
Journal of Non-Newtonian Fluid Mechanics, 25 (1987) 313-328 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

313 

ISOTHERMAL EXTRUSION OF NON-DILUTE FIBER SUSPENSIONS 

TASOS C. PAPANASTASIOU and A.N. ALEXANDROU 

Department of Chemical Engineering and Department of Mechanical Engineering, 

The University of Michigan, Ann Arbor, Michigan 48109 (U.S.A.) 

(Received May 23, 1986; in revised form February 4, 1987) 

sumnlary 

The extrusion of a rod-like fiber suspension is a Newtonian solvent, as a 
first step to the fast and inexpensive production of composite materials, is 
investigated. The analysis is carried out by means of an integral constitutive 
equation for a non-dilute suspension, streamlined finite element for liquid 
with memory, and Newton iteration of nonlinear integro-differential equa- 
tions. The predictions show substantial differences between dilute and 
nondilute fiber suspension regarding the processing conditions (pressure 
drop, velocity distribution, die-swell) and the resulting fiber orientation. 
Nondilute fiber suspensions exhibit substantial shear-thinning and negligible 
elasticity as evidenced by the small die-swell, and fiber concentration 
viscosity-thicker&g as evidenced by the large pressure drop. The fiber 
orientation is computed by solving the orientation distribution function 
along selected streamlines of the complex velocity field. It is shown that the 
fiber orientation far downstream can be made independent of the random 
fiber orientation at the inlet. 

1. Introduction 

For years, a major effort of the aerospace industry, in an effort to increase 
the speed and efficiency of aircraft, has been to build lighter, yet stronger 
aircraft. This trend has led to the development and use of a class of 
materials which have high strength-to-weight ratios. These materials consist 
primarily of continuous graphite fibers and epoxy resins. Both the cost of 
the fibers and resins are very high. Even more prohibitory to their use in 
commercial applications are the long processing and curing times required in 
the batch operations involved. Thus, the materials employed by automobile, 
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and other consumer products, manufacturers more often include glass fibers 
which are usually short, and rapid-cure polyester resins. The macroscopic 
mechanical properties of these composites-strength and toughness, or 
elongation to failure-depend on the orientation of the fiber in the flow 
field at the time of solidification or curing which, of course, prevails in the 
solid state. Thus, it is extremely important to develop theories and methods 
of analysis for understanding complicated flow patterns and implied fiber 
orientations. 

Despite their major importance in defining the final mechanical proper- 
ties of the composite, processing operations have been the subject of little 
theoretical research effort and investigation mainly for two reasons: (a) the 
liquids involved during these operations are rheologically complex, exhibit- 
ing strong nonlinear viscoelastic behavior, and the flow fields are further 
complicated by the presence of the fibers; and (b) research into composite 
materials is primarily focused on the determination of the properties of the 
resulting solid part which are directly related to the applications of these 
materials. 

Past methods for determining the fiber orientation have been based on 
experimental techniques such as the use of X-rays [l] and contact micro-ra- 
diography techniques [2]. These measurements can only be performed on the 
finished molded specimens and so their value is more diagnostic than 
process controlling. Recent efforts have been focused towards the predictive 
determination of the fiber orientation state from the flow kinematics [3,4]. In 
general, the motion of particles in a viscous medium has been a continuing 
topic of interest in fluid mechanics. A comprehensive review of this area has 
been provided by Lea1 [5]. The finite-element method was introduced quite 
successfully very recently to study flow orientation in relatively simple flows 
of dilute fiber suspensions in Newtonian and non-Newtonian media [6,7]. 
The predicted orientation patterns were similar to those observed in experi- 
mental studies by Goettler [8]. An excellent review of suspensions in 
Newtonian and non-Newtonian solvents has been given very recently by 
Metzner [9]. 

