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Amitriptyline Supersensitizes a Central 
Cholinergic Mechanism 

Steven C. Dilsaver, R. Michael Snider, and Norman E. Alessi 

The withdrawal of tricyclic antidepressants produces symptoms characteristic of cholin- 
ergic overdrive states. The authors previously proposed that these states are the con- 
sequence of the pharmacological induction of cholinergic system supersensitivity by chronic 
treatment with antidepressants, combined with a reduction in the plasma level of a 
competitive muscarinic receptor antagonist when the dose of a tricyclic is decreased. 
This is consistent with the facts that all tricyclic antidepressants are antimuscarinic agents 
and that classical antimuscarinic compounds, such as scopolamine, up-regulate and 
supersensitize muscarinic cholinergic systems. The authors present evidence that chronic 
treatment with amitriptyline supersensitizes a central cholinergic mechanism. Core body 
temperature is subject to influence by a central (hypothalamic) muscarinic mechanism, 
which is rendered supersensitive to cholinomimetic challenge by treatment with scopol- 
amine. The authors telemetrically measured the hypothermic responses of adult male rats 
to various doses of the muscarinic agonist oxotremorine before and in the course of 
chronic treatment with amitriptyline. Treatment with amitriptyline resulted in marked 
enhancement of the cholinomimetic-induced hypothermia. Methylscopolamine nitrate, a 
peripherally active antimuscarinic agent, did not block the hypothermic response to 
oxotremorine, whereas scopolamine, a centrally active antimuscarinic compound, did. 
This study indicates that the chronic administration of amitriptyline can produce super- 
sensitivity of a central muscarinic cholinergic mechanism. Clinical and theoretical im- 
plications of this finding are discussed. 

Introduction 

Many of the symptoms that commonly follow the discontinuation of tricyclic antide- 
pressants (TCAs) suggest withdrawal-induced cholinergic overdrive (Dilsaver et al. 1983a; 
Dilsaver and Greden 1984). Evidence supporting this includes observations that (1) anti- 
cholinesterases produce similar symptoms (Dilsaver 1986a,b); (2) TCA withdrawal symp- 
toms respond to antimuscarinic agents (Dilsaver et al. 1983b); (3) TCAs competitively 
displace muscarinic acetylcholine receptor (mAchR) radioligands in binding experiments 
(Snyder and Yamamura 1977) and produce physiological and biochemical effects indic- 
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ative of mAchR blockade (Atkinson and Landinsky 1972; Richelson and Dininetz-Romero 
1977; Blackwell et al. 1978; Szabadi et al. 1980); and (4) anticholinergic agents up- 
regulate and supersensitize cholinergic networks in rodents (Dilsaver 1986~). 

Body temperature is subject to regulation by central (hypothalamic) cholinergic mech- 
anisms (Lomax et al. 1964; Lomax and Jenden 1966), which are supersensitized by 
mAchR blockade in rats (Jaffe and Sharpless 1968; Friedman et al. 1969). We tested the 
hypothesis that chronic treatment with a TCA produces cholinergic system supersensitivity 
by measuring the hypothermic response to the centrally active cholinomimetic oxotre- 
morine (0X0), before and after chronic treatment with amitriptyline (AMI). 

Methods 

Temperature Measurement 

Thermosensors (Mini-Mitter Co., Sun River, OR) were surgically implanted into the 
peritoneal cavity of rats. These devices emit Hertzian waves at a rate proportional to 
temperature. A transistor radio set to an AM frequency served as a receiver. Time to 
emit 25 sounds or “clicks” was measured using a digital display stopwatch. This measure 
was converted to temperature using a linear regression equation that was derived by 
measuring the emission rate of the thermosensors at three temperatures in a temperature- 
controlled water bath. This procedure is sensitive to a 0. 1°C change in temperature (Tocco- 
Bradley et al. 1985). 

Oxotremorine Challenge 

All OX0 challenges were conducted at the same time of day, 12 hr after the evening 
dose of AMI. Methylscopolamine nitrate (1 mg/kg, i.p.) was administered 30 min prior 
to the i.p. injection of OX0 to block its peripheral effects. Temperature (i.e., time to 
the 25th “click”) was measured immediately prior to and 30 min after injecting meth- 
ylscopolamine, which alone did not affect temperature in 31 trials. Baseline temperature 
was defined as the average of the pre- and postmethylscopolamine nitrate measurements. 
OX0 was given immediately after the 30-min postmethylscopolamine nitrate temperature 
measurement. Temperature was recorded every 15 min for 120 min. 

