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YOUNG, E A.,J.M WALKER,R HOUGHTEN AND H AKIL. The degradation of dynorphin A in brain tissue m vivo
and i vitro. PEPTIDES 8(4) 701-707, 1987.—The demonstration of analgesia following in vivo admmistration of dynorphin
A (Dyn A) has been difficult In contrast, a number of electrophysiological and behavioral effects reported with in vive
iyection of Dyn A can be produced by des-tyrosine dynorphin A (Dyn A 2-17). This suggested the extremely rapid amino
terminal degradation of dynorphin A To test this hypothesis, we examined the degradation of dynorphin A following in
vivo 1yjection nto the periaqueductal gray (PAG) as well as in vitro using rat brain membranes under receptor binding
conditions. In vivo, we observed the rapid amino terminal cleavage of tyrosine to yield the relatively more stable des-
tyrosine dynorphin A This same cleavage after tyrosine was observed 1 vitro. Inhibition of this aminopeptidase activity in
vitro was observed by the addition of dynorphin A 2-17 or dynorphin A 7-17 but not after the addition of dynorphin A 1-13,
dynorphin A 1-8, dynorphin B or a-neo-endorphin suggesting a specific enzyme may be responsible The detection of the
behaviorally active des-tyrosine dynorphin A followingin vivo injection of dynorphin A suggests that this peptide may play
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an important physiological role.

Dynorphin A In vivo In vitro

Periaqueductal gray

DYNORPHIN A has been shown to be an extremely potent
opioid peptide active at several opioid receptors in a number
of in vitro preparations [4, 11, 16-19, 29, 43]. Despite the
demonstration of 1ts high affinity binding to brain membrane
receptors, and 1ts substantial potency in guinea pig ileum
preparations, demonstration of analgesia following in vivo
mjection has been difficult [13-15, 19, 27, 28, 38, 42]. A
number of behaviorial and electrophysiological effects have
been reported following in vivo injection of pharmacological
doses of dynorphin A {1, 2, 10, 19, 25, 27, 28, 35, 36, 38, 42].
With the exception of diuresis, the behavioral and physiolog-
ical effects often appear to be non-opioid since they cannot
be reversed by high doses of naloxone (10 mg/kg) or other
opiate antagonists, and, these same effects can be produced
by dynorphin A 2-13 or dynorphin A 2-17 [10, 28, 40, 42].
One explanation for the lack of potency of dynorphin A
tests of thermal pain stems from findings that kappa agonists
are weak in tests of thermal pain [23]. However, the kappa
opioid U-50488H was found to be active i the tail flick test
after either systemic or intracerebroventricular injections 1n
rats [37]. Early studies with another opioid peptide,
enkephalin, showed smmilar difficulties demonstrating
analgesia after in vivo injection of pharmacological doses
[3,9]. In the case of enkephalin, these difficulties resulted
from extremely rapid breakdown of enkephalin following in
vivo injection {9, 12, 21, 22, 24, 33, 34]. The availability of
stable analogues of enkephalin led to the demonstration of a

701

variety of opioid effects with these compounds {6, 7, 26, 39,
41]. However, in the case of dynorphin A, the stable
analogues produced thus far have altered the receptor selec-
tivity of dynorphin A, and thus changed the pharmacological
profile of dynorphin A [5]. Since suitable stable analogues
are not available, it 1s critical to examine the stability of
dynorphin A following in vivo injection and see if we could
detect any fragments of dynorphin A that are known to be
behaviorally active such as dynorphin A 2-17 or dynorphin
A 1-8.

Aside from concerns about the stability of dynorphin A
following :n vivo injections, studies on the degradation of
brain peptides and other neurotransmitters can yield impor-
tant information. In the enkephahn system, despite the wide-
spread presence of general aminopeptidases that could use
enkephalin as a substrate, in vivo degradation studies
demonstrated that a family of enzymes, the enkephalinases,
were responsible for the in vivo breakdown [9, 12, 21, 22, 24,
33, 34]. The existence of such specific degrading enzymes
provides another regulatory site in neurotransmitter sys-
tems. Inhibitors of such specific enzymes can provide other
strategies for studying neuronal regulation or for prolonging
the actions of endogenous ligands released under physiolog-
ical conditions ([31] and cf. monoamine oxidase nhibitors).