The preceding analyses apply only to cases of isolated particles in simple 
flow fields and do not take in account interactions among particles or fibers 
which were found to give rise to significant viscoelastic phenomena in 
semiconcentrated suspensions. These phenomena include transient behavior 
[lo], yields stresses [11,12], shear thinning. [13,14], and volume fraction 
dependence [15], in pure shearing flows. Similarly, in elongational flows, 
increased elongational viscosities have been reported by several investigators 
[16-U] even at very low concentrations [19]. In an attempt to predict these 
rheological data, Dinh and Armstrong [20] developed an integral constitu- 
tive equation for semiconcentrated fiber suspensions similar to the ones 
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obtained by Doi and Edwards [21] and Curtiss and Bird [22] for con- 
centrated solutions of flexible macromolecules. This constitutive equation 
accounts for fiber-fiber and fiber-liquid interactions and predicts well most 
of the rheological data previously recorded [23]. In semiconcentrated suspen- 
sions, the number density, n, of the fibers ranges from (1/L3) < n < (l/OL*) 
whereas the volume fraction, +, varies from ( O/L)2 < $I < (D/L) where L 
and D are the diameter and length of the fiber, respectively. This regime of 
concentration covers a wide range of reinforced composites because of the 
considerable fraction of solids present in the system [20]. 

In this work, we develop the necessary theory and methodology to use 
these kind of integral constitutive equations, which account for fiber-fiber 
interactions, with the conservation equations of fluid mechanics, in order to 
analyze the continuous processing of chopped fibers suspensions. The analy- 
sis will predict the flow field and the resulting fiber orientation. Such work 
with realistic integral constitutive equations for nondilute fiber suspensions 
has never been undertaken before because: (a) integral constitutive equa- 
tions for nondilute fiber suspensions appeared very recently [20] and (b) 
numerical modeling with integral constitutive equation is, in general, not 
very popular [24]. 

Numerical modeling with integral constitutive equations is difficult be- 
cause it demands for each fled particle and/or each individual fiber an 
evaluation of past kinematics along a priori unknown streamlines. Papanas- 
tasiou et al. [25] developed a streamlined finite-element method in which 
present kinematics, past kinematics, and streamlines are computed simulta- 
neously for each individual fluid particle (or fiber). The application of this 
finite-element method to a system of integro-differential equations that arise 
in flows of viscoelastic liquid is detailed in Papanastasiou et al. [26]. The 
same method will be used here. 

2. Governing equations 

We focus here on the continuous extrusion of nondilute fiber suspension 
in a Newtonian solvent (Fig. 1). The extrusion process can be used for the 
continuous production of composites of several geometric configurations 
depending on the shape of the die (rod, sheet, tube of different cross-sec- 
tional shapes, and annulus). Moreover, the geometry of the flow makes it a 
good prototype for both confined and free surface and multilayer flows, 
similar to those taking place in injection and compression molding, and in 
coextrusion. The geometry of the flow and the relevant boundary conditions 
are shown in Fig. 1. A fiber suspension emerges from the die at practically 
zero Reynolds number and rearranges itself into a larger flow conduit-it 
swells-due to the action of the released normal and shear stresses, and then 
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Fig. 1. Flow domain and boundary conditions in a typical extrusion process. In the 
streamlined finite-element method [25], elements are distributed among selected streamtubes. 

assumes a plug-like flow downstream. The lengths upstream and down- 
stream of the die exit were found to be sufficient for a length-independent 
solution and did not cause any problem as far as the convergence of the 
Newton iteration was concerned. 

In the theory developed Papanastasiou et al. [26], the continuity equation 
for an incompressible liquid 

V *U(X) =o, (0 

the momentum equation for creeping flow 

V * T(x) = 0 (2) 

of liquid that follows an integral constitutive equation 

T(x) = -p(n)l+ 

x+(x’), u(x), vu(d), vu(x)] dx’, 

and the kinematic equation 

(3) 

n*u(x)=Owithn= 
-u(%z/&X)i+ uj 

(1 + ( ah/ax)2)1’2 
(4 

are solved simultaneously by Newton iteration which enables the simulta- 
neous evaluation of the streamline position h with the primary unknowns 
which are the velocities, u and u, and the pressure, p. The local stress at x 
in eqn. (2) depends not only on the local pressure p(x) and the velocity 
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gradient VU(X) alone as in the Newtonian case, but on the past velocities 
u( x’) and the velocity gradient v u( x’) along the fluid particle’s streamline 
X’X as well, which has a projection on the x-axis x’x. The integro-differen- 
tial eqns. (l)-(4) are easily solvable by .the streamlined finite-element 
method which enables one to calculate simultaneously the present velocity 
U(X) and gradient vu(x), past velocities u( x’) and gradients v u( x’), and 
streamlines X’X by using the Newton iteration to solve the resulting set of 
nonlinear algebraic equations. Conventional finite-element methods are not 
very convenient for the solution of velocities along a priori unknown 
streamlines. The streamlined finite-element method is detailed in Refs. 25 
and 26. 

