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Abstract-A displacement finite element method for analyzing a beam on continuous elastic foundation 
is presented. A three-dimensional model which accounts for the effects of both the Filonenko-Borodich 
and Pastemak foundation models in a consistent and complete way is used. A variational principle is 
introduced with the slope field due to bending only and the displacement field approximated by 
independent quantities subjected to variation. Numerical examples illustrate the accuracy of the element, 
the importance of shear, axial and shear-axial interaction effects associated with continuous elastic 
foundation, and finally the application of the element to a rotor supported by two hydrodynamic journal 
bearings. 

NOTATION 

beam cross sectional area 
definition in Fig. I 
beam diameter 
Young’s modulus of elasticity 
uniform, elastic foundation spring constants 
per unit length in y and z directions 
uniform, coupling elastic foundation spring 
constants per unit length in y and z directions 
shear modulus 
moments of inertia of the beam cross section 
with respect to y and z axes 
cross moment of inertia of the beam cross 
section 
shear correction factor with respect to z axis 
beam element length 
bending moment in x-y plane 
axial force; positive in tension 
critical axial force (buckling load) 
i = I, 2,3 shape functions 
uniform distributed loads in y and z directions 
moments of area with respect to y and z axes 
(Fig. 1) 
axial displacement of the beam 
axial displacement of the centroidal axis of the 
beam 
displacement of the beam in y direction 
virtual displacement of the beam in y direction 
shear forces in y and z directions 
dispiacement of the beam in z direction 
virtual displacement of the beam in z direction 
coordinate system 
shear strain in y direction on a cross section 
perpendicular to x direction 
translations of the elastic foundation in the y 
and z directions 
angle of rotation of the beam about the y axis 
due to bending only 
virtual angle of rotation of the beam about the 
y axis due to bending only 

7 Present address: General Motors Research Laboratories, 
Fluid Mechanics Department, Warren, MI 48090; formerly 
Ph.D. Candidate. 

$ Professor and Chairman. Fig. 1. Definition of 6, and b,, . 

shear stress in y direction on a cross section 
perpendicular to x direction 
matrix 
inverse of a matrix 
column vector 
transpose of vector 

INTRODUCIXON 

The problem of a beam (or plate) on an elastic 
foundation is important in both the civil and mechan- 
ical engineering fields, since it constitutes a practical 
idealization for many problems (e.g. the behavior of 
a shaft within a hydrodynamically lubricated bearing, 
a floating body on the water, etc.). The importance 
of the problem is indicated by the large number of 
papers which have appeared in the literature about 
beams on elastic foundation. Some of these papers 
are very recent [l-S]. 

Generally, the analysis of bending of beams on an 
elastic foundation is developed on the assumption 
that the reaction forces of the foundation are propor- 
tional at every point to the deflection of the beam at 
that point. This simple representation of elastic foun- 
dation was introduced by Winkler [6], who assumed 
that the base consisted of closely spaced, independent 
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(b) 

Fig. 2. Deflections of elastic foundations under uniform 
pressure p,,. (a) Winkler Foundation. (b) Elastic solid [6]. 

linear springs as in Fig. 2(a). As a next step, the 
foundation was considered as an elastic continuum 
taking the displacement pattern of Fig. 2(b) under the 
applied load p. However, the Winkler foundation 
could not predict accurately the displacement of some 
solids, e.g. soil [6]. In an attempt to find a physically 
close and mathematically simple representation for 
these materials, other types of foundation have been 
introduced. The Filonenko-Borodich foundation [6] 
introduces a stretched elastic membrane subjected to 
a constant-tension field N, at the top ends of the 
springs, in order to achieve some degree of inter- 
action between the spring elements as in Fig. 3. The 
Pasternak foundation [&-lo] assumes the existence of 
shear interaction between the spring elements. This 
may be accomplished by connecting the ends of the 
springs with a beam consisting of incompressible 
vertical elements which deform only by transverse 
shear (Fig. 4). 

Establishing more realistic foundation models 
and developing simplified methods for analyzing 
structures which take into account the elasticity of the 
foundations are among the modern trends in the 
theory of structures on elastic foundations [9]. 

An approximate numerical approach, based on the 
finite element technique, is appropriate for analyzing 
structures on an elastic foundation, since it leads to 
relatively straightforward matrix expressions. For the 
computations of the long and complicated numerical 
results, one can rely upon the digital computer. 
Besides, while the geometry of the structure, the load- 
ing and boundary conditions make the mathematical 
solution of the general problem in closed form almost 
impossible [7], in the versatile finite element method 
they can be completely arbitrary (9, IO]. 