In addition to concerns about in vivo breakdown of
dynorphin A, breakdown of dynorphin A in in vitro systems
can alter its pharmacological profile. During our own recep-
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tor binding studies, we became concerned about the rapid
breakdown of this endogenous peptide in our membrane
preparation. Since opioid binding activity 1s dependent upon
an intact tyrosine at the N-terminal, it 1s particularly critical
to assure that the peptide is stable under these conditions.
Similar studies with CCK-33 binding have demonstrated
breakdown under binding conditions that can be inhibited by
bacitracin, yielding a 2-fold increase in specific binding [32].
Previous studies by Leshe and Goldstein [20] in rat brain
membrane preparations using [***I] dynorphin A 1-13 had
demonstrated extremely rapid NH,-terminal cleavage of the
tyrosine as well as rapid progressive COOH-terminal
shortening. Similarly, i1 vitro rat membrane data by Robson
et al. [30] usmmg dynorphin A 1-9 demonstrated that
nonspecific inhibition of the NH,-terminal cleavage of
tyrosine led to COOH-terminal shortening and formation of
numerous other opioid-active dynorphin fragments, making
true pharmacologic characterization of dynorphin A 1m-
possible under these conditions Interestingly, the data from
Leslie and Goldstein [20] suggested the existence of a spe-
ctfic membrane bound exopeptidase in rat brain that could be
mhibited by COOH-terminal fragments of dynorphin A 1-13
(dynorphin A 6-13), but only in concentrations that affected
opioid binding. To explore these problems, we undertook (a)
characterization of the time course of dynorphin breakdown
win vivo and in vitro, (b) identification of products following in
vitro mcubation with washed brain membranes, (¢) charac-
terization of the ability of dynorphin fragments and related
peptides to inhibit the breakdown of [*H]dynorphin A, and
(d) comparison of the in vitro date with in vivo studies of the
breakdown of [*H]dynorphin A njected into the
periaquaductal gray (PAG)

METHOD
Tissue Preparation

Rat and gumnea pig brains minus the cerebellum were
homogenized with a Brinkman polytron in 50 mM Tris buffer
(pH 7.4 at 24°C) at a concentration of 50 mg tissue (wet
weight) per ml of buffer. After a 40 minute 37°C incubation to
dissociate bound ligands, the homogenates were centrifuged
at 40,000 x g, then resuspended mn S0 mM Tris at a concen-
tration of 37.5 mg tissue/ml.

Product Identification

The [*H]dynorphin A used for all these studies was syn-
thesized by one of us (R.H.). For breakdown studies i1 vitro,
1 nM [*H]dynorphin A in Tris buffer was incubated with 15
mg tissue 1n microfuge tubes at 0°C for 30-90 minutes in the
presence or absence of possible inhibitory peptides. The pH
of Tris at this temperature 1s 7.2 with no change over the time
course of the incubation. These peptides were added 1n a 10
mucroliter volume dissolved in a 50:50 muxture (v/v) of
methanol to 0.1 N HCl (MeOH:HCI). Bound [*H]dynorphin
A was separated from free [*H]dynorphin A by centrifuga-
tion for 5 minutes at 4°C 1n a Beckman microfuge.

Two methods of chromatography were employed, a rapid
molecular seiving with a short Sephadex column, followed
by more complete 1dentification with reverse phase HPLC.
The supernatant was applied to a 12 centimeter G-10 column
equilibrated in 2 N acetic acid with 0.10% BSA for molecular
sieving. Using MeOH:HCI as an eluant, fractions (0.5 ml)
were collected directly into scintillation vials. [*H]dynorphin
A, [®H]Leu-enkephalin and [*H]tyrosine were used as stand-
ards This column reliably separates dynorphin A from
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dynorphin A 1-8 from Leu-enkephalin. However, 1t does not
separate Leu-enkephalin from tyrosine. Dynorphin A 1-13
co-migrates with dynorphin A on this column. The fractions
were suspended in 10 ml of scintillation cocktail for aqueous
samples and counted in a Beckman LS 9000 scintillation
counter. The bound (tissue pellet) was also counted to calcu-
late recovery of [*H]dynorphin A as well as to determine
both specific and nonspecific tissue binding by centrifuga-
tion. Dynorphin A (Dyn A), dynorphin A 2-17 (dT dynor-
phin) and dynorphin A 7-17 were a generous gift of Dr.
David Coy. Dynorphin A 1-8 and dynorphin A 1-13 were
purchased from Peninsula (Belmont, CA) and o-
neo-endorphin was purchased from Bachem (Torrance, CA).