Quite similar integro-differential systems of equations arise when integral 
constitutive equations for nondilute fiber suspensions [20] 

T(x) = -p(x)l+q,[vu(x) + V’“(X)] 

nL3 

48 ln(2/nL2D) / 
9999 dq 

(~-1: qq)3/2 1 (5) 

are used in place of eqn. (3). In eqn. (5), nS is the viscosity of the solvent, n 
the number of rigid rod-like fibers per unit volume, L and D the length and 
the diameter of the fiber. B-’ is the Finger tensor and q is the unit vector 
along the axis of the fiber, i.e. the orientation. The integrand in eqn. (5) can 
be expressed in terms of a series expansion of the Finger and Cauchy tensors 
as suggested in [22] and [27]. The Finger and Cauchy tensors, in turn, can be 
expressed in terms of past and present velocities and gradients along the 
fiber’s streamline as suggested by Ada&i [28] and shown in [26]. Equation 
(5) is detailed in [29]. 

3. Finite-element analysis 

Thus eqn. (5) can be transformed into a form which is equivalent to eqn. 
(3) and can be solved simultaneously with eqns. (l), (2), and (4), by means of 
finite-element basis functions $’ and rc/’ to determine the flow field (veloci- 
ties, pressure, and streamlines): 

9 9 

u= C"i+i> u= C"iGiY h = ihic#+ = h). (6) 
1 1 1 1 

The expansions (6) are substituted in eqns. (l), (2), and (4), the resulting 
equations are weighted integrally by each of the basis functions, the diver- 
gence theorem is invoked to project the boundary terms, and the boundary 
terms are replaced by the known tractions or else the entire weighted 
residuals are replaced by essential boundary conditions there. These 
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Fig. 2. The streamlined finite-element tessellation used in this work. The location of the 
streamlines and, thus, the mesh are updated at each Newton iteration. The tessellation 
extends four half-widths upstream and four downstream from the die-exit. 

boundary conditions are shown in Fig. 1. This results in a system of 
nonlinear algebraic equation which is solved by Newton iteration: 

J(P 
(n+l) _p’“‘) = _qpoy. 

Here R is the vector of the weighted residuals, p is the vector of the 
unknowns, p = { ul, ul, pl, h, . . . UN, V,, PN, hN}, and J is the Jacobian 
of R with respect to the nodal unknowns p. 

The tessellation of the flow field in quadrilateral elements is shown in Fig. 
2. The finite elements are distributed among four streamtubes. The 
boundaries of each individual streamtube are made up by the lateral sides of 
the contained elements. The two velocity components are expanded in terms 
of the biquadratic basis functions, the pressure in terms of the bilinear 
functions, and the streamlines in terms of the quadratic basis functions. The 
solution, at a given concentration level, serves as the initial estimate of the 
solution at a higher concentration level (zero-order continuation) required 
by the Newton iteration. The streamlines, including the free surface, are 

-3.00 -2.20 -1.40 -aMI 0.20 
DISTANCE ALONG THE CHANNEL DISTANCE ALOk? TH~?HR~%L 

3.40 

Fig. 3. Predicted velocity profiles of suspension of fiber of aspect ration L/D = 10 at three 
levels of concentration: - - - - - - dilute of fiber volume fraction + - 0.01, - - - nondilute 
of $I = 0.05 and ----- semiconcentrated of + = 0.1. 
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updated and so is the tessellation at each Newton iteration. A finer tessella- 
tion is necessary near the static contact line to resolve the local large 
gradient. The tessellation shown was found sufficient to produce mesh-inde- 
pendent solutions. 