In the present paper, a finite element displacement 
method is presented to analyze the problem of a 
beam on a general elastic foundation which includes 

Stretched membrane, 
plate in bending, 
or shear Layer derlP”l- 

Fig. 3. Filonenko-Borodich elastic foundation 161. 

Fig. 4. Pastemak elastic foundation [6]. 

the effects of both the Filoneck*Borodich and 
Pasternak foundation models. The problem is formu- 
lated as a coupled, three-dimensional problem. A 
beam with symmetric cross section with respect to 
both the vertical and horizontal planes is on a general 
type of continuum elastic foundation. This founda- 
tion representation has separate, uniform spring 
constants per unit length in the vertical and horizon- 
tal planes and uniform coupling spring constants 
between the two planes. The proposed beam element 
on elastic foundation is important in the area of 
rotor dynamics, where the behavior of flexible shafts 
within hydrodynamically lubricated journal bearings 
is analyzed [ 11, 121. The nonlinear hydrodynamic 
characteristics of a journal bearing can be represented 
by elastic foundation with spring constants in two 
perpendicular planes and coupling spring constants 
between these two planes. An extension of the present 
static model to include the dynamic effects of lateral 
and rotational inertias is presented in [13]. 

Finite element beam formulations in the literature 
(e.g. (5, 14-171) include bending, shear, axial loading 
and elastic foundation, but typically not simul- 
taneously and without a complete and consistent 
treatment of the coupling effects among the various 
!oadings. 

BASIC ASSUMPTIONS AND DEFINITIONS 

Within the limits of elementary beam theory, it is 
possible to include the effects of bending, shear and 
axial force in the stiffness matrix of a beam on elastic 
foundation. The analysis will be based on the follow- 
ing assumptions: 

1. 

2. 

3. 
4. 

5. 

Plane sections remain plane before and after 
deformation (no warping). 
Strains are sufficiently small that the cross 
sectional geometry does not change (no 
Poisson effects). 
Beam slopes are small. 
Symmetric beam cross section with respect to 
both vertical and horizontal planes. 
Beam material is linearly elastic, homogeneous, 
isotropic and continuous. 

The definition of the coordinate system adopted 
for the beam is given in Fig. 5. 

From the geometry of the beam bending in the x-y 
plane (vertical plane) under the assumptions 1, 2 and 
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Y,V 

X,Y,Z : coordinates 8, (8,) : angle of rototlon of the cross-sectionat 
plane about the 2 (y) oxis due to pure 

u,v,w: corresponding bending only : 
dlsplocements 8 ;du 

’ dx 

u,(x): axiot displacement of the centroidal axis 

Fig. 5. Beam diflerential element coordinate system. 

3, the axial displacement u due to bending only can this expression simplifies to 

be expressed as: 

u(x) = -)4?,(X) - ztqx). (1) 

Including shear and axial effects, the general expres- 
sion for the distribution of the average shear stress on 
a cross section is given by [ 18, 191 

which, after the application of the beam cross section 
symmetry assumption, becomes: 

7xy=f+Nx$)+~(Vz-Nx~). (2) 

Equivalently, the shear strain is 

&(Vy-N$)= -8,+$ (5) 

The Q,/b: tetm of eqn (5) depends on the co- 
ordinate y. To simplify this situation, we replace 7xy 

by a uniform stress distribution and account for its 
variation with y by introducing a shear correction 
factor k,. This factor k, is defined in [ 191 as the 
constant by which the average shear strain must be 
multiplied in order to obtain an equivalent uniform 
shear strain producing the same shear displacement 
as the distributed shear strain of the left hand side of 
eqn (5). With this definition, 

(6) 

where A is the cross sectional area. Values of k, 
for typical symmetric cross sections [19] are 6/5 for 
rectangular sections, IO/9 for circular sections, and 

‘,. = z b , G becomes 
near unity for I sections. Using eqn (6), eqn (5) 

+&(M~). (3) (7) 

The linear approximation for the shear strain is Notice that the total rotation angle for the beam 

du dv 
elastic curve is dv/dx for the x-y plane, while 0, is the 

Y xy=-d-j+z. 
(4) part of dv/dx due to bending only. A similar expres- 

sion is valid for f$ in the x-z plane (horizontal plane). 

