
THEORETICAL POPULATlON BIOLOGY 31, 47-74 (1987) 

Individual and Population Sex Allocation Patterns* 

STEVEN A. FRANK 

Division of Biological Sciences, Uniurrsit~ of Michigan, 

Ann Arbor, Michigun 48109~1048 

Received April 30, 1985 

A variety of sex allocation models is considered in which (i) the reproductive 
returns on investment in males differ from the returns on investment in females, (ii) 
the amounts of resources available for reproduction vary in the population, (iii) the 
costs of making male and female reproductive structures differ, and (iv) the concep- 
tion sex ratio may be fixed and there may be an initial minimum investment per 
offspring. Results of these models include quantatitive predictions for both 
individual- and population-level sex allocation, an opportunity to study the 
magnitude of changes in predicted patterns as key variables change, and therefore 
an analysis of the robustness of Fisher’s equal investment theory. One example is 
that Fisher’s argument is extremely robust for high fecundity organisms, but, in low 
fecundity organisms, is sensitive to differences between the sexes in reproductive 
returns on investment per offspring, a situation that occurs in many vertebrates to 
which Fisher’s theory is often applied. A second example is that individual- and 
population-level patterns often depend strongly on the distribution of resources 
available for reproduction among individuals in the population. ( 19X7 Academic 

Press. 1°C 

1. INTRODUCTION 

Fisher (1930) asserted that equal amounts of resources will be allocated 
to sons and daughters within a population in each generation, since any 
asymmetry favors more investment in the under-endowed sex. Fisher’s idea 
continues to be the cornerstone of sex allocation theory, although very sim- 
ple results prove the equal investment theory to be sensitive to changes in a 
crucial and often unrealistic assumption. This critical assumption is that 
reproductive returns on investment must be the same for resources 
allocated to male or female reproductive function (MacArthur, 1965; 
Hamilton, 1967; Clark, 1978; Charnov, 1979a; Charlesworth and 
Charlesworth, 1981). Charnov (1982) has reviewed many cases in which 
unequal investment results from different returns on investment for the two 
sexes. 
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The current theory for different returns between the sexes deals only with 
special cases. Also, no general approach exists for predicting individual and 
population sex allocations when there is variation among individuals in 
resources available for reproduction. Here I subsume and extend previous 
work with a simple and general formulation, which yields more realistic 
quantitative predictions. Three new outcomes of this general approach are 
that individual and population sex allocations often depend strongly and in 
a non-intuitive way on the shape of the distribution of resources among 
individuals, that the robustness of Fisher’s equal investment theory can be 
analyzed in a wide variety of situations, and that several remaining 
weaknesses of the current theory can be made explicit. 

I begin by deriving a general result for the population allocation ratio 
from the shapes of the male and female return functions (see Charnov, 
1979a; Charlesworth and Charlesworth, 1981 for special cases), and then 
present a general solution for the case in which individuals have different 
amounts of resources to invest, and can adjust their allocation ratios 
according to the resources available to them. These problems will first be 
considered with total reproductive returns as a function of total investment 
in males and females per investment interval, where individuals may have 
different amounts of resources available to invest. I then consider the 
problems that arise when individuals can vary the amount of investment 
per qfipring (i.e., how to package investment into discrete units), and also 
when the sex ratio at conception is fixed (Maynard Smith, 1980) or when 
there is a fixed minimum investment per sex (Heath, 1977). In the dis- 
cussion I use the insight generated by this group of models to consider how 
the problem of defining an “investment period” affects predicted allocation 
patterns, and when it is necessary to analyze investment per offspring ver- 
sus total investment per sex. 

For any particular case the models here allow one either to examine the 
magnitude of changes in predicted patterns as functions of changes in key 
variables, or else they suggest ways in which to construct appropriate 
models. The work presented here is based on a number of separate studies 
of narrow special cases which will be referred to later. As far as I know, this 
is the first attempt to generalize these separate problems within a formal 
quantitative structure. 

I will assume autosomal control of the sex ratio and additive gene 
action, and will often present the argument in the form of the mother’s 
reproductive success as a function of her allocation ratio in sons and 
daughters. The syntheses of Charnov (1982) and Bull (1983) show that 
there are only a few minor differences in the argument, if any at all, when 
the organism is hermaphroditic, when sex (gender) is environmentally 
determined, or when the father partly or completely controls the allocation 
ratio. 
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1.1. Review of Sex Allocation Algebra 

The models will be constructed by searching for the sex allocation 
phenotype that maximizes the relative reproductive success of the 
individual that controls the allocation ratio. This approach is common in 
the sex ratio literature, originating with Shaw and Mohler (1953). Charnov 
(1982) reviews the history of this approach for sex ratios, and Maynard 
Smith (1982) and Grafen (1984) discuss the relationship between 
phenotypic (ESS) and genetic models. Taylor (1985) compares the 
Shaw-Mohler approach with other mathematical methods for the study of 
sex allocation. By making four assumptions, results derived by the 
phenotypic method are usually the same as results obtained from genetic 
models. These assumptions are (reviewed by Charnov, 1982) (i) large pop- 
ulation size, (ii) random mating, (iii) no within-sex competition for a 
limited resource, and (iv) control of the sex allocation ratio by additive 
gene action at a single autosomal locus in a diploid organism. See 
Uyenoyama and Bengtsson ( 1979, 1981, 1982) Eshel and Feldman 
(1982a, b), and Taylor (1985) for further discussion of genetic and 
phenotypic sex ratio models. 

Assume that mothers control the allocation of resources to sons and 
daughters. The expected relative reproductive success for the ith mother of 
a large population can be written as a function of the fraction of resources 
allocated to sons, x,, and the fraction allocated to daughters, 1 -x, (Shaw 
and Mohler, 1953; MacArthur, 1965). Let the reproductive returns on male 
investment be fl.u,), and returns on female investment be g( 1 -s,). Then 
the relative reproductive value of male investment for the ith mother is 
,f’(.~,)/E[,f’(,~,)], where the denominator is the expectation over all mothers 
in the population. Likewise, relative returns on female investment are 
g( I - .u,)/E[g( 1 - .u,)]. So, relative reproductive success of the ith mother is 

f(-u!) d' - .u,) 
M‘, = EM-u,)] + E[ g( 1 - X,)] 

or 

M’; = ,f(x,) 
i 

EM’ -x,)1 
ECf (-~;)I 

+ g(l --x ). 
I 

(1) 

Equation (1) is the standard form of the Shaw-Mohler (1953) equation, 
where population fitness E(w,) is always 2, independent of the individual 
allocation ratios (x,: 1 -x,). Relative fitness of the ith mother in the pop- 
ulation is the same for Eqs. (1) and (2), but E(w,) for (2) is ZE[g( 1 -xi)], 
which is sometimes useful, since population fitness will usually depend on 
the total reproductive value of the females in the population, when there is 
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no paternal investment except gametes. Equation (2) is also useful, since it 
defines reproductive returns for male investment as value of sons, f(x,), 
times average mating success, E(g)/E(f), and this allows reproductive 
returns for males and females to be compared on the same scale (fand g 
have arbitrary scales and are not generally comparable). This standar- 
dization to a common metric will be used to generate comparisons of male 
and female return curves on the same set of axes. 

