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Abstract: A method used to compensate for nonresponse is to impute missing values; that is, to 
replace each missing value with a respondent value selected from all observed values or from a 
subset of observed values. The imputation procedure used in this paper selects imputed values from 
the respondent data using simple random sampling with replacement within homogeneous subsets 
and replaces the missing values with these values to complete the data set. The empirical 
distribution of the goodness-of-fit chi-square statistic computed from the 'completed' data set is 
compared to its asymptotic distribution and to the distribution of the traditional chi-square test 
statistic applied to the completed data set by ignoring the imputation. 

At nominal levels of five and ten percent, the asymptotic distribution of the goodness-of-fit 
chi-square statistic computed from the completed data set is shown to have a good empirical 
behavior at moderate sample sizes. When the imputed values are treated as actual responses and the 
imputation is ignored, the empirical levels of significance are much larger than the nominal levels. 

Keywords: Missing data, Imputation, Categorical data, Resampling plans. 

1. Introduction 

Many data sets contain observations for some individuals in which the data are 
incomplete. When the characteristics of the individuals who do not respond fully 
are different in distribution from those of the entire population, statistics com- 
puted from the respondent data may be biased estimates of the population 
parameters. 

Imputation procedures, such as those used by the U.S. Bureau of the Census, 
replace values that are missing with observed responses, within homogeneous 
subsets of the data that are referred to as imputation classes. (For examples see 
Bailar, Bailey and Corby [1] and Nisselson [8].) 
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This technique produces a 'completed' or 'filled-in' data set which has a value 
recorded for each individual in the data set. Completed data sets are available to 
researchers in the form of public use data tapes for some national surveys. If the 
data are analyzed along traditional lines, the imputed, or predicted values, are 
treated as real. This paper will consider statistical inferential techniques that take 
into account the special character of these data sets. 

Proportions computed from such data sets are potentially less biased estimates 
of population characteristics than estimates computed from the respondent data 
alone (Ford [6]). However, the covariance structure of these proportions is 
affected since the imputed values are correlated with the observed responses. As a 
consequence, statistics computed from these proportions have a more com- 
plicated distribution theory than proportions computed from a data set with 
complete observations. For example, the goodness-of-fit chi-squared statistic no 
longer has the traditional chi-squared distribution for a class of imputation 
procedures (Gimotty [4]). 

In this paper we investigate the imputation procedure that replaces each 
missing value with a respondent value selected from all the responses in the 
appropriate imputation class by simple random sampling with replacement. 
Simulated data are used to investigate how well the asymptotic distribution of the 
goodness-of-fit chi-square statistic calculated from proportions computed from 
the completed data set approximates its empirical distribution at moderate 
sample sizes. A test for goodness of fit using an estimated asymptotic distribution 
function is proposed and the empirical size of the test for goodness of fit derived 
from the asymptotic distribution of the chi-square statistic computed from a 
completed data set is compared with the empirical size of the usual chi-square test 
for goodness of fit when the imputed values are treated as if they were actual 
responses. 

2. Test for goodness of fit 

The categorical response variables for the units in the population are assumed 
to have independent, but not necessarily identical, multinomial distributions. A 
simple random sample of n units is selected from the finite population. Within 
each of C imputation classes, the responses are assumed to have a multinomial 
distribution with parameter vector Ok (k = 1, 2 , . . . ,  C) which can differ between 
imputation classes. The vector of population probabilities for the response 
variable for any random unit in the population is a weighted sum of the 
imputation class parameters 

C 

k=l  

where ~k is the probability of being in the k-th imputation class. The vector of 
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population probabilities for the response variable for any random responding 
unit in the population is defined by 

C 

k=l 

where Ok is the probability of a unit responding in the k-th imputation class. The 
probability of response, 0, is defined by 

c 
I a~--" E P k "  

k = l  

A measure of goodness-of-fit of the sample proportions to the population 
probabilities is Pearson's chi-square statistic, X~, that is, 

_ )2  I (Pin ~'i X =nE 
i=1 "/7"/- 

where p ,  = ( P l , ,  P2,,,...,Pl,,) is the vector of proportions in each of the I 
categories of the response variable. When proportions computed from a com- 
pleted data set are used to calculate this statistic, it no longer has a simple 
asymptotic chi-squared distribution with I -  1 degrees of freedom. 