Equations (I), (3) and (4) imply: 
BOUNDARY VALUE PROBLEM FOR 

&(VA$) 

THE BEAM ELEMENT 

The beam differential element shown in Fig. 6 is 

+& (Vz-N$)= -O,+;, 

used for the x-y plane. The equilibrium of forces with 
respect to the y-axis gives: 

and since the shaft cross section is symmetric with 
%= -(4 --/,a +.@$ -fylw +&a,). (8) 

respect to the y axis, 
dx 

Q,=O; The moment equilibrium with respect to the left end 
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Fig. 6. Uniform differential beam element with uniform 
distributed load on elastic foundation (x-y plane). 

of the beam element shown in Fig. 6 gives 

vg$+N*$. 

Since the beam cross section has been assumed to be 
symmetric, the constitutive relation for the beam 
bending based on Hooke’s law is 

d&(x) 
M*(x)= -EIzT. (10) 

Differentiation of eqn (9) with respect to x and 
application of eqn (7) gives the governing differential 
equation of the beam element for the x-y plane: 

dYy= 
dx 

A similar expression is valid for the x-z plane. 
Notice from eqns (8) and (I 1) that if the uniform 

coupling elastic foundation constantf,, is not zero the 
problem is coupled between the x-y and x-z planes. 

For reasons of convenience, the notation of Fig. 7 
will be used for the derivation of the stiffness matrix 
and load vector of the proposed beam finite element. 

DISPLACEMENT FIELD 

It is common to approximate the displacement field 
along a beam element with a cubic polynomial taking 
as nodal degrees of freedom the displacement and 
rotation at the beam ends [5, 14, 15, 161. This approx- 
imation is very accurate for free beams, but not so 
accurate for beams on elastic foundation [I]. How- 
ever, when the beam is on elastic foundation, the 
shear force is a function of the displacement [eqn 
(I)].Therefore, the angle of rotation 0, of the beam 
elastic curve due to bending only is dependent on the 
displacement according to eqn (7). This does not 
allow the use of the standard degrees of freedom of 

Fig. 7. Notation for the beam finite element in x-y plane. Fig. 8. Nodal points for the beam finite element. 

the displacement and rotation at each end of the 
beam element. Instead, independent approximations 
are used for the rotation 0: and the displacement o. 

A linear approximation for both u and 0: (X-J 
plane) and w’ and 6,V (x-z plane) did not give a good 
accuracy in calculating the deformation of a simply 
supported beam on an elastic foundation (f, # 0, 
f, =jYl =I;, = 0) using a reasonable number of ele- 
ments. The accuracy of the solution was obtained 
comparing the numerical solution with the analytical 
solution. For this reason, the displacement u and the 
virtual displacement C along the length of the element 
are approximated by a quadratic polynomial as: 

u(x) = {N,(x) Nz(x) N,(x)} v2 1 

[I 

(12) 

1’3 

where u, , u2 and u, are the nodal displacements at the 
two ends and the middle of the element, respectively 
(Fig. 8), and 

N,(x)= 1 -3C+2c2 

N2(x) = -4 + 2C2 

N,(x)=41 -4c2 

<=; (13) 

are the shape or interpolation functions. The slope 
approximation is 

e 

e,(x) = {N,(x) N2(x) N,(x)] 6:: . 

[I 

(14) 

8 -, 

Similar expressions can be obtained for the x-z 
plane. 

WEAK FORMULATION AND 
DISCRETIZED SYSTEM 

The weak formulation is a variational form of the 
given boundary value problem for each element, 
transforming the true continuous displacement field 
into a discrete approximation using the nodal dis- 
placements and rotations as given by eqns (12) and 
(14). The Galerkin method [20] is used to obtain that 
variational form. Introducing the approximating 
displacement and rotation field into the governing 
differential equation, a residual is produced since it 
does not satisfy the boundary value problem exactly. 
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Galerkin’s method makes this residual orthogonal to 
the approximating (shape) functions over the length 
of the element. There is no limit on the highest-order 
derivative which appears in the weak form. For the 
integrals in the weak form to exist, however, it cannot 
exceed the order of the continuity of the interpolation 
functions by more than one [21]. With the interpola- 
tion functions of eqns (12) and (14), the continuity of 
the displacement field v(x) (w(x)) an& the rotation 
field 6,(x) (t?,(x)) is ensured. This implies that at most 
first-order derivatives of the displacement and rota- 
tion may appear in the integral formulation obtained 
by Galerkin’s method. For this reason, integration by 
parts is applied where it is needed. 

