive parameter ps over the same set excluding 0 (for which the 
OLS and GLS losses are equal), and the correlation coefficients pi*, pi), and 
pZ3 over the set (-0.99, -0.8, -0.6, -0.4, -0.2,0.0,0.2,0.4,0.6,0.8,0.99), sub- 
ject to the covariance restrictions. Of the cases with R * > 1 (i.e., GLS loss is 
smallest), 92.1 percent are cases with p3 > pi and only 0.9 percent have 

p1 > p3. When R * -c 1 (i.e., OLS is preferred), p, > p3 in 86.3 percent of the 
cases and p3 > p1 in only 2.5 percent of the cases. .We can say that, in general, 
p1 > p3 implies that OLS is preferred to GLS whereas p3 > p1 implies that the 
smaller loss occurs with GLS. 

4. A cross-section model 

In this section, a cross-section model is presented which tends to imply that 
heteroscedasticity is present among the disturbances whereas the true problem 
is an omitted portion of the regression. The choice between OLS and GLS can 
again be made on the basis of expected loss. 

We again use the basic model (1). It is now assumed that the observations 
are a random sample made at some point in time on T cross-sectional units. 
The X,, (i = 1,2,3) are again assumed to be stochastic with mean zero and 
variance a,2 and we add the assumption 

E( X,,X,,)/u,u, = plj for t = l,..., T,, 

= Y ,, for t=T, ,..., T, 

where pij is not necessarily equal to yij. The model implies that the observa- 
tions come from two ‘regions’ and that the correlations among the regressors 
are different in the two regions. Two regions are chosen in order to keep the 
problem tractable. Define C = T,/T, thus proportion C of the observations 
come from one region and 1 - C from the other. 

The vector X, = ( Xit, X2t, ,Xsr)’ is identically distributed across t in the first 
region with covariance matrix Zi = {a,,} where a,, = a12 and a,, = u,u,~,~, and 

in the second region with covariance matrix I2 = {b,,} where b,, = a,* and 
b;, = u,u,y,,. In order to preserve positive definiteness of .Zc, and Z2 it is 
necessary that 

1 + 2P,,P,,P,, - Pi2 - PL - Pi3 ’ 0, 

and 

1 + 2Y,,Y,,Y,, - Y122 - Yf3 - Yi ’ 0. (9) 
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For the loss function (2) the loss associated with OLS is 

L (OLS) = a,2A2/afB2, 00) 

where 

A = (CP,, + (I- C>YI~) - (‘32, + (I- C)Y,,)&J,, + (I - C)Y& 

and 

B = 1 - (Cp,, + (1 - C)Y~*)~. 

For models such as this wherein the observations come from several regions, 
researchers frequently use the Goldfeld-Quandt (1965) test for heteroscedas- 
ticity. The null hypothesis is that the disturbance variance is constant from 
observation to observation and the alternative is that the disturbance variance 
is constant within a region but varies across regions. The statistic, G, is the 
ratio of the estimated disturbance variances from separate regressions on the 
observations from the two regions (we assume that there are more observa- 
tions than regressors in each region) and 

plimG= (~,2/a,2+A,)/(a,2/a,2+A2), 

where 

A, = 1 - 2@,1~,3 + 42~2,) + B:, + B1”2 + %42~,2> 

A2 = 1 - ~@,IY,, + B,,Y~,) + B2: + B2’2 + =~,B,,Y,,, 

B,, = (PI, - P12P23V0 - d,>t 

4, = (~23 - ~12~13)/(1 - d2 >) 

B,, = (~13 - ~12~23)/(I - ~~21, 

B22 = (~23 - YD,Y~X )/(I - vi22 ) 

In general the Goldfeld-Quandt test will be biased toward rejection of the null 
hypothesis of homoscedasticity. 

The usual response to a significant Goldfeld-Quandt statistic is weighted 
least squares where the weights are generally based upon the pooled regression 
using all T observations. Using the estimated coefficients one estimates the 
disturbance variance for each region; denote these estimates as s,’ and sI_ 
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Observations from region 1 are weighted by l/s, and observations from 
region 2 are weighted by l/s,. Conversely, observations from region 2 are 
weighted by sl/sz. The GLS estimator is the OLS estimator using the pooled 
sample of weighted observations and 

L(GLS) = ~,~A;/u~A~, (II) 

where 

A, = (013 + ml- C)Y13)(C + w - 0) 

-(cp*3 + w(1 - C)Y23)(%2 + w - Ch2L 

A,= (c+ W(l- c))‘- (C&2+ W(l- c)Y,,)*, 

w = ( c1/c2y2, 

c, = u&?/u, + 1 - 2( B,p,, + B,p,,) + B: + B2’ + 24&P,,, 

C’, = u,‘,‘u,’ + 1 - 2( B,y13 + B,y,,) + Bf + B2’ + 2B, B,y,, , 

B, = D,/D,, 

B, = D/D,, 

D, = (Cp,, + (1 - C)y,,) - (CP,, + (1 - c)Y23)(0,2 + (1 - c)Yl*h 

D, = (Cp,, + (1 - C)y,,) - (CP,, + (1 - c)Yl,)(cP,2 + (1 - C)Y12)r 

D, = 1 - (012 + (1 - C)Y,,)~. 