Oimotty [4] derived the asymptotic distribution of the chi-square statistic 
computed from proportions obtained from a completed data set for a general 
class of imputation procedures. Under the null hypothesis that 7r are the 
underlying population probabilities, its asymptotic cumulative distribution func- 
tion is 1 - H(x  I X) where H(x  [ )t) = Pr( X 2 > x) is given by 

1 1 fa°~ sin[0(u, x)] 
H ( x I X ) = 2 + ~  -_ u:~-(u-) du, (1) 

such that 

I 
O(u, x ) =  ½ E t a n - l ( ) k i  u) - - { u x ,  

i=1 

I 
6(u) = I-I [l + (Xiu)2] 1/4, 

i=1 

where X are the eigenvalues of the matrix D(~')-I~, with D(~r) a diagonal 
matrix whose diagonal elements are given by the vector ~r, and with ~ the 
conditional asymptotic covariance matrix of the vector of proportions computed 
from the completed data set. When the imputation procedure uses simple random 
sampling with replacement within imputation classes, the covariance of the vector 
of proportions computed from the completed data set, N, is given by 

C 
•= E ~Ok[D(Ok)--Ok02] (2) 

k=l 
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such that 

Ok [1 - ( 1  )2] + 1 + - -  , (3) 
O~k = 7 - -  p Pk 7"lk -- Ok 

where Pk is the probability of a unit responding in the k-th imputation class, ~k is 
the probability of observing the k-th imputation class, and p is the probability of 
response. This distribution is a constant times a chi-squared distribution with 
I -  1 degrees of freedom when the imputation class parameters, Ok, are all equal 
to a common value or. 

The expected value of the chi-square statistic is given by 

c x 0 i k ( 1  - 0 ik)  
E[ )(,2] = E Wk E (4) 

k= l i=1 ¢ri 

where ~0 k is defined by (3). When all of the imputation class parameters are equal 
to a common value, ~r, this expectation simplifies to 

C 

E [ X : ]  = ( I -  1) • ¢0 k. 
k = l  

In general, the expected value is sensitive to differences in the probability of 
response (Ok), differences between the probability of response in each imputation 
class and the probability of each imputation class (Ok-  ~k) and differences 
between the imputation class parameters and the population parameters [0ik(1 - 
0~k)/~r,. ] as well as the relationships between these quantities. The degrees of 
freedom of the chi-square statistic computed from complete data, I -  1, is a 
lower bound for the expected value only when the imputation class parameters 
and response rates are all equal to a common value. 

The variance of the chi-square statistic is given by 

V[X  2 ] = 2  k=l + g k=l 
,=1 ,*s   r'rrs (5)  

and when % = ~r for each imputation class, this simplifies to 

V[X,, 2] = 2 ( I - 1 )  g °:/, • 
k = l  

The categorical response variables are independent and identically distributed 
random variables when ~r k = rr for all imputation classes. Consequently, the 
respondent proportions as well as the proportions computed from the completed 
data set are unbiased estimators. The asymptotic distribution of X 2 calculated 
using the proportions computed from the completed data set is a constant times a 
chi-squared distribution with I -  1 degrees of freedom. However, the imputation 
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procedures are used because the proportions computed from the respondent data 
are thought to be biased since the distribution of the categorical response variable 
and the response rate is thought to be different for each imputation class. In these 
situations, simple procedures, such as rescaling the chi-square statistic and using 
the chi-squared distribution with I -  1 degrees of freedom, are not good ap- 
proximations to the asymptotic distribution of the chi-square statistic computed 
from a completed data set [5]. 

When the underlying parameters are known, the test for goodness of fit would 
reject the hypothesis that ,rr is the underlying vector of population probabilities 
when the attained significance value of the chi-square statistics, H( X~ ] )~), is less 
than or equal to o~ where a is the nominal level of the test. However, in practice, 
there is generally insufficient information to specify hypothetical values for these 
parameters for each imputation class. 