If we multiply the gove~ing differential eqn (1 I) 
for the x-y plane by the virtual displacement 8, and 
integrate over the beam length, we obtain: 

J 
L - N$gdx=O. 

0 

Integration by parts of the second term twice, and of 
the third term once, and use of eqn (7) to eliminate 
d2E[dxz and dE/dx yield: 

If we combine the Last two terms by integration by 
parts, the last three terms of the above eqn (15) 
become equal to: 

or 

since elimination of dc/dx in eqn (9) using eqn (7) 
gives: 

Therefore, eqn (15) is equal to: 

J 
L 

- M:~dx+~,+~)-’ 
0 

J 
L -I 

X 

0 

v, P;: dx 

LdV L 
-_- J ~i?dr-M,~, L+ VyC . 

o dx I I 
(16) 

0 0 

By substitution of the shear force VY from eqn (7), 
the bending moment M, from eqn (IO) and the 
derivative of the shear force d VJdx from eqn (9), and 
by adoption of the Fig. 7 notation, the weak form of 
eqn (16) takes the following final form: 

EI: 

AG Ldu dB 
x- 

k: J o dr dx 
--dx-k AG L%?zdx J -_ o dx 

AG L -- J 4 o e dB L zzdx+l;. J vB dx 
0 

+ Vy, C, + V,.& -t M,, 81, + M,, fl,, . (17) 

A similar expression holds for the x-z plane. 
Using the approximating displacement and rota- 

tion fieids of eqns (12) and (14) and performing the 
integrations in the weak forms of both x-y and x-z 
planes, the element equations for both planes are as 
follows: 

E&l I%,1 0 0 

[%I=’ PM 0 fSE2.1 
0 0 I%1 W&J 
0 [SE421 W,lT W,I 
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where If needed, the internal degrees of freedom {d,} can be 
calculated from the equation 

The matrices W,,l, [S&I, L%I, P4,1, PE331, 
[SE,], [SE,] and [SE,,] and the distributed loading 
vectors {d,) and {d2J are given in [22]. Rearranging 
eqn (18) we obtain 

[~~iit~‘l][~]=[~]+[~], (19) 

The matrices [&I, [L], [K,,] and [K,] and the 
loading vectors (r,,] and {rC} are given again in [22]. 

Elimination of the internal degrees of freedom {d,} 
from eqn (19) by static condensation gives the final 
form of the discretized system as 

(20) 

v-4 = Kl- iKme,1-‘K,1 (21) 

L = 300 I”. 
N, = 0 or 4000 klb+ 
f, = 05 klb/in2 
p, = 0.39607 klb/in 

E = 30000 klb/in2 
G = 12000 klb/in’ 

k, = IO/9 

+ klb = 1000 lb 

Fig. 9. Simply supported beam for examples 1 and 2. 

The discretized system of equations of 
elements for both planes can be obtained 
bling the element equations [eqn (20)]. 

NUMERICAL EXAMPLES AND 
DISCUSSION 

Example I 

(23) 

the beam 
by assem- 

The accuracy of the proposed beam element ou 
an elastic foundation is illustrated by solving the 
problem of a simply supported beam on a uniform, 
continuous elastic foundation under both a uniform 
load and a tensile axial force as in Fig. 9. The beam 
is of uniform circular cross section and is loaded only 
on its vertical plane (py # 0, p, = 0); the only non zero 
elastic foundation constant in this case is j;.. All the 
numerical data for the specific example are shown in 
Fig. 9. 

The boundary value problem which describes the 
displacement field of the example beam is 

where 

Q+J.u=P, 

v(0) = v(L) = 0 

M;(O) = MI(L) = 0 

+ 

This boundary value problem was solved analyti- 
cally in a straightforward manner as in [I]. The results 
for the data of Fig. 9 are tabulated in Table 1. The 
same problem was solved numerically using the 
beam element developed above using both 10 and 30 
elements along the length of the beam. These results, 
also shown in Table 1, are in very good agreement 
with the analytical solution, especially those obtained 
with 30 elements. This provides an adequate indica- 
tion that the element developed here does give a 
solution which converges to the exact solution as the 
number of elements increases. 