The unidentified parameters of the OLS and GLS loss functions are a:, a:, 

P139 P23, Y139 and y23. With the exception of ut and u,J?, the expected OLS and 
GLS losses are evaluated using uniform priors for the unidentified parameters. 
For the reasons cited in section 3, we condition on reasonable values for 
u,‘/u,‘. The expected OLS loss is analytically tractable whereas the expected 
GLS loss is not. Numerical integration can be used to evaluate the GLS loss 
but this requires a four-tuple integration. Constraints on computer time 
require a simplifying assumption to reduce the problem to a more manageable 
triple integral. In what follows we set p 23 = y23; thus the correlation of X,, (the 
omitted portion of the regression) with X,, (the regressor that is not of 
interest) is the same in both regions. 
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Table 3 

Cross-section model. 
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Yl2 

(4 E[~(OLSIG)I/E[L(GLSI~)I (b) E[WJ-SIQI 

Sign of P12 Pl2 

PI2 lx2 0.99 0.9 0.5 0.0 0.99 0.9 0.5 0.0 

0.99 + 0.87 0.90 
0.9 + 0.98 0.86 
0.5 + 0.97 0.93 
0.0 0.91 0.89 
0.5 - 0.82 0.81 
0.9 - 0.85 0.86 
0.99 _ 0.99 1.00 

0.99 + 0.90 0.96 
0.9 + 0.96 0.88 
0.5 + 0.96 0.91 
0.0 0.93 0.92 
0.5 _ 0.91 0.93 
0.9 _ 0.98 0.99 
0.99 _ 1.03 0.98 

0.99 + 0.89 0.98 0.96 0.90 6.98 1.08 0.25 0.14 
0.9 + 0.92 0.87 0.93 0.90 1.25 0.73 0.24 0.14 
0.5 + 0.99 0.84 0.86 0.87 0.21 0.26 0.19 0.14 
0.0 0.99 0.88 0.84 0.86 0.08 0.13 0.15 0.14 
0.5 - 1.00 0.90 0.83 0.87 0.03 0.07 0.12 0.14 
0.9 - 1.02 0.87 0.82 0.90 0.01 0.04 0.10 0.14 
0.99 _ 1.02 0.85 0.81 0.90 0.01 0.04 0.10 0.14 

C = 0.25 

0.98 0.98 
0.83 0.87 
0.86 0.83 
0.87 0.86 
0.82 0.83 
0.89 0.87 
0.99 0.98 

c = 0.50 

0.95 0.92 
0.91 0.92 
0.88 0.89 
0.89 0.88 
0.91 0.89 
0.93 0.92 
0.91 0.92 

c = 0.75 

6.98 1.25 0.21 0.08 
1.08 0.73 0.26 0.13 
0.25 0.24 0.19 0.15 
0.14 0.14 0.14 0.14 
0.10 0.10 0.12 0.15 
0.04 0.04 0.07 0.13 
0.01 0.01 0.03 0.08 

5.58 1.02 0.22 0.10 
1.02 0.59 0.20 0.10 
0.22 0.20 0.15 0.11 
0.10 0.10 0.11 0.11 
0.05 0.06 0.08 0.11 
0.01 0.02 0.06 0.10 
0.00 0.01 0.05 0.10 

Uniform priors are used for p13, y13, and pzs. For pz3 the range is (- 1, + 1) 
and the ranges of p13 and y13 are, respectively, 

P12P23 + ((l - P:,)(’ - d3))1’23 

and 

Y12P23f ((l -Y122)(1-Pi3))1’2’ 

The ranges for p13 and y13 reflect the covariance restrictions (8) and (9). 
For u,‘/u,” we tried 0.0, 0.2, and 1.0. The results are not markedly different 

and in table 3. part (a), are presented results for uf/u,‘= 0.2. The table 
contains the values of R, the ratio of expected OLS to expected GLS loss, for 
combinations of y12, p12, and C. OLS is preferred except when y12 and p12 are 

J.Econ H 
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of opposite signs and both are close to 1 in absolute value. When GLS is 
preferred, the gain over OLS is slight; when OLS is preferred, the gain can be 
substantial. For completeness, part (b) gives the corresponding expected OLS 
losses for u,‘/c,’ = 1.0. Finally, the expected value of the Goldfeld-Quandt 
statistic G, conditional on the identified parameter values of table 3, was 
calculated and found to vary in the narrow range 1.31-1.54. Thus the observed 
value of G appears to offer no information regarding the OLS/GLS choice. 