If an equilibrium exists, it will occur at the values of x, and 1 -x, that 
maximize u’, (MacArthur, 1965). There are several equivalent ways of 
going about this, and I have chosen a method that is useful for models 
developed below. The maximum of M’, occurs where f(x,)/E[,f(x,)] is a 
maximum with respect to xi and simultaneously g( 1 - x,)/E[g( 1 - .r,)] is a 
maximum with respect to 1 -x,, subject to the obvious constraint that 
x, + (1 --xi) = 1. Following through one obtains MacArthur’s (1965) 
general result 

.f’o=K’U --y*1 
.f(-x*) Al --x$) 

(3) 

which is a standard sort of marginal value result from classical economic 
theory. When returns are linear for both sons and daughters, f(.u*) = x* 
and g( 1 -x*) = 1 -x*, hence x* = $. Here all individuals (i) have the same 
amount of energy to invest and (ii) all invest x* in males at equilibrium, so 
individual- and population-level investment is the same. These two 
assumptions will be relaxed later. 

1.2. Generating Shapes ,for the Return Functions 

There is no particular reason why the returns on male and female 
investment must be either linear or equal. The three basic shapes shown in 
Fig. 1 describe other likely sorts of return functions. For example, the 
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FG. 1. Shapes for reproductive returns for one sex as a function of investment in that sex. 
A, low investment on one sex yields relatively low reproductive returns for that sex, while in B 
low investment yields relatively high returns. An example of S-shaped returns, as in C, would 
be investment in males in a sexually dimorphic polygynous ungulate. 
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diminishing returns in Fig. 1B describe the value of investment in sons 
when there is local competition for mates (Hamilton, 1967). The S-shaped 
curve in Fig. IC describes the return function on male investment for most 
low fecundity polygynous species, since weak males rarely reproduce while 
strong males often sire several broods. Additional biological interpretations 
of return function shapes for each sex can be found in Charlesworth and 
Charlesworth (198 1) and Charnov ( 1982). 

Ideally, the form of the return function would allow x* to be calculated 
directly for any of these shapes. The cumulative distribution function 
(CDF) of the beta probability density function (PDF) has this generality. 
The CDF for a beta distribution is 

.I‘(-xl = f(s+t) ’ 
f(.s)f(t) s 0 ?“ ‘( 1 - y)’ ’ dy, s, t > 0, 0 < x < 1 

r(r)=(r-l)f(r-l)=j,,’ !‘I ‘P ‘&, 
(4) 

where T(r) is the gamma function, sometimes referred to as the 
“generalized factorial function,” since if r is a positive integer, 
T(r) = (r - I)!. s and t are parameters that determine the shape of the 
function (Fig. 2). 

2. POPULATION ALLOCATION UNDER NONLINEAR RETURNS 

2. I. Nonlinear Returns on Mule Investment 

A model is studied in this section in which the shapes of the male and 
female return functions differ, each individual in the population has the 

0 0.5 1.0 0 0.5 1.0 

INVESTMENT PER SEX 

FIG. 2. Shapes for reproductive returns described by the parameters s and I, from Eq. (4). 
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same amount of resources to invest, and each is constrained to invest the 
same proportion of resources into males and females. Preventing variation 
among individuals makes this model unrealistic, but there are two reasons 
for beginning with this example. First, this is the only case for which a 
reasonably complete study has been made of population allocation under 
differing return functions (Charnov, 1979a, b), so beginning with this 
situation allows us to put the present paper into the context of previous 
work. Second, the development of more realistic models is made easier by 
beginning with a simple and familiar case, and then relaxing offending 
assumptions sequentially. 

The effect of nonlinear returns on the allocation ratio can be illustrated 
most easily by assuming linear returns for one sex, and nonlinear returns 
for the other, so let g(l -x,) = 1 -.Y,; i.e., reproductive returns increase 
linearly with female investment. (Cases in which returns are nonlinear for 
both sexes can be handled in a straightforward, although more tedious, 
manner. See the Appendix.) 

f’(x*) can be written directly from Eq. (4), since it is the PDF of the 
beta function 

Substituting into Eq. (3), 

(x*1’ ‘(l-x*)’ ’ _ 1 

s ;* y’s ‘(1 -y)’ ~1 (+ 1 -x*’ s, t > 0. (6) 

When both s and t are not integers, the algebra is messy but tractable. For 
simplicity, t will be constrained to integer values, since a rich array of 
shapes can be generated for these values of t, sufficient to describe nearly 
all realistic situations. If t is a positive integer, the binomial expansion can 
be used to simplify (1 - .Y*)‘~ * and (1 - y)’ ‘. For example, 

I 
(1 -.V)’ ’ = ‘1 ( -I )’ y’, t = 1, 2, 3 ,.... (7) 

,:n 

Using the binomial expansion, Eq. (6) can be written as a polynomial in .Y* 

{ ;g, (-l)‘(x*)’ ;I; ( >( ‘:,I’:f”~,“)J+1=0 
s > 0, t= 1, 2, 3 ,..., 06x*6 1 (8) 

r-l ( 1 (t- l)! 
i- 1 =(t- l)!(i- l)!’ 
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Local stability of the equilibrium against invasion by a rare mutant can be 
checked with the second derivative, yielding the conditions: 

(i) s+t>2;s#l;t#l, 
s- 1 

x*>------- 
s+t-2 

(ii) s+t<2;s#l;t#l, 
s-l 

.Y* -=I--- 
s+t-2 (9) 

(iii) s= 1, f>l 

(iv) t= 1 s<l 

In all four cases, x* is a global maximum over the interval [0, 1] if and 
only if x* < t, and is a local, but not global, maximum when .Y* > i. These 
results will be illustrated for the cases t = 1, 2. Charnov (1979a) has also 
developed a complete study of the case t = 1. When t = 1 and s < 1, 
.Y* = s/(.7+ 1) (Charnov, 1979a). Shapes of the return function on male 
investment are shown in Fig. 2A. 