If the displacement field must be calculated very 
accurately, a relatively large number of quadratic 
elements is required. For this reason, the more 
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Table I. of even a few microinches (10m6in.) changes the 

Displacement o (in.) characteristics of the support bearings considerably. 

x (in.) 

0.0 

30.0 

60.0 

90.0 

120.0 

150.0 

Finite element Finite element 
Analytic solution using solution using 
solution IO elements 30 elements 

0.0 0.0 0.0 

0.0439479t 0.0438395 0.0438992 
0.039 1956$ 0.0391459 0.0391949 

0.0830262 0.0828298 0.0829338 
0.0739946 0.0739096 0.0739934 

0. I 135289 0. I 132676 0. I I34020 
0.101 I IO1 0.1010017 0.101 I085 

0.1328564 0. I325553 0.1327074 
0. II82679 0.1181462 0.1182661 

0.1394668 0.1391544 0.1393123 
0.1241337 0.1240078 0.1241319 

t Bending, elastic foundation, and shear cffccts (N, = 0). 
1 Bending, elastic foundation, shear and axial effects 

(N, = 4000 klb). 

accurate quadratic element developed here is pre- 
ferred over the simple linear element. High accuracy 

in calculating the displacement field is required in 
the rotor dynamics area, where a rotor displacement 

Example 2 

A simple supported beam on elastic foundation 
with a circular cross sectional area, as that of Fig. 9, 
is used to demonstrate the importance of coupling 
the shear, axial and elastic foundation effects in the 
bending of beams. Different beam length L and 
diameter D, axial load N, and elastic foundation 
spring constant f, are used. 

The shear effect depends on the shear correction 
factor k and the product of the beam cross sectional 
area A with the shear modulus G [eqn (7)]. Since G 
is constant for a selected material and k does not vary 
considerably with the geometry of the beam cross 
section [ 19,221, the shear effect is governed mainly by 
the area A. For large A (large diameter D) the shear 
effect is not important, while for small D the shear 
effect is quite considerable (Table 2). Besides, the 
shear effect is more pronounced for beams with small 
L/D ratios (see [I& 19,231 and Table 2). Therefore, a 
combination of small L/D ratios and small D results 
in a large shear effect. 

Table 2. 

D (in.) 

L (in.) 

N (klbf) 

NY (klbf) 

Displacement v (in.) 

Bending 

Rending and shear 

::<nding and axial 

Bending, shear 
and axial 

Percentage 

Shear 

Axial 

Shear axial interact 

20.5 

300.0 

- 10000.0 - 20000.0 

t231 - 33080.0 

0.39607 

(1) 0.138397 

(2) 0.139154 

(3) 0.198601 0.350891 

(4) 0.200192 0.35595 

(5) 0.55 

(6) 30.31 60.55 

(7) 0.42 I.21 

I.5 2.5 

-740.8 

2.0 

10.0 

- 500.0 

- 2330.5 - 5682.5 

3.5 

0.107:83+ 0.0606313 0.0388541 
0.08461$ 0.0558749 0.0375436 

0.111241 0.064652 I 0.0428925 
0.0870098 0.0592542 0.0412929 

0.330812 0.0772501 0.0426156 
0.181537 0.0697015 0.0410451 

0.372615 0.083966 0.047545 
0.193363 0.0750998 0.0455894 

3.56 6.22 9.42 
2.76 5.71 9.08 

67.57 21.51 8.83 
53.39 19.83 8.53 

IO.15 3.21 I .87 
4.87 2.69 1.74 

(5) = (2) - (1) I I (2) 
x 100. 

(6)~ o-(1) x 100. 
I I (3) 

(7)=; {i(2)-(1)1+[(3)-(l)l-(~}-(~) x lOO. 

(4) 

t&, = 0.5 klbf/in2. 
tJ, = 20.0 klbf/in2. 
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It is well known that the deflection of a beam in The rotor of this example is supported by two 
bending due to the axial load N, is large when N, hydrodynamic journal bearings. Both bearings have 
approaches the critical axial load NT[23]. In this a length/diameter ratio of 1.0 and a radial clearance 
case, the shear, axial interaction effect is practically of 0.0006 x D. The rotor is turning at 1000 rev/ 
important and it may be even greater than the pure min. The bearings support, besides the rotor weight, 
shear effect (column 3 of Table 2). Generally, the two concentrated loads of 0.5 klbf each applied at the 
shear, axial interaction effect is of significant magni- rotor midspan in the vertical and horizontal planes. 
tude when the shear effect, or the axial effect (or both) A compressible load of 500.0 klbf is also applied on 
are practically considerable (Table 2). the rotor (Fig. IO). 