We propose to estimate the covariance matrix of the proportions, Z, by using 
consistent estimates of the nuisance parameters. The distribution function is 
approximated b~y H ( x l h )  where ~ are estimates of the eigenvalues of the matrix 
D(~-)-12~ and Z is the consistent estimate of the covariance matrix of the vector 
of proportions computed from the completed data set. The matrix $7 is obtained 
from (2) by substituting consistent estimates of the nuisance parameters given by 

= r / n ,  Pk = r k / n ,  elk = n k / n  and Ok =Pkr  where r is the number of respon- 
dents in n sampled units, r k and n k are the number of respondents and sampled 
units in the k-th imputation class, respectively, and Pkr is the vector of propor- 
tions computed from the respondent data in the k-th imputation class. The 
consistency of these estimates follows from the properties of simple random 
sampling. The proposed test for goodness of fit rejects the hypothesis that rr is 
the vector of population probabilities when H(X21 ~) < a where a is the 
nominal level of the test. 

3. The simulation 

The goodness-of-fit test is useful only if the distribution of the imputed 
chi-square statistic is adequately approximated by its estimated asymptotic distri- 
bution at sample sizes used in practice. The objective of the simulation was to 
identify conditions where this approximation failed at moderate sample sizes. In 
this section we describe the simulation used to study the empirical behavior of the 
goodness-of-fit chi-square statistic. These data are used to investigate the mo- 
ments of the chi-square statistics and the empirical sizes for the goodness-of-fit 
test using the chi-square statistic computed from a completed data set. The results 
of the simulation are presented in Section 4. 

3. I. Parameter i za t ion  o f  the mode l  

Each data set generated in the simulation is a realization of a three-dimen- 
sional contingency table defined by: the response variable, X, with I categories; 
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the imputation class variable, Z, with C categories; and the indicator variable, R, 
that a unit responds. Data are assumed to be missing at random (Rubin [9]) 
within imputation classes. As a consequence, the response variable and the 
indicator variable for a responding unit are conditionally independent given the 
imputation class. The probability that a unit is in category i in the k-th 
imputation class for event j (nonresponse or response) is A ij k and it can be 
expressed as 

~ijk = Pr[ X =  i A R = j  I Z = k ] -  Pr[ Z =  k] 

= P r [ g =  i l Z = k ]  • P r [ Z =  k l R = j ]  • P r [ R = j ] .  

Therefore, the model defining these probabilities is specified by the vectors: O k , 
the imputation class parameters ( k =  1, 2 , . . . , C ) ;  ~:1 and t¢ 0, the vectors of 
imputation class probabilities for the respondents or nonrespondents, respec- 
tively; and p, the overall probability of response. 

A model for the probabilities ~'k was selected to provide a range of possible 
distributions as well as to provide a simple way of describing the relationship 
between the different imputation classes. Six categories were used for the cate- 
gorical response variable, x, as well as six imputation classes, Z, to provide 
symmetry. A distribution was selected and the probabilities were ordered from 
largest value to smallest to define 01; the remaining parameter vectors are defined 
by permutations of 01. For independence, O k = 101 (k --- 2, 3 , . . . ,  6), where I is the 
6 × 6 identity matrix and for dependence with positive association, O k = AOk_ 1 
(k = 2, 3 , . . . ,  6), where A is given by (6~, 63, . . . ,  6/, ~ )  and 6i is a 1 × C vector 
whose i-th element is 1 and all other elements are zero. Models with negative 
association were not considered. 

3.2. Models used in the simulation 

The first models investigated were defined using the uniform distribution and 
four response rates, 0.90, 0.75, 0.60, and 0.45. The remaining models were 
selected by varying only one dimension of the parameter space with a response 
rate of 0.60. These models include situations where the probabilities for the 
response categories differed between imputation classes and relationships other 
than independence exist between the imputation class variable and both the 
response variable and the indicator variable for a responding unit. More im- 
portantly, these are models where the distribution for the respondents differed 
from the distribution of the nonrespondents. All but the first model in Table 1 
have an extreme value for one of the parameters of the model and in these 
situations the empirical distribution is more likely to deviate from the asymptotic 
theory. 