For fial 1dentification of products, separation by re-
verse phase HPLC was undertaken. Buffer A consisted of
0.1% trifluoroacetic acid (TFA) 1 water with 0.05%7
triethylamine (TEA). Buffer B consisted of 0.19% TFA, 80%
acetonitrile, 19.9% water with 0 05% TEA. Beginning at 4%
Buffer A, a 10-minute gradient rising to 12% B produced
separation of Tyr, Tyr-Gly and Tyr-Gly-Gly fragments A
S-minute gradient from 129% to 27% B was followed by a
45-minute gradient between 27-38% buffer B which
produced good separation of Leu-enkephalin, dynorphin A
1-8 and dynorphm A For use in these breakdown experi-
ments, the [*H]dynorphin A was repurified on the HPLC so
all radioactivity co-migrated with the dynorphin A standard
This repunfied [*H]dynorphin A was tested for opiate bind-
ing activity to further insure that it was [*H]dynorphin A
After 0, 15, 30, 60 and 90 minutes ncubation of 1 nM
[*H]dynorphin A with brain homogenates, the supernatant
was lyophilized. resuspended in MeOH HCI and then
applied to the HPLC for separation. To insure proper iden-
tification of dynorphin and dynorphin fragments, unlabelled
peptide fragments and tyrosine were added as standards in
each HPLC sample run, and the fractions were counted with
a Beckman LS 9000 Scintillation Counter to determine
whether radioactivity co-migrated with dynorphin A or other
dynorphin fragments as monitored by UV (220 nm). Re-
covery was monitored by quantitifying the radioactivity
applied to column and the counts recovered For those
studies in which dynorphin fragments were measured by
radioimmunoassay, dynorphin A, dT dynorphin and dynor-
phin A 1-8 were not added. To assess the elution profile of
those standards, a calibration HPLC run followed the sample
runs on each day

In Vivo Studies

For in vivo studies, 25 ga stainless steel guide cannulae
were implanted to the periaqueductal gray (PAG) using the
coordinates 5 1 mm posterior to bregma, 0.5 mm lateral to
mudline, with the guide cannulae inserted to a depth of 4.5
mm (Nose + 0.5 mm tilt) (Pellegrino, Pellegrino and
Cushman, 1971). Seven to 10 days following surgery, the
animals received an injection of 0.1 nanomole of
[*H]dynorphin A plus 0.9 nanomole of unlabelled dynorphin
A through a 30 ga stainless steel needle extending 2 mm
beyond the guide into the PAG. The mjection volume was 1
microliter administered over 1 minute. To minimize
backflow, the needle remained in place for 30 seconds after
the end of the njection. After varying time periods (0, 2.5, 5
and 10 minutes), the rats were decapitated, their brams
rapidly removed, and using a stereotactic block, a 2 mm shce
of the PAG and the area 2 mm immediately rostral to the
PAG were dissected The cortex and colliculi were trimmed
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TABLE 1

BREAKDOWN OF (*H] DYNORPHIN A AFTER 90 MINUTE INCUBATION AT 0°C
(SEPHADEX G-10 SEPARATION)

1 uM 1 uM [*H]Dyn A
Control Dyn A 1-17 dTDyn Standard
Rat Bram
[*H]Dynorphin A 23% 62% 62% 90%
1-17 si1ze
[’H]Tyrosine 67% 32% 28%
S1Z¢
Guinea Pig Bram
[*H]Dynorphin A 40% 70% 55% 88%
1-17 size
[*H]Tyrosine S0% 22% 36%
S1Z¢
100 In Vit radioactivity was found. More than 95% of the radioactivity
= niro In the tissue was present 1n the supernatant after extraction.
90 The extracted material was applied to HPLC in MeOH:HCI
[ and separated using the gradient described above.
80 After HPLC, half of each fraction was counted for
radioactivity. The total radioactivity recovered from the
3H Dynorphin A HPLC runs averaged 90% of the material apphed to the col-
2 701 umn. To characterize the forms of dynorphin immunoreac-
> tivity present after in vivo jection, the other half of each
g 60r T fraction was radioimmunoassayed with a dynorphin A
) antibody raised i our laboratory to dynorphin A 1-17 [8].
3 sot This antibody 1s fully cross reactive with dynorphin A 2-17,
@ but does not recognize dynorphin A 1-8 and is only 50%
© 40 cross reactive with dynorphin A 1-13.
2 3H Tyrosine
2 30t P - RESULTS
e In Vitro Results
20F

3y Leu-Enkephahin

—————— -

wr /

c 15 30 45 60
Time (min)