In general the equilibrium occurs where the slope of the tangent to the 
returns on male investment, ,f’(x*)[g( 1 -X*)/(X*)] (male returns include 
expected breeding success, E(g)/E(f’)), is the same as the slope of the 
tangent to returns on female investment, g’( 1 - .u*) [see Eq. (3)]. In the 
cases examined here both of these slopes are I, since g( 1 - X) = 1 - .Y and 
therefore g’ = 1. 

When t = 2, we obtain the equilibrium 

My*J2s+ I)(.~$ l)-J(5s+ l)(s+ 1) 
24s + 2) (10) 

which is a global maximum for s < fi lie., whenever X* < $), and is a 
local, but not global, maximum for J2 <s < 3. Shapes for the return 
functions on male investment are presented in Fig. 2. When s < 8, and x* 
is a global maximum, the equilibrium again occurs where the tangent to 
the male return function has the same slope as the linear returns on female 
investment. 

When s > $, no monomorphic equilibrium exists. A full analysis of this 
region under a variety of assumptions about genetic control might prove 
interesting. 

2.2. Nonlinear Returns on Female Investment 

All the above results can also be applied when the return function for 
males and females are switched by replacing 1 -x* with z*, and .Y* with 
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1 -z*. Assuming returns on female investment are nonlinear and returns 
on male investment are linear, and substituting into Eq. (3) one obtains, 

1 g’(z* 1 -=- 
1-L.* g(z*) (11) 

which is analogous to Eq. (6). For example, if g(z*) is the CDF of a 
beta distribution [see Eq. (4)] with parameters t = 1, s < 1, then 
z* = 1 -.9* =s/(s+ 1). 

3. ALLOCATWN WHEN RESOURCES VARY AMONG INDIVIDUALS 

The above models assume (i) that each individual has the same amount 
of resources to invest and (ii) that at equilibrium every individual will 
invest the same proportion of resources in males and females. These two 
assumptions are clearly unrealistic. Trivers and Willard (1973) were the 
first to note that in polygynous mammalian species, returns on male 
investment differ from returns on female investment, and that this may 
affect sex ratio patterns. 

To fix ideas, consider the example of parasitic wasps discussed in detail 
by Charnov et al. ( 1981). A female Lariophugus lays a single egg on each 
weevil larva that it encounters. The size of the larva is probably a good 
measure of the amount of resources available to the mother in each 
independent investment period, since offspring size is associated with larval 
host size. This allows us to equate in a realistic way total investment per 
independent investment period with investment per offspring. In general, 
the model developed in this section applies only to total investment per 
investment period. A model that considers both investment per individual 
and total investment per period is developed later, and the difficulties that 
may arise when considering how to define properly independent investment 
periods will also be discussed. 

Returning to this wasp example, there is reason to believe that female 
fecundity increases with size faster than does the expected number of 
matings increase with size for males (Charnov er al., 1981). Hence we know 
that there is a measurable resource distribution-size of hosts-and that 
the shapes of the return functions differ between the sexes. Charnov ef al. 
(1981) found that the wasps adjust their sex ratio according to the relative 
sizes of the hosts available: on relatively large hosts the wasps tended to 
produce more daughters, and on relatively small hosts they tended to 
produce more sons. It was also shown that a host of particular size may be 
treated as large if most other hosts are smaller, or small if most other hosts 
are larger. Charnov et al. (1981) analyze their data in light of the 
qualitative predictions of the Trivers-Willard theory. 
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No general quantitative models exist that predict both the individual and 
population allocation ratios, given the distribution of resources among 
individuals and the shapes of the return functions for male and female 
investment, although Charnov (1979b) and Bull (1981) have described 
some unrealistically simple cases, and Charnov et al. ( 1981) indicated 
qualitatively how the problem might be approached. A general quantitative 
model is readily obtained by extending the techniques used in Section 2. 
The main value of such a model is that it allows one to explore the 
magnitude of predicted individual and population sex allocation changes as 
functions of changes in resource distribution and return curve shapes. 

Let the ith individual in the population have k, units of resources to 
invest, and let the units be standardized so that 0 <k, d I for all i. As 
before, let x, be the proportion of resources that the ith individual allocates 
to males, and 1 -s, be the proportion allocated to females. Then the ith 
individual invests k,x, units of resources in males, and k,( 1 -.Y,) units in 
females, and the relative fitness 113, can be written as 

.f’(k,-u,) glk,(‘-.y,)l 
‘I” = E[J’(k,.u,)] + E( g[k,( 1 -.u,)])’ 

Maximizing \i’, with respect to k,.u, and k,( 1 -x,) yields 

f’(ki.v,*) g’Cki(’ --u,*)I 
f%.f(k,~~,*)l =KdW -My,*)]) 

for all i. (12) 

It will again be assumed that returns are linear for female investment; and 
as before, the roles of males and females can be switched. With linear 
returns for females, g = k,( 1 - s*) and g = 1, so Eq. (12) becomes 

.f”(k,.u,*) 
E[k,( 1 -x,*)] 

-W’(k,.~,*)l = ’ 
for all i. 

Once again, the equilibrium occurs where the slope of the tangent to the 
returns on male investment, ,f’[E( g)/E(f‘)], equals the slope of the tangent 
to the returns on female investment, here g’= 1. To obtain a solution for 
particular assumptions, we need to specify a probability (frequency) dis- 
tribution for the amount of resources, k,, available to each individual. It is 
again convenient to use a beta distribution to describe shapes, in this case 
for the shapes of the frequency distribution (PDF) of resources rather than 
for the reproductive return curves described by the CDF. Let k, be the 
PDF of a beta distribution with parameters a, h > 0. 

h(k,) = Prob(k, = y) = 
f(a + h) !(I 

f(a) f(h) J 
‘(1 _ ,)))” ‘) O<k,< 1. (14) 

The mode of this distribution is at (a - 1 )/(a + h - 2). See Fig. 3 for shapes. 
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0 0.5 1.0 

ki 

FIG. 3. Frequency distributions for amount of resources per individual, k,. described by 
parameters a and h; solid curve, CI = h = I; dashed curve, u = h = 2; dot-dash curve. u = 2, 
h=4. The mode is at (u-l),l(u+h-2). See Eq.(14). 

