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Chronic Inescapable Footshock Produces Cholinergic 
System Supersensitivity 

Steven C. Dilsaver and Norman E. Alessi 

Introduction 

Dilsaver et al. ( 1986) reported that chronic swim 
stress produced cholinergic system supersensi- 
tivity in rats. However, an attribute peculiar to 
chronic swim stress could account for the en- 
hanced sensitivity to the hypothermic effects of 
oxotremorine (0X0) that we observed follow- 
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ing forced swim stress. Thus, we measured the 
effects of chronic inescapable footshock on the 
sensitivity of adult rats to the hypothermic ef- 
fects of 0X0. 

Methods 

Temperature Measurement 

Telemetric thermosensors (Mini-M&r Co., Sun 
River, OR) were implanted into the peritoneal 

cavity. These devices emit Hertzian waves at a 
rate proportional to temperature. A transistor 
radio set to an AM frequency served as a re- 
ceiver. Time to emit 10 sounds was measured 
using a digital display stopwatch. This measure 
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was converted to temperature using a linear 
regression equation that was derived by mea- 
suring the emission rate of the thermosensors at 
three temperatures in a temperature-controlled 
water bath. The instrument allows the accurate 
detection of a change in temperature of O.l”C 
(Tocco-Bradley et al. 1985). 

Oxotremorine Challenge 

OX0 challenges were conducted between 11 :OO 
AM and 1:OO PM and were preceded by the 
administration of methylscopalmine nitrate, 1 
mg/kg ip, to block the peripheral effects of the 
muscarinic agonist. Baseline temperature was 
measured 30 min later. OX0 (base), 1 mg/kg 
ip, was then given, and temperature was re- 
corded every 10 min for 120 min. 

Inescapable Footshock 

Inescapable footshock started 5 days after the 
implantation of thermosensors. The animals were 
stressed between 1O:OO AM and 2:00 PM. The 
procedure involved placing the animals in a 
plexiglass chamber with a metal floor. Two mil- 
liamps of current passed through the grid for a 
continuous second every 5 sec. Stress sessions 
lasted 30 min. Afterwards, the animals were 
removed and returned to their cages. 

Experimental Design 

The study involved three phases. 

Phase I (Implantation). Thirteen male Spra- 
gue-Dawley rats (263.3 _t 22.1 g) participated 
in Phases I and II. The first OX0 challenge 
marked the end of Phase I and provided a base- 
line against which data from subsequent chal- 
lenges could be evaluated. Animals participat- 
ing in Phases I and II came from two cohorts, 
only one of which contained animals that were 
carried beyond to Phases III and IV. 

Phase II (Inescapable Footshock). This phase 
started with the first of five sessions of inescap- 
able footshock and ended with the second OX0 

challenge, which followed the fifth footshock 
session by about 24 hr. 

Phase III (Continued Footshock). During this 
phase, seven animals continued to receive four 
additional sessions of footshock. This phase ended 
24 hr after the ninth session of footshock, when 
the animals were given their third OX0 chal- 
lenge. There were no differences in the weights 
of animals receiving 5 (280.7 + 13.8 g) or 9 
days (283.0 ? 14.3 g) of inescapable foot- 
shock. 

Phase IV (Rest). During this phase, the an- 
imals were not stressed. The phase terminated 
with the last (i.e., fourth) OX0 challenge. 

Statistical Analysis 

Magnitude of the change in body temperature 
at each time point (10, 20 . . . 120 min after 
the injection of 0X0) and the mean and max- 
imum thermic response before relative to after 
5 or 9 days of stress or 14 days of rest were 
designated as dependent variables. The level of 
significance of the difference in the mean thermic 
response at the 12 time points was determined 
by calculating the apposite confidence intervals. 
The paired Student’s t-test was used to assess 
the level of significance in the difference be- 
tween within-animal measurements of thermic 
responsiveness after 5 or 9 stress sessions and 
14 days of rest relative to baseline. 

Results 

Nine of 13 animals exhibited a significant in- 
crease in the mean hypothermic response after 
5 days of inescapable footshock. Furthermore, 
the mean hypothermic response of this sample, 
relative to baseline, also increased significantly 
(mean -I- SEM, 0.54 + O.l9”C, p < 0.01, 
t = 3.71, 12 df, paired t-test). Seven animals 
received 9 continuous days of inescapable foot- 
shock. Six of these showed a significant increase 
in the mean hypothermic response, and the sam- 
ple also exhibited a significant increase in the 
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TIME FROM THE INJECTION OF OXOTREMORINE 

Figure I. This illustrates the difference in the mean hypothermic response at each of 12 points in 
time (IO, 20, 30 . . 120 mitt) after the injection of oxo~mo~ne before (i.e., at the prestress 
baseline) and after 9 sessions of daily inescapable footshock in a sample of 7 rats. The hypothermic 
response at any given point in time for an individual animal equals the absolute value of the core 
temperature at that point in time minus the absolute value of the core temperature 30 min after the 
injection of methylscopolamine nitrate, There was an increase in the hypothermic response at all 
12 points (p = 0.~2~. The probability s~tements are based on nonoverlap of the 95% or narrower 
confidence interval with “0.” 

mean hypothermic response (2.38 i 0.67”C, animals demonstrated a significant increase in 

p < 0.01, t = 3.78, 6 df, paired t-test). the hypothermic response relative to the pre- 

Five animals were studied over a 4-week pe- stress baseline, and a fourth exhibited a trend 

riod, which included 14 consecutive days during toward enhanced sensitivity to 0X0. After 14 

which they were not stressed. Three of these days of “rest,” the mean hypothermic response 
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remained elevated (0.87 +- O.l7”C, t = 5.12, 
5 df, p < 0.01, paired t-test). Figure 1 sum- 
marizes the data. 