FIG 1. Invitro time course for the breakdown of [*H]dynorphin A m
double washed rat brain membranes After incubation, supernatant
was analyzed by HPLC for co-migration of the radioactivity with
dynorphin A, tyrosine or other dynorphin fragments as standards.
Data are expressed as percent of total radicactivity recovered

from these regions and then these regions were immediately
homogenized in extraction buffer (3:1 acetone:0.2 N HCI).
The time from decapitation to homogenization averaged 1.5
minutes. After centrifugation, the supernatant was
lyophilized, then resuspended in MeOH:HCI for the HPLC
separation and identification. The radioactivity recovered in
the tissue averaged 10% of the infused counts. It 1s unclear if
the low recovery 1n tissue occurred because of nonspecific
loss to the cannula or guide or because of diffusion of
radioactivity from the site of injection. However, when we
extracted the areas surrounding the dissected regions little

Time course studies using single washed membranes with
HPLC identification and quantitation demonstrated rapid
degradation of dynorphin A following in vitro incubation
with brain homogenates. At the end of 60 minutes incubation
only 23% of the dynorphin A 1s mtact. In contrast, double
washed membranes showed slower breakdown (Fig. 1). The
HPLC separation identified the major radioactive break-
down fragment as [*H]tyrosine. The rest of radioactivity
co-migrated with dynorphin A or Leu-enkephalin.

Initial inhibitor studies were done following 90 minutes
incubation at 0°C, the optimal time for [*H]dynorphin A bind-
ing 1n brain homogenates. Table 1 shows the data from one
experiment. Molecular sieving with G-10 columns was used
to quantitate breakdown and inhibition by other peptides.
Thus, after 90 minutes incubation at 0°C with rat mem-
branes, only 23% of the radicacuvity co-migrates with
[*H]dynorphin A size material, while 67% of the radioactivity
is [*H]tyrosine size. In contrast, in guinea pig brain homoge-
nates at 0°C, 40% of the radioactivity elutes with the
[*H]dynorphin A standard, while only 50% of the radioactiv-
ity 1s [*H]tyrosine size material. In both species, the addition
of 1 micromolar unlabelled dynorphin A substantially in-
hibits the breakdown of the [*H]dynorphin A. It should be
noted, however, that even this high concentration of unia-
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TABLE 2

SIXTY MINUTES INCUBATION SEPHADEX
G-10 SEPARATION

Number of % [*H]Dyn A %[*H]Tyr %
Inhibitor Replications Size Size Inhibition
None 17 23 +05 69 = 09 0
1 uM Dyn A 15 50.6 =16 408 = 2 36 2
10 uM Dyn A 3 63 =67 26 + 53 52 £
1 uM dT-Dyn A 1 62 28 51
1 uM Dyn A 7-17 3 39 +£32 54 = 17 20+ 4
10 uM Dyn A 7-17 2 65 +42 27 = 56 55+ 5
I uM NAc Dyn A 2 43 =42 495+ 21 26+ 5
10 uM Dyn A 1-13 4 35876 56 *=136 17 = 10
10 uM Dyn B 6 32647 61 = 41 13+ 6
10 uM a-neo-end 3 237 x4 66 * 65 0+ 5
10 uM Dyn 1-8 3 243 +36 66 =+ 4 2+ 4

To calculate % mhibition the following formula was used

100 —

100 — % Dyn A itact with inhibitor

100 — % Dyn A mtact without inhibitor

Overall % inhibition 1s expressed as mean + standard error of mean
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FIG. 2. HPLC profile from time course in PAG, showing the dissap-
pearance of [*H]dynorphin A and the appearance of [*H]tyrosine
Standards are marked with arrows A very small proportion of the
radioactivity co-migrates with Leu-enkephalin. Data are expressed
as percent of total radioactivity recovered.

belled dynorphin A does not totally prevent the breakdown
of the [*H]dynorphin A in either species.

Using the same molecular sieving quantitation, des-
tyrosine dynorphin A (dT-Dyn or dynorphin A 2-17) appears
to mhibit the breakdown of [*H]dynorphin A to the same
extent as dynorphin A in rat brain. This is not the case n
guinea pig brain, where dynorphin A 1s more effective at

preventing breakdown of [*H]dynorphin A than 1s dT dynor-
phin Thus, there appear to be species differences in the
aminopeptidases that cleave the NH,-terminal tyrosine from
dynorphin A. The ability of dynorphin 2-17 to block the
breakdown may represent classic end-product inhibition
through an allosteric site, or, alternatively, it may be that the
recognition site for this dynorphin ammopeptidase 1s depend-
ent upon the non-opiate core of dynorphin. Consequently we
explored the effects of other dynorphin related peptides on
the breakdown of [*H]dynorphin A in rat brain (Table 2).
Since we wanted to minimize the breakdown of the compet-
ing peptides, we used a shorter incubation time of 60 minutes
at 0°C.