I will consider separately the three shapes for the male return function 
(Figs. l A-C). Let f(k,x,) be the CDF of a beta distribution, as in Eq. (4) 
and with f = 1 and s > 1 (Fig. 2A). This gives the shape with an increasing 
slope shown in Fig. 1A. From the shape of the male return function, a 
reasonable conjecture is that at equilibrium, the set {xi*} is such that 

(15) 

or that an individual produces all females when its resource level is less 
than 1, and all males if available resources are greater than 3,, as suggested 
by Charnov (1979b) and Bull (1981). The population allocation ratio. x*, 
for a large population is 

x* = E(k;x;)/E(k,) 
(16) 

Individual fitness, w;, from Eq. (2) is now 

ELk,( 1 - -x,)1 ~,(k,-~,)=f(k,x,) ECf(k,x-), +k,(l -x,1. I 
(17) 

At equilibrium, for each i, 

w;(k,x,*) 3 w;(kp,) for all x, #xi* (18) 
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ki<i. (194 

w,(ki.xi) = 
.f(k;) ElkA 1 - ,~;)I 

NfWr~,)l ’ 
k,>E, (19b) 

=f(ki) ECk,( 1 - -xi) 1 
ECfW,.\-,)I ’ 

k, = i.. (19C) 

Equation (19~) can be used to solve for i. for any distribution ,f‘ that is 
concave up (Fig. 1A). Here I continue to illustrate the general results with 
beta distributions, in order to gain some feeling for the quantitative effects 
of particular assumptions. 

To solve, we need to specify the shape of the resource distribution 
function, h(k;). I illustrate the method first for a = h = 1 (the uniform dis- 
tribution), and then for u = h = 2 (see Fig. 3). Since t = 1, we have from 
Eq. (4) ,f(k,x,) = (kix,)‘/s, and since (J= h = 1, h(k,) = 1, so 

E[(k,.u,)‘] = 1’ (k,x,)’ h(k,) dk, = j’ (k,)” dk, 
0 I 

l-ju‘+' 

=--- 

s+l 

Substituting into Eq. (19~) yields 

(i.‘/s)(i*/2) 
/.=(I -iM‘+‘)/[s(s+ l)]’ 

Solving, 

2 

( > 

I (tcl) 
j.= - 

s + 3 
s> 1. 

(20) 

(21) 

So, when k, < 3,, x,* = 0, and when k, > L, .Y,* = 1. The population 
allocation ratio is, from Eq. (16) .Y* = 1 - j.*. These results are presented in 
Fig. 4. 

When k; has the distribution defined by a = h = 2 (Fig. 3) the result is 
shown in Fig. 4, and takes the form 

3(s+2)(s+7)i.“+‘P4(s+.5)(s+3)~‘+2+12=0. (22) 

Note that both x* und i change us the shape of the resource distribution 
curve changes, even when the resource curves have the sume mean and 
median, us ,for u = h = 1 versus a = h = 2 (Fig. 4). 

For the case t= 1, S-C 1, there are diminishing returns on male 
investment (Figs. 1B and 2B). From Eq. (13) it can be seen that iff’(k,x,*) 
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FIG. 4. Population and individual sex allocations when resources vary among individuals, 
with I= I. A, the stable population ratio, .I- *, as a function of the shape of the resource dis- 
tribution curve described by u and h, and the shape of the reproductive returns curve on male 
investment, described by .s and /. B, the point of sex change, 2, where individuals with h, < i. 
invest entirely in daughters. and with k, > i. invest entirely in sons. Note that both .Y* and i 
depend on the shape of the resource distribution curve, even when different distributions are 
symmetric and have the same mean and median. as with o = h = I versus N = h = 2. 

is uniquely invertible, then k,.Y, * = k/.x,* for all i, j. The slope ofJ’( k,x,* ) is 
monotone decreasing for t = 1, .F < 1, so ,f” is uniquely invertible. If K is 
defined as the expected value of k,, and we impose the restriction 
Kx,< k, d 1 for all i, then k,x, = KS* for all i, and substituting into 
Eq. (13), x* =s/(s + I ), which is the same population allocation ratio as 
when k, = I for all i (see above). It can be shown that when k, has a sym- 
metric beta distribution, i.e., CI = h, then s/(2 +s) < k, < 1 is the necessary 
restriction on ki, and K= (s + 1 )/(s + 2). These results are easily inter- 
preted: at Kx* the tangent to the male return curve has the same slope as 
the linear returns on female investment, and the rate (slope) of increasing 
returns on male investment up to Kx* are greater than for the constant 
rate for females, while the rate of increasing returns beyond Kx* are less 
than for females. So the ith individual invests Kx* in males, and k, - Kx* 
in females. If an individual is constrained to produce either all males or all 
females (x, is 0 or l), then the population average result is the same as for 
the first case above, and Eqs. (21) and (22) apply. Such a constraint would 
result, for example, when gender is environmentally determined (Bull, 
1983), so that an individual is predicted to become either a male or female 
depending on the relative amount of resources it has to invest in reproduc- 
tion. 

The fact that individuals are favored to produce a mixture of males and 
females when the slope of the return curve for one sex is monotonically 
decreasing (Fig. IB) relative to linear returns for the other sex is analogous 
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to the result of Charnov et al. (1976) that this combination of shapes will 
favor hermaphroditism, i.e., a mixture of male and female investment. 

The third and final case is where returns on male investment are 
described by an S-shaped curve (Fig. 1C). To illustrate, a family of 
S-shaped curves can be generated by setting t = 2, for all s 3 3 (Fig. 2B). 
An approximate solution can be obtained by following through the steps in 
Equations (15))( 19). The result is 

-(s+2)(.~+4)[12(2s+ 1)+(7s+3)(.~+3)] i.‘+j 

+(.s+ I)(.s+3)(~+4)[4(~~+2)+ 121 i’+2- 12(3s+4)=0, 

$23, 0GE.G 1. (23) 

As an example, let s = 3, which yields I. = 0.6356 and a population 
allocation ratio, .Y* = 0.4625. It is easy to show that this is a very good 
approximation, and that the approximations improve rapidly as s 
increases. 

4. SUMMARY OF SECTIONS 2 AND 3 

In Section 2 it was assumed that each individual has the same amount of 
resources to invest, and the individual and population allocation ratios 
(which are identical) were presented as a function of the shapes of the male 
and female return functions. In Section 3 it was assumed that individuals 
have different amounts of resources to invest, and each individual adjusts 
its allocation ratio conditional on its available resources. The individual 
and population allocation ratios (which differ) were presented as functions 
of the shapes of the male and female return functions, and of the frequency 
distribution for the amount of resources available to each individual. These 
models make several assumptions that are unrealistic for many organisms. 
Models that are more flexible and realistic are presented in the next section. 