Table 1 summarizes the models used in the simulation. The imputation class 
parameters, 01, and the imputation class probabilities for the respondents, ~1, 
define each model when the response rate is 0.60. The categorical response 
variable and the imputation class variable are independent for models 1 -4  and 6 
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and they have a positive association otherwise. The Euclidean distance between 
the vector of population probabilities and the vector of probabilities for the 
responding units, II ~r - ~r R 11, is a measure of the difference between the distribu- 
tion for the response variable, X, for the respondents and the nonrespondents. 
The minimum and maximum Euclidean distances of the imputation class parame- 
ter vectors, Ok, and the vector of population probabilities, ~r, are a measure of 
heterogeneity of the imputation class parameters relative to the population 
probabilities. The expected value and variance found in Table 1 are the asymp- 
totic expected value and variance for the chi-square statistic computed from the 
completed data set when the imputation procedure uses simple random sampling 
with replacement within imputation classes given by (4) and (5), respectively. 

The first model describes a situation where the distribution for both the 
categorical response variable and the imputation class variable is the uniform 
distribution and all three categorical variables are independent; the next seven 
models are situations where the population probabilities are equal to the popula- 
tion respondent probabilities, II ~r-~rRll = 0. For these eight models is the 
nonrespondents are expected to respond like the respondents. However, for the 
last seven models l[ ~r - ~r R II > 0 and the nonrespondents are expected to respond 
differently from the respondents. 

Of the eight models where the respondents were expected to respond like the 
nonrespondents, there were six models where the probability distribution for the 
imputation class variable was uniform. In this situation, when the sample size is 
500, the expected number of units in the sample in each of the imputation classes 
was 83. For the two models where the distribution of the imputation class 
variable was not uniform, the differences between adjacent probabilities were 
equal and the expected numbers of observations in each imputation class were 24, 
48, 71, 95, 119 and 143. For two of the remaining seven models, where the 
respondents and nonrespondents have a different distribution, the expected 
numbers of observations in each imputation class were 88, 86, 84, 82, 81, and 79; 
for the other five models, the expected numbers of observations in each imputa- 
tion class were 95, 90, 86, 81, 76, and 71. 

3.3. The algorithms 

The asymptotic distribution depends on the variance of the proportions 
computed from a completed data set conditional on the number of units and 
responding units within the sample in each imputation class. However, rather 
than generating data for each contingency table with these marginal distributions 
fixed, data for each contingency table were generated randomly. This simplified 
the design of the simulation. 

One thousand contingency tables were generated where each table had 500 
observations. These tables are combined in pairs to create 500 contingency tables 
with 1000 observations and in quadruplets to create 250 tables with 2000 
observations. The information on the value for the response variable, X, was set 
to missing for the nonrespondents; nonrespondents in each imputation class were 
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assigned imputed values using simple random sampling with replacement from 
the respondents in the nonrespondent's imputation class to create the completed 
data set. The goodness-of-fit chi-square statistic was computed using each of 
these completed data sets. 

The generation of the contingency tables, imputation of missing values and 
calculations of the chi-square statistics were done on an IBM XT Personal 
Computer. The descriptive statistics and the calculation of the attained signifi- 
cance values from the chi-square statistics were done in The University of 
Michigan's Amdahl computer. 

The algorithm used to generate the uniform random numbers was based on the 
random number generator used by the BMDP statistical software package [2]. 
The alias method [7] was used to generate the contingency tables. The imputed 
values were randomly generated from a multinomial distribution whose parame- 
ter was the vector of respondent proportions using the table look-up algorithm 
for each imputation class. An algorithm by Sheil and O'Muircheartaigh [10] was 
used to numerically approximate the distribution function for which eigenvalues 
were calculated using a subroutine from the EISPACK library [3]. 

4. Results 

First we consider the model where the probabilities for the response variable 
and for the imputation class variable have a uniform distribution. The means, 
standard deviations and asymptotic expected values of the goodness-of-fit chi- 
square statistics computed from the T completed data sets and the T respondent 

Table  2 
Mean  and standard deviation of the chi-square statistics for model 1 at different response rates and 
sample  sizes 

Response Sample size Expected Standard 
rate value deviation 

n = 500 n = 1000 n = 2000 

Mean Std. dev. Mean Std. dev. Mean Std. dev. 