After 5 and 9 days of inescapable footshock, 
the samples also demonstrated enhancement of 
the hypothermic response at each of the 12 time 
points @ = 0.0002, sign test). The sample re- 
ceiving 9 days of footshock demonstrated a sig- 
nificant increase in the response at 6 of these 
points. Animals receiving 9 days of treatment 
also demonstrated enhancement of the hypo- 
thermic response at each of the 12 time points 
at which temperature was measured relative to 
their response after the fifth session (p = 0.0002, 
sign test). 

Prolonged exposure to inescapable footshock 
seemed to confer increased sensitivity to 0X0. 
The difference in the hypothermic response of 
each animal after 9 days of footshock relative 
to 5 provided an index of change in its sensitivity 
to 0X0. The 7 animals receiving 9 consecutive 
days of inescapable footshock demonstrated an 
enhancement of the mean hypothermic response 
relative to their response after the fifth session 
of 1.96 f 0.48 (t = 4.08, 6 df, p < 0.01, 
paired t-test). 

Discussion 

We previously reported that chronic swim stress 
enhanced the hypothermic response to OX0 
(Dilsaver et al., 1986). These results indicate 
that chronic inescapable footshock also pro- 
duces supersensitivity of a central muscarinic 
mechanism and provides prima facie validation 
of the hypothesis that chronic stress activates 
cholinergic mechanisms. 

The literature emphasizes the impact of stress 
on monoaminergic systems (Weiss et al. 1981). 
However, Gilad et al. (1985) reported that the 
septo-hippocampal cholinergic system in rats 
undergoes rapid activation during acute stress. 
This is expressed by an increase in high-affinity 
uptake of choline and the release of acetylcho- 
line (Ach). Estevez et al. (1981) reported that 
forced swimming resulted in an acute (27%) 
decrease in the density of tritiated quinuclidinyl 
benzilate binding ([3H]QNB) sites in the cere- 

bral cortex and basal ganglia. This change per- 
sisted for 60 min in the cortex and 24 hr in the 
basal ganglia. This is compatible with the idea 
that acute and chronic stress mobilize cholin- 
ergic mechanisms. The reduction in the density 
of QNB binding sites could be due to increased 
release of Ach. The density of muscarinic re- 
ceptors (mAchRs) is subject to the availability 
of endogenous or exogenous agonists (Gazit et 
al. 1974; Siman and Klein 1979; Ehlert et al. 
1980; Shifrin and Klein, 1980). It is also pos- 
sible that the reduction in binding sites could be 
due to a decreased density of presynaptic 
mAchRs. This could increase the release of Ach. 
Regardless, it is essential to note that these data 
pertain to animals subject to acute stress. Chronic 
stress could produce different findings. How- 
ever, both bodies of information might be con- 
sistent with the concept that stress activates cho- 
linergic pathways. For instance, in the acute 
paradigm, stress may produce an increased re- 
lease of Ach. Increased release of Ach could in 
turn produce an agonist dependent down-regu- 
lation of postsynaptic mAchRs. In contrast, 
chronic stress could supersensitize muscarinic 
systems by affecting up-regulation of mAchRs. 

The significance of these findings may par- 
tially lie in the capacity of cholinergic mecha- 
nisms to mediate effects of stress in affective 
disorder patients. Cholinergic system dysfunc- 
tion may be involved in the pathophysiology of 
affective disorders (Janowsky et al. 1972; Dil- 
saver 1986a,b). Epidemological data indicating 
associations between stressful events and the 
onset of depressive (Lloyd 1980) and manic 
(Kennedy et al. 1983) episodes suggest that an 
animal model useful in studying the effects of 
stress on cholinergic parameters in vivo would 
be of theoretical importance. Investigators re- 
cently proposed that stress increases the sensi- 
tivity of central cholinergic mechanisms in hu- 
mans and that this mediates some of its 
neurobiological effects (Janowsky et al. 1983, 
1985; Dilsaver 1986a). However, until now, an- 
imal models linking the pathophysiologies of 
depression, mania, stress, and cholinergic sys- 
tems have neither been available nor the subject 
of serious study. Animal models linking stress 
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and sensitivity of cholinergic systems promises 

to bridge the neurobiologies of anxiety, affec- 

tive disorders (Janowsky et al. 1972; Dilsaver 

1986b-e). and cholinergic mechanisms. 
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