Pharmaceuticals 

0X0, methylscopolamine nitrate, scopolamine hydrobromide, and amitriptyline hydro- 
chloride were purchased from Sigma Chemical Company (St. Louis, MO). Doses of 
OX0 refer to the base. Doses of the other drugs were expressed as the salt form. All 
drugs were given intraperitoneally on a milligram per kilogram basis. 

Experimental Design 

Experiment 1. Figure 1 presents the course of Experiment 1. The experiment was 
divided into four phases. In Phase I (implantation), thermosensors were implanted in 15 
male adult Sprague-Dawley rats, and they were allowed 5 days to recover. During Phase 
II, the baseline hypothermic response to OX0 (0.05, 0.10, 0.25, 1.0, and 2.5 mg/kg) 
was recorded in three groups of five animals each, as shown in Figure 1. Throughout 
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Figure 1. The course of Experiment 1. See the Methods section for details. 

Phase III, animals were treated with AM1 (10 mgkg, i.p., twice daily) for 16 days. The 
animals were rechallenged with 0X0, 0.05, 0.1, or 0.25 mg/kg, between days 12 and 
16 of treatment with AMI. These data were compared to the pre-AM1 response to various 
doses of 0X0. In Phase IV, 9 animals received AM1 (10 mg/kg) for an additional 10 
days. They then received AMI, 20 mg/kg for 5 more days prior to receiving a challenge 
with OX0 at 0.125 mg/kg. 

Experiment 2. Two groups of animals were challenged with 0X0, 1 mg/kg, i.p., 
prior to starting a course of AMI, 10 mg/kg twice daily for 2 days and 15 mgkg twice 
daily for 5 days (n = 5), or saline (n = 4). The maximum hypothermic response and 
decrease in temperature over time at baseline and after treatment were compared within 
and between groups. 

Experiment 3. Eleven animals in Experiment 1 received AM1 10 mgkg, i.p., for 17 
days. These animals then received scopolamine hydrobromide, 2 mgkg, i.p., as a pre- 
treatment in lieu of methylscopolamine nitrate in order to assess whether a peripheral or 
central mechanism underlies 0X0-induced hypothermia. 

Statistical Analysis 

Data were analyzed using (1) Analysis of Variance (ANOVA) with repeated measures 
to assess the significance of differences between phases due to a drug effect (i.e., pre- 
and posttreatment), (2) two-sample r-tests for comparing sample means, and (3) paired 
t-tests to assess the significance of changes in the mean maximum hypothermic response 
and the mean hypothermic response over all eight time points within a sample, before 
and after the chronic administration of AMI. Calculation of confidence intervals was used 
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to determine whether or not the mean change in core temperature produced by OX0 (2.5 
mg/kg) after pretreatment with scopolamine hydrobromide in Experiment 3 differed sig- 
nificantly from the condition of pretreatment with methylscopolamine nitrate at specific 
points in time after the injection of OX0 and whether or not the mean effect (average 
response to OX0 over all eight time points) differed. 

Results 

Experiment 1 

OX0 produced dose-dependent hypothermia prior to AM1 treatment. This was evidenced 
by significant differences in the magnitude of the hypothermic responses over time to 
0X0: 0.1 versus 1.0 mg/kg, p < 0.01; 1 mg/kg versus 2.5 mg/kg, p < 0.05 (ANOVA 
with repeated measures). Table 1 summarizes the responsiveness to OX0 at 0.05, 0.10, 
and 0.25 mg/kg before and after treatment with AMI, 10 mg/kg, i.p., twice daily for 
12-16 days. Table 2 presents the corresponding data on the responsiveness to OX0 at 
1 .O and 2.5 mg/kg, i.p. The 9 animals that were rechallenged with OX0 at 0.05 mg/kg 
after 12-16 days of treatment with AM1 exhibited significant enhancement of the hy- 
pothermic response (p < 0.05). The 10 animals rechallenged with OX0 at 0.1 mg/kg 
after 12-16 days of AM1 treatment showed enhancement of the hypothermic response 
(p < 0.02). OX0 at 0.25 mg/kg also produced increased hypothermia relative to the 
pretreatment phase (p < 0.0001, n = 11) posttreatment. Figure 2 pictorially presents 
the difference in the hypothermic response to OX0 at 0.10 mg/kg before and after 
treatment with AMI. Animals treated with AM1 (10 mg/kg for 26 days, followed by 20 
m&g for 5 additional days) had a mean maximum decrease in temperature of 1.5 1 & 0.19”C 
(SEM) when given OX0 at 0.125 mg/kg. Change in temperature over time in response 
to OX0 at 0.125 mg/kg was actually greater after treatment with AM1 than it was in 
response to OX0 at 2.5 mg/kg at baseline (p < 0.02, ANOVA with repeated measures). 
Table 3 summarizes these data, and Figure 3 illustrates the general relationship between 
dose of OX0 and hypothermic response before and after treatment with AMI. 