Again using molecular sieving quantitation, 1t can be seen
mn Table 2 that the non-opiate containing sequence of dynor-
phin A, dynorphin A 7-17, 1s able to partially inhibit the
breakdown of [*H]dynorphin A. It is not as effective an in-
hibitor as dynorphin A of dT dynorphin, but 1t posesses ap-
proximately 50% of the activity of dynorphin A itself. When
the concentration is increased to 10 uM, dynorphin A 7-17
shows similar nhibition as 1 uM dynorphin A. Dynorphin A
1-13, dynorphin B and a-neo-endorphin show some small
inhibitory actions at 10 uM concentration. Met-enkephalin
2-5, a classic enkephalinase inhibitor, does not affect the
breakdown (data not shown), nor does dynorphin A 1-8,
another prodynorphin derived peptide. If a specific enzyme
exists, the failure to demonstrate inhibition by dynorphin A
1-8 may indicate either a lack of recognition of this peptide
or that dynorphin A 1-8 is broken down so rapidly that by 60
minutes there 1s no longer any ‘‘inhibitor”’ left. Thus, similar
studies were undertaken at 30 minutes. Even after 30 min-
utes mncubation at 0°C, dynorphin A 1-8 showed no inhib:-
tion of the amino terminal cleavage of tyrosine from dynor-
phin A, when compared to the [*H]dynorphin A breakdown
standard for that experiment.

In Vivo Results

Using HPLC, in vivo breakdown was quantitated and
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FIG. 3. Summary graph of in vivo time course As [*H]dynorphin
disappears, [*Hltyrosine appears There 1s a slight accumulation of
[*H]material that co-migrates with Leu-enkephalin.

products were identified. In vivo, the breakdown of
[*H]dynorphin A proceeds extremely rapidly (Figs. 2 and 3).
Thus, even time 0 samples show less than 509 of the
radioactivity co-migrating with dynorphin A on HPLC. The
rest of the radioactivity co-migrates with tyrosine. This
aminoterminal cleavage of tyrosine appears to be common to
both 1 vitro and in vivo preparations. Since dT dynorphin
has been shown to be biologically active, 1t was of interest to
see if dT dynorphin was formed and stable following the loss
of tyrosine from dynorphin. The results are in Fig. 4. Sub-
stantial dT dynorphin can be demonstrated by radioim-
munoassay. In the area of injection (PAG) at the end of 10
minutes, our longest time point, 84% of the dynorphin A-IR
co-migrates with dT dynorphin. The total of dT dynorphin-
IR plus dynorphin A-IR equaled the amount injected,
suggesting that there is little loss of dynorphin A by conver-
sion of dT dynorphin to other fragments that were not rec-
ognized by our antibody. The ratio of [*H]dynorphin A to
[*H]tyrosine (809:20%) is the same as the ratio of dynorphin
A to dT dynorphin (84%:16%) in these same fractions. This
suggests that injection of dynorphin A is followed by rapid
amno terminal cleavage with the formation of a relatively
more stable compound, dT dynorphin. However, without a
time course of dT dynorphin breakdown 1t 1s not possible to
conclusively demonstrate the stability of dT dynorphin in
vivo. But, at the 10 minute time point 5-6-fold more dT
dynorphin then dynorphin A is present.

705

PAG 10 Minutes | FRONTAL 25 Minutes
dt-Dyn
Y

35['
32t

|
|
l
|
|
|
281 I
24}
dt-D
20} yn

!
|
I
{

161 Dyn A | Leu-Enk Dyn A
| 1 | i f
!
|
[
|
|

pmoles/ Fraction

OBPLeu
04} f

ol

L
Vf—

S0 60 70 50 60 70
HPLC Fraction Number

FIG 4 Dynorphin radioiommunoassay of HPLC separation demon-
strates the formation of des-tyrosine dynorphin A (dT-Dyn) from
dynorphin A (Dyn A). In both the area of mjection (PAG) and the
region rostral to the PAG (frontal) dTdynorphin can be detected
Standards are marked with arrows