As we did with the time series model we drop the uniform priors and 
examine the ratio of OLS loss [eq. (lo)] to GLS loss [eq. (ll)]. For all 
combinations of piZ, yiZ, pis, yi3, and p2s in the set (-0.99, -0.9, 
- 0.5,0.0,0.5,0.9,0.99), subject to the covariance restrictions, we calculated 
the ratio of losses. A total of 3111 cases were examined and in only 54 (1.74 
percent) of the cases did we observe the OLS loss to be greater than the GLS 
loss. 

An alternative cross-sectional model was also considered. In that model the 
correlation between regressors is constant across regions but regressor vari- 
ances in one of the regions are smaller than are the variances in the other 
region. Expected OLS and expected GLS losses are very close. For the sake of 
brevity the details of this last model are omitted but are available upon 
request. 

5. Conclusion 

It is common knowledge that the errors of omitted variables and incorrect 
functional form can bias tests for autocorrelation and heteroscedasticity in the 
direction of rejecting the null hypothesis of non-autocorrelation and homo- 
scedasticity. The common response is to use the suggested GLS procedure, 
even if it is suspected that the error is a non-zero disturbance mean (condi- 
tional on the regressors) rather than autocorrelation or heteroscedasticity. This 
paper relates the seriousness of OLS and GLS loss to identifiable parameters 
of the regressor covariance matrix using a loss function. On the basis of 
consistent estimators of these parameters the researcher can choose between 
the lesser of two evils (inconsistent estimators of regression coefficients). Of 
course, the researcher would ideally incorporate the omitted portion of the 
regression directly into the estimation process. This is not always possible; for 
example, the error may be the omission of an unobservable regressor or the 
theory on which the regression is based may be insufficiently developed to 
suggest possible functional forms. 

Two general regression models are presented: a time series and a cross-sec- 
tion model. The expected OLS loss is analytically derived for both models, but 
the expected GLS loss is analytically intractable and numerical integration is 
necessary. For the cross-sectional model considered here and the loss function 
(2), OLS is almost always preferred. For the time series model, the loss 
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function (2) and the restriction pi > 0 (i = 1,2,3): (a) p1 > p3 implies that, in 
general, there is smaller loss with OLS than with GLS. The opposite is implied 

by p3 > pl; and (b) if the researcher has no prior knowledge concerning p3 
(other than p3 > 0), then expected OLS loss is smaller than expected GLS loss 
if p1 > 0.6. It should be reiterated that these results apply when the researcher’s 
interest centers on a single regression coefficient and loss involves only 
inconsistency as in eq. (2). It remains unclear if the results carry over to other 
loss functions and prior distributions or if interest is on prediction or on 
estimation of the entire coefficient vector. Nonetheless, the results apply to 
many commonly encountered problems. 

In most applications, researchers have models more elaborate than two 
regressors, thus the results of sections 3 and 4 do not strictly apply. In the 

more general setting the term &Xzt in model (1) is replaced by X;,&, where 
Xi, is a row vector of regressors and & is a vector of unknown coefficients. 
The correlation coefficient plz becomes the correlation between X1, and 
X&, and so forth for the other parameters associated with X,. Unfor- 
tunately, & is generally unidentified because of the omission of X,, hence p12, 
y12, and pz are not identified in this case. Fortunately, however, the cross-sec- 
tional model suggests the use of OLS almost exclusively and the choice of 
estimator in the time series model depends primarily upon p1 which is always 
identified. 

The presumption in this paper is that the researcher has a strong prior that 
the model under study is m&specified. There is a literature which considers 
tests to discriminate between m&specification and non-scalar covariance 

matrices [see, for example, Savin and White (1978), Thursby (1981,1982)] and 
tests for specification error [see, for example, Hausman (1978) Plosser, Schwert 
and White (1982) Thursby and Schmidt (1977) Thursby (1985b), Davidson, 
Godfrey and MacKinnon (1985)]. In the event one accepts misspecification, 
the results of this paper can give guidance in the choice between OLS and 
GLS estimates. 
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