Experiment 2 

The maximum decrease in temperature and change in temperature over time did not 
change in the saline-treated sample (n = 4). The AMI-treated sample demonstrated a 
significantly greater maximum decrease in temperature [1.57 -+ 0.15”C @EM) versus 
0.64 ? O.l2”C, p < 0.05, two-sample t-test] compared to the saline-treated sample after, 
but not before, the 7 days of treatment. Furthermore, the AM1 group (n = 5) exhibited 
a significant increase in its maximum hypothermic response of 1.2 f. 0.34”C (SEM) 
(p < 0.05, paired t-test) and trends toward a significant decrease in temperature over all 
8 points in time (p < 0.06, ANOVA with repeated measures) compared to its pretreatment 
phase. The results of this experiment are depicted in Figure 4. 

Experiment 3 

Scopolamine markedly blunted the hypothermic effects of 0X0. The mean maximal 
decrease in temperature in response to OX0 at 2.5 mg/kg after pretreatment with sco- 
polamine (2 mg/kg, i.p.) was 0.17 2 0.08”C @EM) (n = 11) in animals that were treated 
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Table 2. Thexmic Response to OX0 
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15 
Time in minutes after injection of OX0 

30 45 60 75 90 105 120 

Part I. Mean thermic response to 0X0, 1.0 mglkg, i.p. (prior to rreatmew with 441) 
Mean baseline 36.49 5 0.15 -0.14 -0.31 - 0.45 -0.21 -0.04 

core temperature + 2 k + + 
(“C) f SEM 0.10 0.17 0.15 0.12 0.09 
(n = 15) 
Mean response 
+ SEM 

.0.16 + 0.05’C - 

Significantly 
different from 
“no change” 
(i.e., mean 
change differs 
from “0”) 

Level of 
significance 

No No Yes No No 

- - p < 0.02 - - 

Part 2. Mean thermic response to 0X0, 2.5 mglkg, i.p. (prior to treatment with MI) 
Mean baseline 36.55 ? 0.11 - 0.38 -0.68 -0.93 - 0.87 -0.66 

core temperature 2 + c ?I A 
(“C) + SEM 0.07 0.13 0.19 0.20 0.18 
(n = 15) 
Mean response 
2 SEM 

-0.6i + 0.25”C 

Significantly 
different from 
‘&no change” 
(i.e., mean 
change differs 
from “O+‘) 

L.evei of 
significance (p) 

Yes Yes Yes Yes Yes 

<O.OOl <O.OOl <O.OOl <O.OOl <O.Ol 

- 0.07 
!z 

0.04 

-0.03 -0.05 
+ * 
0.04 0.10 

No No No 

- 

-0.50 -0.25 - 0.07 
f r r 

0.06 0.12 0.07 

Yes No No 

<0.001 

Part 1 sumlnaliz s data on the thermic responsiveness of 15 rats to OX0 at 1.0 mgikg, i.p., prior to treatment with AMI. The mean 
response was significantly different (as determined by calculation of confidence intervals) from “0” (i.e., no change) at only one point. 
Part 2 presents the corresponding data on the responsiveness of the sample to OX0 at 2.5 mglkg, i.p. 

with AMI at 10 mgkg, i.p., twice daily for 17 days (NS, 95% confidence limits = + 0.01 
to - 0.35”(J), and the average change in temperature over time (i.e., the mean of all 11 
animals over all 8 points) was 0.11 k 0.03”C (SEM) (99% confidence limits = - 0.01 
to -0.21”C) compared to -0.54 + 11°C (SEM) (99% confidence limits = -0.213 to 
- 0.87”C) when treated with methylscopolamine. Thus, the difference in responsiveness 
to OX0 at 2.5 mgkg under the condition of pretreatment with scopolamine and meth- 
ylscopolamine differed at the 0.01 level. The results of this experiment are presented in 
Figure 5. 