5. FIXED COSTS AND PACKAGING COSTS 

In many organisms individuals may have only partial control over their 
allocation ratios. Organisms with heterogametic sex chromosomes are 
obvious examples (reviewed by Bull, 1983), since the conception ratio is 
partly or completely a random process that can be approximately described 
by a binomial distribution (e.g., in vertebrates, see Williams, 1979). 
Monoecious and hermaphroditic plants are two further examples, since a 
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plant may not be able to adjust the number of male flowers or flower parts, 
but may be able to vary allocation to each sex function. In each case a cer- 
tain fixed amount of energy is allocated to both males and females, but 
these initial fixed investments are often too small for any returns to be 
realized without further investment. Heath (1977) has named initial 
investments in reproductive structures ,fi.wd costs for hermaphrodites. Here 
I adopt the additional phrase packaging COSTS for the minimum investment 
per offspring that cannot be reduced. Two examples of packaging costs are 
the cost of producing an egg in altricial birds, and the cost of producing a 
newborn in mammals, since in each case there are no reproductive returns 
without further investment. The important distinction between fixed and 
packaging costs is that the first is independent of the number of progeny 
produced (i.e., investment in reproductive structures), while the second 
increases linearly with number of eggs (or fetuses, new-borns, etc.). Under 
this general distinction, fixed costs for reproductive structures apply equally 
well to dioecious and hermaphroditic organisms. 

The models considered so far have examined totul reproductive returns 
on total male or female investment per investment period. (The important 
problem of defining “investment period” is examined more carefully in the 
Discussion.) In many circumstances there is no loss of generality when 
ignoring both fixed and packaging costs (Charlesworth and Charlesworth, 
1981). In some situations, however, considering these initial investments 
leads to some interesting insights, and a general treatment also leads to 
firmer conclusions about the robustness of the simpler models. 

In this section I first present a general model that incorporates packag- 
ing costs, then examine a more realistic case designed with low fecundity, 
heterogametic organisms in mind; a description that fits many warm- 
blooded vertebrates. Finally, a situation incorporating fixed costs is 
modeled after an organism with environmental sex determination (Bull, 
1983), in which the costs of reproductive structures differ between males 
and females. 

5.1. General Model, for Puckaging Costs 

The approach taken here is an extension of Maynard Smith’s (1980) 
work on sex allocation with a fixed conception ratio. Maynard Smith 
studied the situation in which (i) the shapes of the return curves on total 
investment differ between the sexes, (ii) the conception ratio is fixed at 
unity, (iii) a certain amount of investment in each offspring is mandatory, 
after which the parent can adjust its total allocation to each sex, and (iv) 
each individual in the population has the same amount of resources to 
invest. I simplify his results by using the methods devised above for describ- 
ing shapes of return functions, and generalize the model by (a) allowing the 
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amounts of resources available for reproduction to vary among individuals, 
(b) using the shapes of the return curves on investment per qffspring, rather 
than on total investment, and (c) allowing the parent to adjust its 
allocation to each offspring, after the initial mandatory investment. Models 
considering variation in resources among individuals, and returns on 
adjustable investment per offspring rather than on total investment, are 
important extensions since these are common attributes of mammals, a 
group to which this sort of theory is often applied. My model also allows 
for the conception ratio to be different from unity. Interesting extensions 
not considered here include allowing the conception ratio to be stochastic, 
and allowing individuals to have different expected conception ratios 
according to the amount of resources available to them. 

To begin, we need a more general form of Eq. (1 ), where E, is the expec- 
tation over i, 

XI’” , .I‘( I,, + d) z;;, a,-,, + 4 
““= E,[C:‘:, .f‘(.u,+d)] + E,[Q!, g(z,,+d)]’ 

(24) 

subject to the constraint that 

Il,,i, “,i 
1 (.u,,+d)+ c (z,,+d)=k, 

,= I ,=-’ 

or, .Y, + r, = k,, where 

~3, = expected reproductive success of ith mother, 

k, = total resources available to ith mother, 

d = minimum investment per offspring, 

tI,,,, = number of male progeny by ith mother, 

s,, + d= investment in ,jth son of ith mother, 

n,, = number of female progeny by ith mother, 

z,, + ti= investment in ,jth daughter of ith mother, 

.Y, = C;TI, (x,, + d), the total investment in sons by the ith mother, 

Z, = xyk, (z,, + d), the total investment in daughters by the ith mother. 

Now assume that for given values of -Y; and z,, a mother will always 
allocate additional resources to each offspring within a sex so as to 
maximize her total reproductive returns from that sex. For example, given 
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a fixed value for x,, she will choose values for the set {-xi,} so as to 
maximize (or take the supremum over) C:‘-, f(x,, + d). In symbols, 

i 

)Inil 
F(x,)= max 1 .f‘(x,,+d)Ix, 

,=I I 

i 

“,i 
G(z,)= max C g(=,,+d)l-, 

,= I 

(25) 

and 

F(x, 1 G(z,) 
M”=E[F(x,)] +E[G(z,)]’ 

(26) 

With these definitions we can now find the values of X, and 3, that 
maximize u’, by the methods used to obtain (3) yielding 

F’(x;*) G’(z,*) 

E[F(x,*)] = E[G(z,*)] 
for all i (27) 

n ,,,, dd x,* 6 k, - nfid 

n,,d,<z,*<k,-n ,,,, d 

x,* + r,* = k, 

which is analogous to (3) and the techniques for finding .Y,* and z,* from 
Sections 2 and 3 apply. The optimum allocations to individual offspring are 
the values {xii*} and {z,*} that satisfy (25) given x;= x,* and 2, = z,*. To 
find the values for males {x,~*}, the method of LeGrangian mutipliers can 
be used 

~1,,,1 !lfVi 
/I,= 1 ,f(.u,,+d)-Q 1 (*x,+d)-.u,* =O ,=I L ,’ I 1 

$f’(x,,*+d)-n=o, .i = I, 2, 3,..-,n,,ll, 
1, 

solving, 

f'@t, * + d)= f'(.xir* + d), j# r, j, r = 1, 2, 3 ,..., nnzi (28) 

subject to the conditions 

.f”(x,,* + d) < 0 

il.,, 
c (xi;* + d) = x,*. 