Respondent  Data  
0.90 4.99 3.27 5.01 3.32 5.16 3.10 5.00 3.16 
0.75 4.98 3.16 5.09 3.49 5.25 3.55 5.00 3.16 
0.60 5.08 3.38 5.16 3.52 5.14 3.09 5.00 3.16 
0.45 4.99 3.21 4.99 3.24 5.15 3.30 5.00 3.16 

Completed Data  
0.90 6.05 3.90 6.05 4.14 6.23 3.59 6.06 3.38 
0.75 7.80 4.91 7.96 5.52 8.31 5.48 7.92 5.01 
0.60 10.65 6.87 10.76 6.91 10.62 6.94 10.33 6.54 
0.45 14.01 8.96 14.10 8.77 14.46 9.44 13.86 8.77 

T = 1000 T = 500 T = 250 
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Table 3 
Estimated tail probabilities of the chi-square statistic for model 1 at different response rates and 

sample sizes 

Response 
rate 

Tail probabilities computed using 
known distribution function 

Tail probabilities computed using 
estimated distribution function 

n = 500 n =1000 n = 2000 n = 500 n = 1000 n = 2000 

Nominal Level = 0.05 
0.90 0.047 0.036 0.056 0.052 0.038 0.060 
0.75 0.045 0.066 0.072 0.047 0.066 0.076 
0.60 0.057 0.064 0.068 0.060 0.064 0.072 
0.45 0.049 0.052 0.068 0.050 0.050 0.072 

0.90 
0.75 
0.60 
0.45 

Nominal Level = 0.10 
0.098 0.096 0.108 0.099 0.100 0.104 
0.095 0.108 0.136 0.088 0.106 0.132 
0.113 0.114 0.120 0.127 0.124 0.124 
0.098 0.106 0.140 0.112 0.118 0.140 

T = 1000 T = 500 T = 250 T = 1000 T = 5000 T = 250 

data sets are shown in Table 2 for four different response rates and three sample 
sizes (n). For both goodness-of-fit chi-square statistics computed from the 
completed data and the respondent data alone, the ninety-five percent confidence 
intervals computed from the mean and standard deviation contained the asymp- 
totic expected value. 

Table 4 
Mean and standard deviation of the chi-square statistics computed from the respondent data set 
and the completed data set with a response rate of 0.60 and a sample size of 500 (T  = 1000) 

Model Respondent data Completed data 

Mean Std. dev. Exp. val. Mean Std. dev. Exp. val. 

1 5.08 3.38 5.00 10.65 6.87 10.33 
2 5.15 3.22 5.00 10.45 6.45 10.33 
3 4.95 3.10 5.00 12.62 8.32 10.62 
4 5.02 3.36 5.00 10.33 6.55 10.33 
5 5.06 3.03 5.00 10.21 6.15 10.09 
6 4.89 3.01 4.88 10.57 6.07 10.33 
7 5.07 3.18 4.87 10.38 6.35 10.07 
8 5.07 a 3.03 4.20 9.54 a 5.85 8.68 
9 4.86 2.96 5.01 10.32 6.53 10.52 

10 5.28 3.36 5.11 10.60 6.71 10.28 
11 5.59 3.65 5.41 13.33 ~ 8.20 12.53 
12 6.19 3.71 6.04 12.89 a 7.85 12.30 
13 6.01 3.64 6.04 12.64 8.05 12.30 
14 6.67 ~ 3.94 6.39 13.00 a 8.22 12.31 
15 7.71 4.46 7.62 12.24 8.00 12.04 

a Significant with p ~< 0.05. 
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The empirical sizes of the goodness-of-fit test using the asymptotic distribution 
with both known and estimated parameters at the nominal five and ten percent 
levels of significance are presented in Table 3. All of the estimated tail probabili- 
ties are consistent with the nominal level of the test. 