Discussion 

Maximum decrease in core temperature, changes in temperature over time, and change 
in core temperature at 8 points in time after the injection of OX0 were used as dependent 
variables in evaluating the effects of chronic treatment with AM1 on a muscarinic cho- 
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I I I I I 1 I I 

15 30 45 60 75 90 105 120 

TIME (min) AFTER THE INJECTION OF 

OXOTREMORINE 0.1 mg/kq ip 

Figure 2. The mean difference f. SEM in the hypothermic response to OX0 (0.10 mgkg, i.p.) 
prior to and after treatment with AM1 (10 mg/kg, i.p. twice daily for 12-16 days). The mean 
difference is significant atp < 0.02. Furthermore, there was a significant difference in the direction 
predicted by the hypothesis that AMI enhances sensitivity to the hypothermic effects at 7 of 8 
points in time. 

linergic system. The data indicate that (1) saline injections do not alter the hypothermic 
response to 0X0; (2) treatment with AM1 enhanced the hypothermic response to OX0 
(0.05, 0.1, and 0.25 mg/kg) relative to the pretreatment baseline; (3) scopolamine (2.0 
mg/kg), but not methylscopolamine nitrate, blocks the OX0 (2.5 mg/kg) induced tem- 
perature decrease, implicating a central cholinergic mechanism; and (4) AM1 induces 
central cholinergic system supersensitivity. These results support the hypothesis that 
cholinergic overdrive is involved in the pathophysiology of some TCA withdrawal phe- 
nomena. The observation that 21 days of treatment with desipramine produces supersen- 
sitivity of the iris to pilocarpine (i.e., results in a greater miotic response) relative to the 
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Table 3. Within-Animal Comparison of the Thermic Response to OX0 (0.125 mgkg, i.p.) after 
Treatment with AMI to the Thermic Response to OX0 (2.5 mg/kg, i.p.) prior to Treatment with AM1 

Time in minutes 
15 30 45 60 75 90 105 120 

(A) Mean baseline core 

temperature (“C) f SEM 

(n = 11) on day animals 

received 0X0, 0.125 mg/ 

kg 

36.43 f 0.11 -0.29 -0.55 -0.86 -1.29 -1.32 -1.23 -1.10 -0.72 

2 2 2 k k 4 4 4 

0.07 0.11 0.13 0.20 0.19 0.24 0.26 0.20 

Mean response t SEM 

(B) Mean baseline core 

temperature (“C) 2 SEM 

(n = 11) on day animals 

received 0X0, 2.5 mg/kg 

Mean response k SEM 

-0.92 f 0.12 

36.73 f 0.14 -0.41 -0.70 -1.01 -0.95 -0.68 -0.43 -0.20 -0.06 

f 2 f 2 f 2 f 2 

0.09 0.15 0.17 0.16 0.18 0.15 0.14 0.02 

(C) Difference [(absolute value 

of A) - (absolute value 

of B)l 
Mean difference 

in response 

* SEM 

-0.61 f 0.26 

+0.12 +0.15 +0.15 -0.34 -0.63 -0.80 -0.90 -0.66 

-0.36 f 0.12 

(D) P NS NS NS NS <0.02 co.02 co.02 co.02 

r + 1.2 +1.15 +0.12 -1.37 -2.74 -2.96 2.90 -2.87 

SD 0.10 0.13 0.24 0.25 0.23 0.27 0.31 0.23 

df 10 10 10 10 10 10 10 10 

This table compares the mean hypothermic response at each of 8 time points atkr the injection of OX0 at 2.5 me/Le at baseline and 
0.125 mg&g after chronic (31 days) treatment with AMI. All animals received AM1 (10 mgkg, i.p.) twice daily for 26 days, followed by 
20 mgntg wss a more potent inducer of hypothermia sfter chronic treatment than was 2.5 mg/kg at baseliw. 

pretreatment baseline in normal human subjects also supports this conclusion (Dilsaver 
and Greden 1983). 

Nomura et al. (1982a,b) reported corroborative findings in rat myocardium using 
desipramine at 10 mg/kg twice daily for 10 days. This regimen was associated with 
enhancement of the negative inotropic effects and an increase in the acetylcholine-me- 
diated augmentation of the activity of omithine carboxylase. These investigators also 
found an increased density of mAchR radioligand binding sites in this preparation fol- 
lowing treatment with DMI. Rehavi et al. (1980) and Goldman and Erickson (1983) have 
similarly documented that 10-21 days of treatment with AM1 results in up-regulation of 
mAchRs in mouse and rat brain, respectively. 