,= I 
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In order to simplify the development of the argument, let us assume as 
before that the female return function is linear (see the Appendix) after 
payment of the packaging cost, d, i.e., g(z, + d) = zj,, and hence 
G(z,) = 2, -nod. There are two cases to examine. In the first, f(d) = 0 and 
the shape off(x,, + d) is such that f’ is monotone decreasing (Figs. 5A-D). 
From (28), the values of (xi,*} are all equal since .f is uniquely invertible, 
and ,f” < 0, i.e., -vii* = xir* = (x,*/n.,,) - n for all j and r (Figs. 5B-D). For 
the case in which nrn, = 1 (Fig. 5A), and the fixed cost d is the same for both 
males and females, the situation is identical to the model studied in Sec- 
tion 3, where k, varies and the shape of the male return function is 
described by t = 1, s < 1. In this case large departures from a 1: 1 population 
allocation ratio and strong individual-level biases are expected (see Sect. 3). 
When d is small relative to ,x,;* (Fig. 5B), the return curve F(x,) quickly 
approaches linearity as n,,,, increases, thus resurrecting Fisher’s ( 1930) 
equal investment theory for the population, and diminishing expected 

INVESTMEM IN MALES Xi 

FIG. 5. Returns on male investment when there is a packaging cost, c/, per offspring, and 
the shape of the returns for investment in each son is given by ,r=f, I= I (Fig. 4); in B, 
(d/.u,,*) = 0, while in C and D, (d/.x,,*) = 1, Note the rapid approach to linearity as the number 
of sons per investment period increases, and also that the cutofT point in C and D for further 
Investment in each son is at the tangent where slope on further male investment equals slope 
on female investment. 
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individual-level biases. When d is a large portion of the investment in each 
offspring, the approach to linearity is slower (Fig. 5C), but by the time 
n = 10 (Fig. 5D) the return curve is once again very close to linear. This 
egtire argument is essentially the same when .f(~,, + d) is S-shaped 
(Fig. 1C). 

In summary, when the packaging costs are the same for males and 
females, and n,,, = n,, = 1, then the results of Section 3 apply, and when II,,,, 
and n,; are large, Fisher’s equal investment result is extremely robust (see 
Discussion for exceptions). When n,,,, and n,, are greater than one, but still 
small, the problem is more difficult, but quite interesting since this is the 
situation for many mammals. This case is examined in the next section. 

5.2. An E.xumplc /iv Smull Litter.v 

Consider the simple case in which an organism produces a litter size of 
four, with n,,,, = n,, = 2, and with a fairly long period of parental care. The 
initial cost of the litter is 4cl. Assume that when k, < 4d a female fails to 
reproduce. Define li:=k, -4d, and standardize k: so that 0 <k: < I and 
k, = 4d corresponds to I?: = 0, .r: = I, - 2d and :I= Z, - 2cl. so that .Y: and -1 
are male and female investments after packaging costs are paid, and 
x; + 2; = k:. The returns on investment for the two female littermates are 
assumed linear, G(;:) = z:, so there is no need to distinguish how energy is 
allocated between the two females. Let the returns on male investment for 
each male littermate be given by.f’(s,,), where 0 < I,, d 0.5, so that a mother 
with k:= 1.0 can have enough energy to invest the maximum of 1.0 in her 
two sons. Define .f(.r,,) by the beta CDF [see Eq. (4)] on the interval 
[O,O.S], with I = 2, .Y = 4 (Fig. 6). 

With these conditions, we can write the reproductive success H*, of the ith 
mother 

(29) 

There are five regions that need to be considered (Fig. 6), and five 
strategies of allocation depending on the resources k: available 

(i) k;</t x,1 = 0 x,2 = 0; z;=k;. 

(ii) i<k:<b x,, = k:; x,* = 0; -’ - 0 it-- 

(iii) 6<k:-cy Xjl = 6; xi2 = 0; =;=k;-d (30) 

(iv) ytk:<26 xi, = k;/2 x,> = k;/2; 2; = 0 

(v) 2S<k;< 1.0 x,, = 6; xi2 = 6; 2: = k; - 26. 
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FIG. 6. An example when broods are composed of two sons and two daughters, with 
parameters u = 2. h = 6: .\ = 4, f = 2. Families that have resources. k:. less than i, will invest 
entirely in daughters (returns shown in dashed line). When i i k; <ii, investment only in the 
lirst son yields the greatest reproductive success (solid curve). When 6 <I\; < ;‘, investing S in 
the first son and h:-ii in daughters 1s the best reproductive strategy (returns shown in dot- 
dash line). When ;’ <hi < 26, investing Xi.2 m each son. and nothing in daughters is the best 
strategy (see text). Finally. when k; > 26, greatest returns are achieved by investing ci in each 
son, and h; - 2d in daughters. 

At equilibrium we have the following conditions, 

(vi) ,f’(E”)(r/y)=j> 

(31) 
(viii) ?f(y/2)(r/q)=,f(d)(r/q)-ci+j 

E;(d) 
r’q = 2E,,[f(x,,)] 

The values of E,($) and 2E,,[f(x;,)] can be obtained as functions of K, 6, 
and 7 from conditions (i)-(v), given the PDF of k:, h(kj). Assume h(kj) is a 
beta PDF, as in Eq. (14). Conditions (vi)-(viii) provide three independent 
equations in the three unknowns A, 6, and 7. 

An example is shown in Fig. 6. The distribution of resources h(k:) is 
described by a beta PDF with parameters a = 2 and h = 6; a distribution 
with a strong right skew and a mode at t (cf. Fig. 3). The shape for returns 
on investment in each son is,f(x,), which is described in this example by a 
beta CDF with parameters s=4 and t= 2 (see Fig. 6). Conditions (i)-(v) 
describe the allocation strategies as a function of k:, and the returns are 
given by the ordinate with the greatest height for each value of k: in Fig. 6. 
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To obtain the equilibrium values of i, 6, and y, condition (vi) states that at 
the smallest value of k:, called i, where the curves cross, the returns on 
pure female investment, 2, equal the returns on pure male investment, 
f(l)(r/q) [see Eq. (29)]. As ki increases past i, the slope decreases for the 
returns on pure male investment, [C?f(,x,)/?x,,)](r/q), until further 
investment in the first son gives returns at a slope of less than one, as 
described by condition (vii). This point is called 6. As k: increases above 6, 
allocating 6 to the first son and k:- 6 to daughters gives the greatest 
returns (dot-dash line). The dot-dash line crosses the second half of the 
pure male investment returns curve just before /, + 6. The intersection 
occurs before j* + 6 since the returns on pure male investment are greatest 
when investing ki/2 in each son [see Eq. (ZS)], rather than 6 in the first 
and ki - 6 in the second as shown in Fig. 6. Condition (viii) describes this 
intersection at k: = 7. 

