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Abstract: Both E- and Z-y-alkoxyallyltins stereoselectively add to aldehydes in the presence
of BF3-0Ety at -780C in CHpCly to produce the threo (or syn) vicinal diol monoalkyl ether unit.

Interest in the stereocontrolled synthesis of polyhydroxylated natural products has stim-
ulated considerable efforts in both enantio- and diastereoselective syntheses of acyclic 1,2-
and 1, 3-diol units.l One strategy for the diastereoselective synthesis of acyclic vicinal or
1,2-diols employs the reaction of y-alkoxyallylmetals with aldehydes.2 In the following, we
delineate a highly threo (or syn) diastereoselective vicinal diol synthesis using E- or Z-y-
alkoxyallyltins and its application to the synthesis of exo-brevicomin.

Yamamoto, et al.3 have described an efficient and highly erythro selective reaction of
either E- or Z-crotyltin (l: R = Me) with aldehydes (eq. 1) in the presence of a Lewis acid.
The unique stereoselectivity was attributed to the non-cyclic transition state of the reaction.
We have observed that the stereoselectivity is dependent upon the nature of the R group in l.A
Thus, all y-alkylallyltins seem to produce erythro adducts 2a via a non-cyclic transition state
In contrast, E-cinnamyltrialkyl- or ~triaryltins provided exclusively threo adducts 2b through
a cyclic transition state. We further speculated that this difference in the transition state
may be accounted for in terms of the ionic property of the allylic C-Sn bond. An allyltin
with a greater ionic contribution from the C-Sn bond appears to increase the propensity for
the cyclic transition state in its reaction with aldehydes.4 In this respect, we felt that
y-alkoxyallyltins 3 would provide stereoselectively threo vicinal diol derivatives 4a via non-

cyclic transition states, regardless the geometry of the double bond of the allyltins (eq. 2).
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Table TI. Stereoselective Synthesis of Vicinal Diol Derivatives®
A%g?i“c’ggf Products (R = Me)P Total Yields
Entry y-Alkoxyallyltins (7)c
R 4a : 4b :
1 M0 X"sn(n-Bu)y Ph % : 1 87
!z
MeO
2 U——Sn(n-Bu)3 Ph 10 : 1 86
]
3 o-Me-Ph 1.4: 1 77
4 i-Pr >25 : 1 60
5 c-CgHy1 5:1 44
6 /,\/k d Ph 19 : 1° 86
MeO " N Sn(n-Bu)j
(E/Z = 1/2)

a. All reactions were carried out at - 78°C in methylene chloride under argon using

1.4 - 2.0 equivalents of BF4'OEt, for 2 - 4 hours. b. The diastereoisomeric

ratio was determined by 360 MHz 14 and 90.56 Mz 13¢ wvr analyses of the crude reaction
products. c. Yields are of the chromatographically pure products and based on the carbonyl
compounds. d. bp 165 - 170°C (3 mmHg, kugelrohr); prepared as a stereoisomeric mixture in
87% yleld from crotyl alcohol methyl ether via deprotonation with s-BuLi/TMEDA in THF at -78°C
followed by treatment with (n—Bu)BSnCI at -789¢C. E-isomer: lH NMR (360 MHz,CDCl3): §1.26
(d, 3H, J = 7.3 Hz), 2.41 (ddq, 1H, J = 1.2 (d), 7.3 (q), and 10.7 Hz (d)), 3.54 (s, 3H), 4.41
(dd, 14, J = 6.1 and 10.7 Hz), and 5.67 ppm (dd, 1H, J = 1.2 and 6.1 Hz) and Sn(n~-Bu) 3 protons
Z-isomer: g mm (360 MHz, CDCl3): & 1.28 (d, 3H, J = 7.6 Hz), 2.01 (ddq, 1H, J = 0.98 (d),
7.6 (q), and 8.8 Hz (d)), 3.48 (s, 3H), 5.03 (dd, 1H, J = 9.0 and 12.5 Hz), and 6.10 ppm (dd,
1H, J = 0.98 and 12.5 Hz) and Sn(n—Bu)3 protons. e. HO H?

4a= Ph*(%/ 4b = Phw

OMe OMe
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Requisite Z- and E-y-methoxyallyltins 6 and 7 were prepared as shown in Scheme T. The
presence of H,ﬂ,ﬁ',E'—tetramethylethylenediamine (TMEDA) during the deprotonation of allyl
methyl ether5 was essential to effect exclusive formation of §,6 The E-isomer Zé was separated
via flash column chromatography from the mixture of 6 and 7 generated by a radical addition of
tributyltin to methoxyallene. As is evident from Table I, both Z- and E-y-methoxyallyl(tri-n-
butyl) tins reacted with aldehydes exclusively at the y-position with high threo (or syn) dia-
stereoselectivity. The stereochemistry of the major products was unequivocally assigned by
transforming the adducts into their dihydro dimethyl ethers. These were in turn synthesized
from the corresponding E-olefins via 0s04-cis-dihydroxylation followed by dimethylation with
NaH/MeTI.

The examples shown in Schemes IT and III demonstrate the versatility of this new threo
selective vicinal diol synthesis. Adducts 9 and 10 were the only stereoisomers isolated. The
stereochemistry of the hydroxyls in the steroid side chains is based on the vicinal proton-
proton coupling constants.7 The key synthetic intermediate 14 to exo-brevicomin 129 was conve-

niently synthesized in three steps from aldehyde 1210 (Scheme TIT). The diol monomethyl ether

13 was obtained in 80% yield from 12 with stereoselectivity greater than 20/1. The minor
erythro adduct was removed during purification via flash column chromatography. The dimethyl
ether 14 has been converted in three steps to exo-brevicomin (15) by Mori.l1
The results described herein clearly demonstrate that both Z- and E-y-alkoxyallyltins
undergo threo selective addition reactions to aldehydes via a non-cyclic transition states as

in the case of crotyltins.3 This highly stereoselective vicinal diol synthesis should find

useful applications in the synthesis of various polyhydroxy natural products.12
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