An array of evidence suggests that the pathophysiology of depression involves super- 
sensitivity of central muscarinic cholinergic mechanisms (Dilsaver 1986b). Pharmaco- 
logical agents that supersensitize cholinergic neurons may be useful in modeling aspects 
of the pathophysiology of depressive disorders. Measures useful in describing the neu- 
robiology of these illnesses can be classified as being (1) phenomenological or behavioral, 
(2) physiological, (3) biochemical, and (4) receptor binding variables (Dilsaver 1986a). 
Cholinergic manipulations change variables in each of these classes. Many of these 
alterations are consistent with the hypothesis that hyperactivity or supersensitivity of 
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Post - AMI _-__ 
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% 

P -0.40 
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0 
0 -0.50 

z 
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5 -0.70 

Y = -0.24 x + 0.02 

\ R= - 0.94 

0.20 0.40 0.60 0.80 I.0 1.2 1.4 1.6 I.6 2.0 2.2 2.4 

DOSE OF OX0 (mg/kq) 

Figure 3. This illustrates a shift in the dose-response curve for induction of hypothermia by OX0 
to the left after treatment with AMI at 10 mg/kg, i.p. twice daily for 12-16 days. The mean 
responses of 15 animals to OX0 at 0.05, 0.10, 0.25, 1.0, and 2.5 mg/kg, i.p., prior to TCA 
treatment entered into calculation of the regression equation characterizing sensitivity at baseline. 
Responsiveness to OX0 at 0.05, 0.10, and 0.25 mg/kg was used to obtain the posttreatment 
equation. 

cholinergic systems are involved in the pathogenesis of depressive disorders. For instance, 
administration of scopolamine to normal human subjects for three consecutive mornings 
resulted in shortened REM latency and increased REM density on the night after the dose 
was held on the fourth morning. The polysomnograms of these subjects were indistin- 
guishable from those of patients with primary depression. Another phenomenon that may 
be related to the capacity of TCAs to render cholinergic systems supersensitive is the 
significant increase in the postdexamethasone plasma cortisol concentration and frequency 
of positive Dexamethasone Suppression Test (DST) results during a 14&y withdrawal 
phase (Dilsaver and Greden 1985). Finally, Kelwala (1984) reported that depressed 
patients demonstrate increased miosis in response to pilocarpine compared to normal and 
nonaffectively ill psychiatric control subjects. The capacity of desipramine to produce 
this effect in depressed patients (Dilsaver and Greden 1983) may be another illustration 
of the way in which antimuscarinic agents, including TCAs, may be useful in modeling 
aspects of the pathophysiology of depression related to supersensitivity of the cholinergic 
systems. 

In conclusion, treatment with AMI resulted in supersensitization of a central cholinergic 
mechanism involved in thermoregulation. This is consistent with the hypotheses that TCA 
withdrawal symptoms may be due to withdrawal-induced cholinergic overdrive (Dilsaver 
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Figure 4. The change in the thermic response to 
OX0 (1 mgkg, i.p.) in rats receiving twice daily 
i.p. injections of saline (n = 4) or AMI (15 mgkg) 
(n = 5). Both samples were challenged with OX0 
prior to and after saline or AMI administration. 
The thermic response at a given time point on a 
particular day is derived from the formula: (core 
hody temperature at that point in time) - (core 
hody temperature prior to the injection of OX0 
on that day). Change in the thermic response at a 
given point after treatment with saline or AM1 is 
given by the formula: (thermic response after 
treatment) - (thermic response prior to treat- 
ment). The thermic response of the sample treated 
with saline did not change significantly, whereas 
that of the AMI-treated group did. 

-2OL ’ ’ ’ ’ ’ ’ ’ ’ 
I5 30 45 60 75 SO 105 I20 

TIME IN MINUTES AFTER INJECTION OF OX0 

et al. 1983a; Dilsaver and Greden 1984), and TCAs may be useful for approximating or 
modeling those aspects of the pathophysiology of depressive disorders related to up- 
regulation and supersensitivity of cholinergic systems (Dilsaver 1986a-c). 

Supported in part by physician Scientist Career Development Award MH 0055301 (Muscariuic Receptor 
Abnormalities in Affective Illness) (S.C.D.) and NS 20920 (R.M.S.). 
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Figure 5. The thermic response of 11 animals to OX0 (2.5 mg/kg) in the presence and absence 
of scopolamine (2 mg/kg, i.p.). Pretreatment with scopolamine was associated with significant 
blunting of the hypothermic response (p < 0.01). 
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