The results for this example are i. = 0.34, 6 = 0.48, ‘J = 0.77. Using these 
values and the distribution for h(k:), the population allocation ratio ,&, is 
0.43. All of these values, including x&, are independent of the magnitude 
of the packaging costs, d But the magnitude of d plays two roles. First, 
,~b,,~ is not a true measure of the population allocation ratio, since it 
ignores initial costs. The true value, .Y,,~~, is given by xpop = (.&,, + n,,,,d)/ 
[ 1 + (n,,,, + n,,) n], and taking care to standardize d in the same way as I’ 
has been standardized. When d is five percent of the maximum value of k, 
in the population, then ~~~~~ is 0.44, or only slightly closer to 0.5. The 
second role of d is more important for applications, since the value of d sets 
the minimum amount of energy required to reproduce, and determines 
what proportion of the resources available can be allocated to either sons 
or daughters, and what proportion is set by initial costs. Values of & 6, 7, 
and &, are presented as functions of the shapes of h(k:) and ,f’(x,,) in 
Figs. 7A, B. 

5.3. A Fi.ved Costs Model 

The assumptions for this section are that sex (gender) is environmentally 
determined (ESD; Bull, 1983), and that costs of reproductive structures dif- 
fer between males and females. Imagine a species with ESD in which 
females brood eggs in brooding chambers, and the costs of these chambers 
is independent of number of eggs produced. Plausible examples might 
include plants with a small, fixed number of fruits, or many fish that brood 
their eggs. 

For an individual to reproduce successfully as a female, it must first 
invest in female reproductive structures (fruits, brood chambers, etc.) which 
cost d,-, and the remaining energy ki - d, is invested in offspring. Reproduc- 
tive returns are zero when k, < df, and returns are k, - d, when this value is 
greater than zero (i.e., returns are assumed to be linear after the fixed cost 
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FIG. 7. Exploration of the parameter space for the example in which broods consist of two 
sons and two daughters. A. the distribution of resources, k:, is varied, with parameters u = 2; 
.S = 4, / = 2. B, the shape of the male return curve is varied, with (I = 2. h = 6; I = 2. 

is paid). Likewise for males, the fixed cost is d,, and returns are k,-d,,,. 
Assume that the female reproductive structures are more costly than the 
male reproductive structures, i.e, d, > d,,,. (Since the results are symmetric, 
this assumption can easily be reversed.) A general picture of this situation 
is presented in Fig. SA. When the ith individual has small amounts of 
resources available for reproduction, it will be favored to reproduce as a 
male (x, = 1); when it has large amounts of resources, it will be favored to 
reproduce as a female (x, = 0); and at some point, 2, returns on male and 
female investment will be equal. 

In general, the fitness of the ith individual in the population, iv,, as a 
function of its resources available for reproduction, k,, and its sex, x,, is 

O<k,dd,,, 

i 
E[k, - d,)(l - ,y,)l 

EC(k, - 4,) -y,l ’ 
d,,, <k, < i (32) 

,!<k,<l. 

If we specify the distribution of resources in the population as h(k,.), then 

E[(ki- d,)( 1 --xi)] = 1’ (k, - d,) h(k,) dk, 
I 

(33) 

E[(k, - d,J xi] = j-’ (k, - dm) h(k;) dk, 
& 

To illustrate, let h(k,) be a beta PDF with parameters a and h, as in (14). 
An example with specific parameter values is shown in Fig. 8A, and part of 
the parameter space is explored in Fig. 8B. In this case xpop always includes 
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FIG. 8. Fixed costs of reproductive structures differ between the sexes. A, a specific exam- 
ple, with d,,, =0.02. d,-0.20, u = 2, h = 4, yielding i. =0.45 and .Y,,~,~ = 0.55: and B. an 
exploration of the parameter space, with d,,? = 0.02 and (I = 2. 

the fixed costs, d,,, and d,, since they are unequal and often represent a 
large fraction of the investment. The most interesting result for the cases 
studied here is that when dl > d,,,, xpop is male biased. The magnitude of the 
population bias depends on the difference d,-d,,,, i.e, the extent to which 
the return functions differ for the two sexes. 

It would be interesting to know if a male bias in xpOp always results 
when d, > d,,, . From (32) we can see that when kj = 2, i. - d, = 
(i. - d,,,) E( g )/E(j), and since d, > d,,, , it follows that E(g) < E(,f’). This 
means that the resources excluding fixed costs allocated to males by the 
population, E(j), is greater than the total resources excluding fixed costs 
allocated to females, E(g). Note that this argument requires that hothfand 
g be linear, in order for E(g) and E(f) to reflect accurately the population 
allocations. Whether this male bias always holds when fixed costs are 
included, or when either ,f or g are nonlinear, is not presently known. (I 
thank P. D. Taylor for this particular result about the generality of male 
bias when d, > d,,, . ) 

It has been assumed here that the size of the brood chamber does not 
limit the reproductive potential of a female. Heath (1977) has proposed 
that a limit in the capacity of brood chambers may explain the distribution 
of hermaphroditism. since such a fixed limit may make it profitable for 
an individual to pay the extra fixed costs of male structures and 
simultaneously reproduce as a male. He suggests that this may explain the 
observed association between brooding and hermaphroditism (see also 
Ghiselin, 1969). Since the model presented here does not consider limits on 
female reproductive potential, it is not directly applicable to Heath’s ideas, 
but could easily be extended to incorporate them. See Charnov (1982) for 
models of this sort. 
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6. DISCUSSION 

6.1. Dc$ning an Investment Period 

For all models developed in this paper, the reproductive returns on 
investment are for a single investment period. An investment period is the 
smallest time interval during which patterns of allocation have no effect on 
relative returns in other intervals; in other words, the interval during which 
an individual’s amount and ratio of allocation has no effect on the dif- 
ference between the sexes in potential reproductive returns during other 
time intervals. Consider some examples. 

(i) A parasitic hymenopteran lays one egg on each suitable host 
that it encounters. Whether the egg develops into a male or a female on 
one host has no effect on the reproductive returns of an offspring laid on 
another host. The investment period is a single egg-laying bout (cf. Green, 
1982), and the energy content of the host is the resource available for that 
investment period. Thus an egg-laying sequence is a series of independent 
investment periods. 

(ii) High fecundity organisms invest little in each offspring relative 
to total investment. Examples are fish, insects, and marine invertebrates 
that lay large clutches of eggs, and do not give parental care. The number 
of eggs (total investment) and ratio of males to females in the clutch has no 
effect on the potential difference in returns between male and female 
investment in future clutches. Thus each clutch of eggs can be treated 
independently. 

(iii) Human females produce one or two offspring at a time over 
about a 20-yr period. The period of parental investment is long, and it is 
common for parents to pass resources to adult offspring (e.g., inheritance, 
dowry, brideprice, etc.). Parents may be viewed as having a nearly fixed 
amount of resources to divide among their lifetime brood. What is given to 
one offspring directly reduces the amount of resources available for the 
others. 