4. Fiber orientation 

The slender fiber orientation q(x) at location x is determined from its 
initial orientation qo( x0) at the inlet and the deformation gradient FXO( x) 
between x and x0 which is readily available from the solution of the system 
of eqns. (l), (2), (4), and (5): 

(8) 
The denominator M is the magnitude of the numerator and dividing by it 
forces q to remain a unit vector. 

In dilute fiber suspensions the orientation can be deduced by tracking 
each individual fiber rotating about its center as it translates along its 
streamlines with the bulk velocity. Whereas this is fairly accurate for dilute 
suspensions, and away from solid walls, the orientation function distribution 
is better suited for a nondilute suspension. Dinh and Armstrong [20] 
produced an analytic expression for the orientation function distribution 
t,b(q, t) used in the derivation of the constitutive eqn. (5) 

4(4? d=&[qq’(‘):qq]-3’2, 
where q is the orientation vector and B;r( t) the deformation between a 
reference entering time t, and a later time t. The initial conditions for eqn. 

(9) are 

where I is the unitary tensor and J/a is an initially random fiber distribution 
at entering time t,. In the results reported here, the fiber orientation was 
calculated by means of eqns. (9) and (10). 

5. Results and discussion 

The Newton iteration converged quadratically to the reported results in 
four to five iteration steps within maximum error 10-4. The results for a 
Newtonian liquid were reproduced exactly in the limiting case of zero 
concentration. Unlike the numerical solution for a viscoelastic liquid, which 
is limited to low elasticity, the solution here exists at any concentration we 
examined as shown by Fig. 4-12. 
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Fig. 4. Predicted velocity profiles of suspension of fiber of aspect ratio L/D = 100 at three 
levels of concentration: - - - - - - dilute of fiber volume fraction $I = 0.001, - - - nondilute 
of $I = 0.005 and m-s -. semiconcentrated of cp = 0.01. 
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Fig. 5. Predicted velocity profiles of suspension of fiber of aspect ration L/D =lOO at three 
levels of concentration: ---- -- dilute of fiber volume fraction += O.OOOOO1, -- - 
nondilute of $J = 0.00005 and . -. -. semiconcentrated of $J = 0.001. 
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Fig. 6. Predicted pressure distribution in suspension of fiber of aspect ratio L/D = 10 at three 
levels of concentration: - - - - - - dilute of fiber volume fraction C#B = 0.01, - - - nondilute 
of I$ = 0.05 and . -. -. semiconcentrated of (p = 0.1. 
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Fig. 7. Fkdicted pressure distribution in suspension of fiber of aspect ratio L/D =lOO at 
three concentration levels: ----- - dilute of fiber volume fraction += 0.0001, --- 
nondilute of cp = 0.005 and --. -. semiconcentrated of #I = 0.01. 
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Fig. 8. Predicted pressure distribution in suspension of fiber of aspect ratio L/D =lOOO at 
three concentration levels: - - - - - - dilute of fiber volume fraction I#J = 0.000001, - - - 
nondilute of + = 0.00005 and . -a -a semiconcentrated of + = 0.001. 

The three levels of concentration mentioned in the reported results are 
defined as follows: dilute when n = l/L3 where n is the number of fibers 
per unit volume and L, D the length and diameter of the fiber, respectively, 
or equivalently when $I = (D/L)*, where 9 is the volume fraction of the 
fibers; nondilute when n = 0.5(1/L3 + l/DL*) or when + = 0.5( D/L)* + 
(D/L)); and semiconcentrated when n = l/DL or $I = D/L. At higher 
concentrations, solid-like theories are required. Nevertheless, the regions 
covered here contain enough fibers per unit volume to be representatives of 
some composite materials [20]. 
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Fig. 9. Predicted die-swell of suspension of fiber of aspect ratio: - - - - - - L/D = 10, - - - 
L/D = 100 and *-a-. L/D = 1000 at several fiber concentration (fibers per unit volume) 
levels. 