The remarks stated above are also valid for differ- 
ent values of the elastic foundation spring constantf, 
(last three columns of Table 2). However, for large& 
the beam is stiffer and, therefore, all the effects 
become less important (Table 2). 

Figures 6.9 and 6.10 of [24] are used to estimate the 
elastic foundation spring constants of the bearings’ 
oil film corresponding to the above operating con- 
ditions. These estimated spring constants are as 
follows: 

In conclusion, the shear effect for beams on elastic 
foundation is important for small L/D ratios and/or 
small cross sectional areas, the axial effect is very 
important for axial loads of the same order of 
magnitude with the critical (buckling) load, and the 
shear, axial interaction is practically important when 
either the shear effect or the axial effect (or both) is 
important. However, the importance of the above 
effects decreases with increasing magnitude of the 
elastic foundation spring constants. 

/y = 16.9 klbf/in* fyz = 404.5 klbf/in2 

f, = 37.1 k1bf/in2 fi, = -404.5 klbf/in2. 

The displacement, shear force and bending moment 
distributions of the rotor are shown in Figs 11, 12 and 
13, respectively, for the vertical plane only. Similar 
distributions hold for the horizontal plane. In order 
to study the effect of the coupling elastic foundation 

Example 3 

The rotor of Fig. 10 was selected to demonstrate 
the importance of the proposed beam element on 
elastic foundation in the area of rotor dynamics. The 
problem of finding the response of a flexible rotor in 
its bearings is time dependent. However, the pro- 
posed element can be easily extended to include the 
dynamic effects of lateral and rotational inertias [ 131. 

The beam element on elastic foundation is used to 
model only the part of the rotor which is within the 
journal bearings. The remaining rotor is modeled 
with beam elements which include bending, shear, 
axial and shear-axial interaction effects [22]. For these 
beam elements, the displacement field in each plane 
is approximated by a cubic polynomial using the 
displacement and rotation at both element ends as 
degrees of freedom. When the beam is not on elastic 
foundation, the vertical and horizontal planes are not 
coupled. 

-24 . . 1 . 3 I I I 
-25 0 25 5 75 10 12 5 15 175 20 22 5 25 : 

Length 1 II-I ) 

Fig. Il. Displacement distribution for the rotor of Fig. 
in vertical plane. 

05 

L, = 25 I”. D, = 2.5in. 

L2 = 6 in D2 = 6 in. 

L, = 2.5 In. P = 0.5 klbf 

N 8 = -500 klbf 

Fig. IO. Flexible rotor on elastic foundation for example 3. 

04- 

03- 

02- 

z 
n 0 I- 
P 
- 0 
Y 
i -Ol- 

L 
0 II -0 2- 

VI 
-0 3- 

-04- 

-054 I , 1 , I , , , , , 
-25 0 25 5 75 IO 125 15 175 20 225 2527 

Length (1” 1 

Fig. 12. Shear force distribution for the rotor of Fig. 
in vertical plane. 
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‘-i5 b 2’5 kl 7’5 Ib Ii5 (5 f?S io 2i5 i5 i75 

Length (II? I 

Fig. 13. Bending moment distribution for the rotor of 
Fig. 10 in vertical plane. 

spring constants, each figure has two curves; one with 
&,/,,f,,&#O and one withS,,L#O,j;,=f,=O. 
The effect of the coupling elastic foundation spring 
constants on the displacement field is very large, as 
shown in Fig. 11. When f, =1;, = 0, the elastic 
foundation deforms more in order to support the 
applied load. The shear force distribution is different, 
for the two cases, along the bearings’ length (Fig. 12). 
However, the shear force is the same along the part 
of the rotor which is between the two bearings since 
the bearing reactions are the same for both cases. The 
difference in the shear force distribution along the 
bearings’ length introduces also a difference in the 
bending moment distribution along the whole rotor 
length (Fig. 13). The difference for both the shear 
force and bending moment distributions is not as 
pronounced as it is for the displacement distribution 
because the bearings support the same load for both 
cases. 

In conclusion, the effect of the coupling elastic 
foundation between the vertical and horizontal 
planes is very important when the rotor deformation 
is of primary concern (rotor dynamics area), and less 
important for the shear force and bending moment 
distributions, when a given load is applied on the 
rotor. 
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