(iv) Most large mammals produce a small number of offspring at 
one time, and the overlap between parental care for one brood and the 
beginning of the next brood is usually short. However, there are a number 
of cases in which it is clear that one sex is more costly to rear than the 
other (Clutton-Brock et al., 1981; Clutton-Brock and Albon, 1982). One 
example is the greater frequency of skipping the following breeding season 
after rearing a male offspring in red deer (Clutton-Brock et ul., 1981). A 
complementary example is the longer period until the next birth after rear- 
ing a female child in some primates. In these species daughters inherit 
maternal status in the local band, and often receive high levels of maternal 
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investment, while males disperse after weaning, and often receive lower 
levels of maternal investment (data reviewed in Hinde, 1983). In red deer 
and these primates there is a negative correlation between the resources 
expended in one period and the resources available in the next. However, 
the correlation is weaker than in the human case, where resources given to 
one offspring are directly taken away from the total resources available for 
others. So, this situation is best characterized by the transition probabilities 
describing the amount of resources available and amount expended in 
one period, and the resources available for future breeding periods. The 
different methods for analyzing these four types of investment periods are 
discussed in the following section. 

6.2. Robustness of Equal Allocution 

When returns on investment differ between the sexes, Fisher’s (1930) 
equal allocation theory does not hold. To analyze a particular situation, we 
need to consider (a) the length of an investment period, (b) the male and 
female return curves per offspring, (c) the number of offspring in an 
investment period, and (d) the shape of the resource distribution curve. 
The strong effect that the shape of the resource distribution curve has on 
individual and population patterns was clearly illustrated in Figs. 4, 7, and 
8, and will not be discussed further. The potential magnitude of this effect 
has not been appreciated before, since it is only apparent within a general 
quantitative approach. 

Competition among male relatives, among female relatives, and 
inbreeding also affect the allocation ratio by setting the shapes of the return 
curves, but these effects will not be discussed here since this theory was 
recently synthesized and the literature reviewed (Taylor, 1981; Charnov, 
1982; Nunney, 1985; Frank, 1985, 1986a, b). Also, it is assumed here that 
control of the sex ratio is by autosomal genes with additive effects only; or 
equivalently, that the “realized” level of selection is the individual 
(Hamilton, 1967; Charnov, 1982; Maynard Smith, 1982; Frank, 1983). 

(i ) Sequential independent periods sf investment and one offlypring per 
period. Here all that must be considered are the return curves on 
investment for a single offspring of each sex, and the models of Section 3 
(Fig. 4) apply. This situation will often be associated with extreme 
individual- and population-level biases away from 1 :l, since increasing 
numbers of offspring per period make the return curves more nearly linear 
(Sect. 5). 

(ii) Sequential independent periods of investment and many offspring 
per period. The returns for both males and females will be very close to 
linear because of the “smoothing” effect of large clutch sizes (Figs. 5A-D). 
If the fixed and packaging costs are the same for both sexes, and there is no 
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inbreeding or within-sex competition among relatives, then equal allocation 
is a very robust prediction, and little individual-level variation is expected. 
If the fixed or packaging costs differ between the sexes, or clutch size is 
small, then the models of Section 5 (Figs. 8A, B) apply. 

(iii) Sequential broods and fixed amount of’ resources ,for lijetime 
investment. The results for this case depend on lifetime brood size. If the 
lifetime brood is one, then the models for (i) above apply. If the lifetime 
brood is large, then the models for (ii) above apply. When the lifetime 
brood size is small, the situation is complex, and both individual- and pop- 
ulation-level biases are expected (Sect. 5, Figs. 6. 7). The extent of these 
biases will be less than for single-offspring broods, since multiple offspring 
tend to reduce nonlinearities (cf. Figs. 4B and 6). 

(iv) Sequential broods and a negative correlation among amounts of 
resources available in each period, described by transition probabilities 
between amounts available and invested in one period and amount 
available for the next. Many organisms fall into this category, for which 
there is no quantitative theory. The Trivers and Willard (1973) hypothesis 
is a qualitative prediction suggesting that the sex ratio at birth produced by 
an individual should be skewed in favor of the sex with greater reproduc- 
tive returns. For example, in a polygynous species a mother in poor con- 
dition is predicted to have more daughters, and a mother in good con- 
dition more sons. There are data from some species consistent with this 
hypothesis (Trivers and Willard, 1973) although the existence and ubi- 
quity of a labile birth sex ratio in vertebrates has been questioned (Myers, 
1978; Williams, 1979). Nearly all of the species that have been examined to 
test the TriversWillard hypothesis are of the sort that have sequential 
broods and a negative correlation in resources expended in one period and 
those available in the next, these species being mostly ungulates and 
primates. Attempts have been made to compare the population allocation 
ratios in these species to some quantitative predictions, such as Fisher’s 
(1930) equal allocation theory, but no firm conclusions have been reached 
(e.g., Clutton-Brock et al., 1981; Clutton-Brock and Albon, 1982). The 
results from the present paper suggest that these sorts of comparisons are 
unsatisfactory, since no adequate quantitative theory exists for population 
allocation in these groups. 

APPENDIX: NONLINEAR RETURNS FOR BOTH SEXES 

The models in this paper all assume linearity for returns on investment 
in one sex, and nonlinearity for the other sex. Here I provide an example of 
how to approach a problem in which returns are nonlinear for both sexes. 
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In the simplest case, all individuals have the same amount of energy to 
invest, and at equilibrium all invest x* in males and 1 - .Y* in females. The 
equilibrium for this case was shown to be [Eq. (3)] 

.f~=R’U -My*) 
,f(x*) g( 1 - .u*) 

IfJ‘(x*) is a beta CDF with parameters s,,, and t,,,, and g( 1 -.r*) is a beta 
CDF with parameters s, and t,, then at equilibrium 

(X),‘“’ ’ ( 1 - xp ’ (1 -A?)” l(x)‘/ ’ 
JG (q)‘“‘m ‘( 1 - 4)‘“’ ’ dq ={A ’ (r)“ ‘( 1 -r)” ’ dr 

or, rearranging 

(su).s”’ ‘,( 1 _ ,y)‘,,’ ‘,= si (41.‘” ‘( 1 - 4)‘“’ ’ 4 
J”[, li (r)” ‘(1 -r)” ’ dr’ 

This equation can easily be solved by standard numerical techniques. The 
same general approach can be applied to the models of Sections 3 and 5. 
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