DIE WELL VS ASPECT RATIO 
a 

I 

Fig. 10. Predicted die-swell of suspension of fiber of several aspect ratio: - - - - - - dilute of 
fiber volume fraction + = (D/L)’ - - - nondilute of C#B = 0.5[( D/L)* +( D/L)] and 
’ -. -. semiconcentrated of + = (D/L). 
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Fig. 12. Predicted orientation in a suspension of slender fiber of L/D = 100 entering parallel 
(top), at 45 o angle (middle), and perpendicularly (bottom) to the flow direction. 
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5. I. Processing conditions 

Figure 3 shows the predicted velocity along the wall (distance 0.1 diam- 
eters from the wall) and along the centerline for dilute (i.e. limits of zero 
concentration), nondilute, and semiconcentrated (i.e. upper limit of nondi- 
lute region) rod-like fiber suspension of short fiber. Figures 4 and 5 show the 
corresponding results for suspensions of long and slender fibers, respec- 
tively. Suspensions of short fiber (L/D = 10) behave identically at the three 
levels of concentration which correspond to the volume fraction of fibers of 
0.01, 0.05, and 0.1, respectively. For the long fiber, the volume fraction of 
the fiber is 0.0001 for dilute, 0.005 for nondilute and 0.01 for semicon- 
centrated, suspensions. Although of low fiber volume fraction, these suspen- 
sions exhibit slightly different velocity profiles both along the wall and the 
free surface and along the midplane streamlines. The differences grow large 
for a slender fiber of aspect ratio L/D = 1000 as Fig. 5 illustrates. The three 
levels of fiber volume fraction are 0.000001, 0.00005, and 0.001, respectively. 

The results of Figs. 3-5 indicate that the deviations of fiber suspensions 
from the plain solvent behavior depend strongly on the fiber’s shape 
anisotropy and weakly on the fiber concentration even at very low fiber 
concentrations. The behavior of the fiber suspension is qualitatively differ- 
ent from the behavior of a viscoelastic liquid where the wall velocity is 
increased inside the channel and decreased under the free surface relative to 
the solvent velocity. This qualitative difference exists for the centerline 
velocity too. 

Figures 6-8 show the pressure along the solid wall and the centerline for 
short, long, and slender fibers, respectively. Suspensions of short fiber 
behave similarly to the plain solvent at all levels of concentration. Suspen- 
sions of long fiber behave slightly different from the plain solvent. This 
difference grows large for suspensions of slender fiber which exhibit a large 
pressure drop and, thus, volume fraction-thickening behavior. Unlike 
viscoelastic liquids, all the pressure curves here are reasonably smooth, 
which may indicate a solvent dominated stress perhaps due to fibers aligned 
parallel to the wall. Finally, it is worth mentioning here that the Newtonian 
behavior is predicted well in the dilute limit of all three aspect ratios. This is 
important given the lack of experimental data or results of other analyses to 
compare with the results of this work. 

The predicted die-swell for fiber aspect ratios L/D = l/0.1, l/O.01 and 
l/O.001 is shown in Fig. 9 as a function of concentration from dilute to 
semiconcentrated suspensions. The Newtonian behavior is predicted well in 
the dilute limit. The die swell decreases with fiber concentration and with 
the aspect ratio of the fiber. This is better demonstrated in Fig. 10. The 
die-swell for dilute suspension is almost identical to the Newtonian value, 



325 

1.185, at any fiber aspect ratio; for semiconcentrated and concentrated 
suspensions, the die-swell decreases drastically with the aspect ratio. The 
die-swell predictions suggest a shear-thinning behavior intensified by large 
aspect ratio. 

5.2. Fiber orientation 

Figure 11 shows the predicted orientation for a sphere (L/D = 1) enter- 
ing at 0 and 90 degrees with respect to the flow direction. In reality, this 
means the orientation of the two “marked” at the entrance, mutually 
perpendicular axes of the spheroid. As is expected, the sphere turns under 
the vorticity in such a way that the two axes remain mutually perpendicular 
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Fig. 13. Orientation function distribution along two selected streamlines of Fig. 12 by means 
of eqn. (9) for an initial (entering) random orientation. Top: Along streamline next to the 
midplane of symmetry. Bottom: Along streamline next to the midplane of symmetry. Bottom: 
Along streamline next to the solid wall and the free surface. 
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at all locations downstream. This is an indication that the time integration 
along the streamline, which we used to solve eqn. (9) from the flow field, is 
stable and accurate. 

