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Abstract: Both g- and Z-y-alkoxyallyltins stereoselectively add to aldehydes in the presence 

of BF3aOEt2 at -780C in CH2C12 to produce the threo (or syn) vicinal diol monoalkyl ether unit. 

Interest in the stereocontrolled synthesis of polyhydroxylated natural products has stim- 

ulated considerable efforts in both enantio- and diastereoselective syntheses of acyclic 1,2- 

and 1,3-diol units. 
1 

One strategy for the diastereoselective synthesis of acyclic vicinal or 

1,2-diols employs the reaction of y-alkoxyallylmetals with aldehydes.2 In the following, we 

delineate a highly threo (or syn) diastereoselective vicinal diol synthesis using g- or z-y- 

alkoxyallyltins and its application to the synthesis of exo-brevicomin. 

Yamamoto, et al. 
3 

have described an efficient and highly erythro selective reaction of 

either &- or Z-crotyltin (l_: R = Me) with aldehydes (eq. 1) in the presence of a Lewis acid. 

The unique stereoselectivity was attributed to the non-cyclic transition state of the reaction. 

We have observed that the stereoselectivity is dependent upon the nature of the R group in 1. 
4 

Thus, all y-alkylallyltins seem to produce erythro adducts 2a via a non-cyclic transition state - 

In contrast, z-cinnamyltrialkyl- or -triaryltins provided exclusively threo adducts _2& through 

a cyclic transition state. We further speculated that this difference in the transition state 

may be accounted for in terms of the ionic property of the allylic C-Sn bond. An allyltin 

with a greater ionic contribution from the C-Sn bond appears to increase the propensity for 

the cyclic transition state in its reaction with aldehydes. 
4 

In this respect, we felt that 

y-alkoxyallyltins 2 would provide stereoselectively threo vicinal diol derivatives 4a via non- - 

cyclic transition states, regardless the geometry of the double bond of the allyltins (eq. 2). 
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I. Table Stereoselective Synthesis of Vicinal Diol Derivativesa 

y-Alkoxyallyltins 

Aldehydes 
(RI-CH0) 

Products (R = Me)b Total Yields 

R' 4a : &I 
(%jC 

- 

1 MeOmSn(n-Bu)3 

1. 

2 MeowSn(n-Bu)3 Ph 10 1 86 

4 

5 

(E/Z = l/2) -- 

Ph 14 

o-Me-Ph 1.4 - 

i-Pr 225 - 

c-C6Hll 5 

Ph 19 

1 87 

1 77 

1 60 

1 44 

le 86 

a. All reactions were carried out at - 78'C in methylene chloride under argon using 

1.4 - 2.0 equivalents of BF3'0Et2 for 2 - 4 hours. b. The diastereoisomeric 

ratio was determined by 360 MHz 'H and 90.56 MHZ l3 C NMR analyses of the crude reaction 

products. c. Yields are of the chromatographically pure products and based on the carbonyl 

compounds. d. bp 165 - 17O'C (3 mmHg, kugelrohr); prepared as a stereoisomeric mixture in 

87% yield from crotyl alcohol methyl ether via deprotonation with s-BuLi/TMEDA in THF at -78'C 

followed by treatment with (n-Bu)3SnC1 at -78OC. E-isomer: 1H NMR (360 MHz,CDC13): 6 1.26 

(d, 3H, J = 7.3 Hz), 2.41 (ddq, lH, J = 1.2 (d), 7.3 (q), and 10.7 Hz cd)), 3.54 (s, 3H), 4.41 

(dd, lH, J = 6.1 and 10.7 Hz), and 5.67 ppm (dd, lH, J = 1.2 and 6.1 Hz) and Sn(n-Bu)3 protons 

Z-isomer: - lH NMR (360 MHz, CDC13): 6 1.28 (d, 3H, J = 7.6 Hz), 2.01 (ddq, lH, J = 0.98 (d), 

7.6 (q), and 8.8 Hz cd)), 3.48 (s, 3H), 5.03 (dd, lH, J = 9.0 and 12.5 Ha), and 6.10 ppm (dd, 

lH, J = 0.98 and 12.5 Hz) and Sn(n-Bu)3 protons. e. 

ba= ph& 
- 

c= F?lG 

OMe OMe 
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Requisite z- and x-y-methoxyallyltins 5 and 1 were prepared as shown in Scheme I. The 

presence of fi,N,N',N'-tetramethylethylenediamine (TMEDA) during the deprotonation of ally1 

methyl ether5 was essential to effect exclusive formation of 6. 
6 

The E-isomer 76 was separated - - - 

via flash column chromatography from the mixture of 6 and 1 generated by a radical addition of _ 

tributyltin to methoxyallene. As is evident from Table I, both z- and &-y-methoxyallyl(tri-n- 

butyl)tins reacted with aldehydes exclusively at the y-position with high threo (or syn) dia- 

stereoselectivity. The stereochemistry of the major products was unequivocally assigned by 

transforming the adducts into their dihydro dimethyl ethers. These were in turn synthesized 

from the corresponding s-olefins via Os04-cis-dihydroxylation followed by dimethylation with 

NaH/MeI. 

The examples shown in Schemes II and III demonstrate the versatilit_ of this new threo 

selective vicinal diol synthesis. Adducts 9 and 10 were the only stereoisomers isolated. The 

stereochemistry of the hydroxyls in the steroid side chains is based on the vicinal proton- 

proton coupling constants. 
7 

The key synthetic intermediate 14 to exo-brevicomin 15' was conve- - - 

niently synthesized in three steps from aldehyde 12 lo (Scheme III). The diol monomethyl ether - 

13 was obtained in 80% yield from 12 with stereoselectivity greater than 20/l. The minor - - 

erythro adduct was removed during purification via flash column chromatography. The dimethyl 

ether 14 has been converted in three steps to exo-brevicomin (15) by Mori." - - 

The results described herein clearly demonstrate that both A- and s-y-alkoxyallyltins 

undergo threo selective addition reactions to aldehydes via a non-cyclic transition states as 

in the case of crotyltins. 
3 

This highly stereoselective vicinal diol synthesis should find 

useful applications in the synthesis of various polyhydroxy natural products. 
12 
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Scheme III. 
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After completion of this work, we learned from Professor G. E. Keck (University of Utah) 
that he has recently prepared a similar Z-y-silyloxyallyltin reagent for his studies on 

stereocontrolled syntheses of acyclic polyols. 
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