The means and standard deviations obtained from 1000 chi-square statistics 
computed from the completed data sets with 500 recorded values are presented in 
Table 4 for all models described in Table 1 where the response rate is 0.60. The 
expected values presented in this table are calculated using (4). In most of these 
situations, the ninety-five percent confidence intervals contained the asymptotic 
expected value. 

The asymptotic distribution of the chi-square statistic was derived using the 
variance of the proportions computed from the completed data set conditional on 
the number of units in each imputation class. The asymptotic expected value of 
the chi-square statistic including the component of variance due to the random- 
ness associated with the proportions in each imputation class is 

k = l  i=1 % 

where E[X 2] is given by (4). When the sum ~.rlk£[(Oik- rri)2/rri] is large, the 
empirical distribution function may deviate from the asymptotic distribution 
defined by (1). There are t w o  such examples in Table 4 (Models 8 and 14); these 
are models where the chi-square statistics computed using the completed data set 
and the respondent data are significantly different from the asymptotic expected 
value. 

Table 5 
Est imated tail probabil i t ies  ( T  = 1000) 

Model  Distr ibut ion funct ion 

H ( X I X )  H ( X I ,~ )  Xz(5) 

a = 0.05 a = 0.10 a = 0.05 a = 0.10 a = 0.05 

1 0.057 0.113 0.060 0.127 a 0.383 

2 0.052 0.100 0.049 0.107 0.369 

3 0.046 0.088 0.055 0.098 0.496 

4 0.061 0.110 0.056 0.115 0.370 

5 0.048 0.091 0.052 0.102 0.340 

6 0.058 0.103 0.055 0.101 0.377 

7 0.053 0.102 0.057 0.104 0.373 

8 0.066 a 0.130 a 0.075 a 0.134 a 0.341 

9 0.043 0.077 a 0.046 0.083 0.376 

10 0.059 0.109 0.061 0.138 a 0.370 

11 0.063 0.114 0.064 0.120 0.533 

12 0.053 0.113 0.049 0.113 0.520 

13 0.060 0.103 0.062 0.115 0.506 

14 0.066 a 0.127 a 0.073 a 0.150 a 0.510 
15 0.058 0.112 0.063 0.116 0.481 

a Significant with p ~< 0.05. 
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The empirical sizes of the goodness-of-fit test using both the estimated and the 
known distribution function are presented in Table 5. In general, the estimated 
tail probabilities are consistent with the nominal level of the test; however, they 
have a slight positive bias. The mean difference between the attained significance 
values computed using the estimated and the known distribution function is 
0.0044 with a standard deviation of 0.0023 when the nominal level is 0.05 and is 
0.0088 with a standard deviation of 0.0079 when the nominal level is 0.10. 

The estimated tail probabilities of the chi-square statistic when the imputed 
values are treated as actual responses are also given in Table 5 when the nominal 
level is 0.05. In this case the chi-square statistics computed from a completed data 
set are treated as random variables that have a chi-squared distribution with 
I -  1 degrees of freedom. The results indicate that these estimated tail probabili- 
ties severly overestimate the five percent nominal level of the test, in some caes by 
a factor of ten. 

5. Discussion 

This simulation demonstrates that treating imputed values as actual response 
values and using methodology developed for a complete data set results in severe 
bias of the estimated tail probabilities. Modifications to traditional methodology 
to compensate for the imputed values are necessary when completed data sets are 
used for inference. 

The empirical means of the goodness-of-fit chi-square statistic computed from 
a completed data set are consistent with the asymptotic expected value in most 
cases. The empirical size of the goodness-of-fit test defined using the asymptotic 
distribution of the chi-square statistic computed from a completed data set at 
both nominal levels of 0.05 and 0.10 recommends the use of this test even at 
moderate sample sizes. 

For a wide range of situations, the asymptotic approximations are valid when 
the number of observations in each imputation class is at least seventy and may 
be valid when one or two of the imputation classes have as few as twenty-five 
observations. In addition, the bias of the attained significance levels calculated 
using the estimated distribution function is not practically significant in the tails 
of the distribution. The use of this test for goodness-of-fit should be limited to 
situations where Y',~kE[(Oik- ~ri)2/Tri] is small; a restriction which is generally 
satisfied in practice. 
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