DISCUSSION

The difficulty in demonstrating [*H]dynorphin A binding
to rat brain membranes suggested that the breakdown of
[*H]dynorphin A was extremely rapid. Leslie and Goldstein
had published similar findings with [**I}dynorphin A 1-13
[20]. Our time course studies in vitro confirm this notion. In
single washed membranes, the breakdown proceeded very
rapidly even at 0°C, resulting in less than 25% of the material
mntact at 30 minutes. In contrast, using double washed mem-
branes substantially slowed the breakdown of [*H]dynorphin
A in vitro Therefore, the proteolytic enzymes may be
loosely associated with the membranes, suggesting
nonspecific soluble enzymes may be involved in breakdown
in vitro. In all cases, the radiolabelled breakdown product
appeared to be [*H]tyrosine, without evidence of cleavage at
the other sites such as between Gly-Gly or Gly-Phe to yield
Tyr-Gly or Tyr-Gly-Gly. This suggests that enkephalinases
are not the primary enzymes involved in the breakdown
under these conditions. In the double washed membrane
preparation, the continued co-migration on HPLC of
[*H]dynorphin A with the unlabelled standard suggests that
extensive carboxy terminal cleavage is not occurring under
these conditions. This is in contrast to the data of Leslie and
Goldstein for dynorphin A 1-13 [20] and Robson et al. [31]
for dynorphin A 1-9, who found that carboxy terminal cleav-
age proceeds at a rate similar to amino terminal cleavage. It
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may be that the native full structure (Dyn A) 1s more resis-
tant to carboxy-peptidase activity. Likewise, we were un-
able to demonstrate by HPLC any [*H]dynorphin A 1-8 size
peaks following in witro ncubation or in vive 1njection,
suggesting conversion of [*H]dynorphin A to smaller opiate
active forms 1s not a major pathway of degradation In con-
trast, we did observe a small but consistent peak of radioac-
tivity that co-migrates on HPLC with Leu-enkephalin and
co-elutes with the tyrosine on G-10 sieving column. Without
another system for identification such as thin layer chroma-
tography for amino acid sequence we are unable to conclude
that this radioactive matenal is Leu-enkephalin, however,
authentic Leu-enkephalin would be so rapidly degraded
under these circumstances that we would not expect to see
Leu-enkephalin [9, 33, 34]. Since we are unable to demon-
strate [*H]Tyr-Gly-Gly formation that would be generated by
the breakdown of [*H]Leu-enkephalin, the generation of
Leu-enkephalin would appear to be a relatively minor path-
way 1If at occurs at all.

Although the aminopeptidase cleavage of tyrosine could
be accomplished by a general aminopeptidase, the inhibition
of this action by dT dynorphin and dynorphmn A 7-17,
suggests there may be a specific enzyme that cleaves dynor-
phin A with a recognition site in the COOH-terminal domain
of dynorphin A. The inhibition of this amino peptidase activ-
ity by a compound which cannot function as a substrate
(dynorphin A 7-17) supports a specific enzyme hypothesis
Similar findings have been reported for dynorphin A 6-13,
l.e., that dynorphin A 6-13 blocks the breakdown of
[25]]dynorphin A 1-13. Since we were able to demonstrate
only a shght inhibition of the breakdown of [*H]dynorphin A
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by dynorphin A 1-13, 1t 1s unclear if this enzyme 1s the same
enzyme described by Leslie and Goldstein [20]. However,
this may be due to rapid breakdown including carboxy ter-
minal cleavage of dynorphin A 1-13. Obviously, further
studies are necessary to confirm the existence of such an
enzyme, but possible inhibitors of this enzyme could provide
other avenues of approach to studying the in vivo phar-
macological effects of dynorphin A.

We have included data from guinea pig brain, even though
preliminary, to point out there may be species differences in
the stability of dynorphin A under binding conditions across
species. In view of the slower breakdown of dynorphin A in
vitio, it may be of interest to pursue a comparison of dynor-
phin A and dynorphin A 2-17 effects in vivo 1n guinea pigs.

In conclusion, in rat, 1t appears that dynorphin A 1s
rapidly broken down to dynorphin A 2-17, a non-opioid but
behaviorally active fragment of dynorphin. The rapidity of
this breakdown n vivo may explain the difficulty in demon-
strating opioid effects of dynorphin A 1 vive 1 this species.
The large number of non-opioid effects observed following in
yivo mjection of dynorphin A, which can be mimicked by
dynorphin A 2-17, may occur through the conversion of
dynorphin A to the behaviorally active dynorphin A 2-17
fragment
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