Figure 12 shows the predicted orientation for a single slender fiber 
(L/D = 100). When the fiber enters parallel to the flow it remains aligned 
with the streamline at all downstream locations. When the fiber enters 
perpendicularly to the flow it is subject to a continuous rotation which 
finally aligns the fiber to its streamline. However, the fiber is subject to a 
solid translation without rotation as soon as it enters the extensional flow 
region outside the die. Thus, if the fiber enters the extensional flow not 
aligned with the streamline it will never become so downstream. The 
perpendicular orientation along the midplane streamline is unstable and, 
once disturbed by flow or vibration, it never re-establishes itself. 

The evolution of the orientation function distribution starting from an 
random orientation entering along two selected streamlines of Fig. 12 is 
shown in Fig. 13 at three locations: immediately upon entry, at the channel 
exit, and far downstream near the outlet. The orientation function distribu- 
tion was computed by solving eqn. (9) along the streamline with the initial 
(entering) condition given by eqn. (10). It is obvious that the most preferred 
orientation of a slender fiber is one parallel to the streamlines and the 
possibility of this orientation increases with downstream distance. 

5.3. Implications for viscoelastic calculations 

A comparison of the numerical stability of the computations of this work 
to those for the die-swell flow of a viscoelastic liquid modelled by integral 
constitutive equation appears inevitable: the equations for fiber suspension, 
eqn. (5), and for a viscoelastic liquid, eqn. (6), differ only by the exponential 
time series included in the memory function of the latter. In fact, the 
predictions of the two equations in many simple rheological experiments are 
qualitatively similar [20,23]. It is well known that numerical solutions for a 
viscoelastic liquid are limited to low elasticity. One of the possible causes 
suggested for this failure is an inaccurate calculation of strains along 
streamlines [30]. Although the strains calculated here are identical to those 
required in the flow of a viscoelastic liquid, the solution here exists at any 
concentration limit where eqn. (5) holds and predicts substantial viscoelastic 
behavior [23]. Thus, it appears that the primary cause (among others) of 
numerical difficulties in viscoelastic calculations is the exponential time-de- 
pendent series rather than the strain-dependent part of the memory function 
of the constitutive equation. This, in turn, may suggest constitutive equa- 
tions with a non-exponential relaxation modulus for a viscoelastic liquid; for 
example, of the form proposed by Larson [31] recently. 
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6. Conclusion 

The isothermal extrusion of a nondilute fiber suspension, as a first step 
towards the continuous production of composite materials, has been 
analysed. The analysis has demonstrated the possibility for process control 
to achieve specified orientation patterns and, thus, composites of desired 
properties. The fiber orientation can, in principle, be controlled by a 
knowledge of the velocity and the temperature fields. These fields are 
predicted by the application of the preceding analysis to nonisothermal 
extrusion. 

From the practical point of view, the preceding analysis showed that, in 
principle, a certain class of composites can be processed in a continuous 
fashion with the possibility of predicting and controlling fiber orientation. 
The constitutive equation developed recently by Dinh and Armstrong [20] 
and the theory developed recently by Papanastasiou et al. [26] for liquids 
with memory have made this analysis possible. At present, the analysis is 
limited to Newtonian matrices which approximate well epoxy composites. 
The analysis is also limited to nondilute semiconcentrated suspensions which 
can represent well many commercial composites. These limitations are 
entirely due to limitations in the applicability of the constitutive equation. 

From a theoretical point of view, we have demonstrated an effective 
computer-aided analysis of a certain class of integro-differential systems 
similar to the ones arising in processing viscoelastic liquids that follow 
integral constitutive equations. The differences between a nondilute suspen- 
sion and a viscoelastic liquid regarding their flow behavior and the stability 
of the numerical algorithms may suggest another approach to the general 
viscoelastic problem. Such research is in progress. 

The analysis can only be viewed as a first step towards understanding and 
predicting the behavior of nondilute fiber suspensions that lead to the 
production of composite materials of significant fiber volume fraction. 
Further investigation is in progress which includes a more efficient use of 
the orientation distribution function for better prediction of fiber orienta- 
tion patterns, the control of the solidification front in a nonisothermal flow 
field, and experimentation with epoxy-fiber glass systems for rheological 
characterization and frozen-in orientation measurement. 
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