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Abstract 
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The withdrawal of tricyclic antidepressants (TCAs) produces symptoms suggesting 
cholinergic rebound. 
Amitriptyliiie (AMI), the most potent antimuscarinic agent among this class of 
drugs, produces supersensitivity to the muscarinic agonist, oxotremorine. 
Enhancement of the sensitivity of cholinoceptive neurons to acetylcholine as a 
consequence of treatment with TGAs would account for many of the symptoms following 
the withdrawal of these drugs. 
Desipramine (DMI) is the least potent antimuscarinic compound among the TCAs, yet 
its withdrawal produces withdrawal symptoms. 
Recently, it was reported that amoxapine (AMX) weakly binds to muscarinic 
acetylcholine receptors (n&&R) in vitro. This may indicate that this drug lacks 
the effects antimuscarinic effects in vivo, and that it will not supersensitize 
cholinergic networks. 
A thermoregulation paradigm was used to assess the sensitivity of a central 
muscarinic mechanism to oxotremorine before and after treatment with DMI and AMX. 
Treatment with either drug increased the hypothermic response to this agonist. 
Mechanisms whereby drugs can produce cholinergic system supersensitivity, and the 
use of thermoregulation paradigms in assessing the properties of therapeutic agents 
is discussed. 

Kevwords: Amitriptyline, amoxapine, cholinergic, desipramine, thermoregul.ation 
paradigm 

Abbreviations: amitriptyline (AMI); amoxapine (AMOX); 
acetylcholine receptor (mAchR); quinuclidnyl benzilate 
antidepressants (TCAs) 

Introduction 

desipramine (DMI); muscarinic 
(QNB); tricyclic 

All tricyclic antidepressants (TCAs) antagonize muscarinic cholinergic systems. The 

evidence for this includes the capacity of TCAs to block biochemical and physiological 

effects of acetylcholine (Atkinson and Landinsky, 1972; Blackwell et al., 1978; 

Richelson and Dininetz-Romero, 1977; Szabadi et al., 1980), the specific high affinity 

binding of these agents to the muscarinic acetylcholine receptor (mAchR) (Snyder and 

Yamamura, 1977) and their propensity to produce antimuscarinic side-effects. Drugs 

581 



with these properties produce mAchR up-regulation (Ben-Barak and Dudai, 1980; Ehlert 

et al., 1983; Wise et al., 1980; Yamada et al., 1983) and supersensitivity of 

cholinoceptive neurons to acetylcholine or cholinomimetic agents (Dilsaver, 1986a,b; 

Friedman et al., 1969; Jaffe and Sharpless, 1968) Observations that the withdrawal of 

TCAs can result in symptoms which are also produced by muscarinic agonists and 

anticholinesterases (Dilsaver and Greden, 1984a,b; Dilsaver et al., 1983a,b; Dilsaver 

et al., in press) is consistent with this. 

Temperature is subject to regulation by a hypothalamic muscarinic mechanism (Lomax 

et al., 1969) which is subject to supersensitization by chronic treatment with 

antimuscarinic agents and subsensitization by the protracted administration of an 

anticholinesterase (Overstreet et al., 1973). This suggests TCAs may produce 

supersensitivity to muscarinic agonists and presents a strategy for assessing the 

capacities of psychotropics to modify the sensitivity of a central cholinergic 

mechanism(s) (Dilsaver, 1986a). We demonstrated this by treating rats with 

amitriptyline (AMI) 10 mg/kg intraperitoneally (ip) twice daily. This regime resulted 

in marked enhancement of sensitivity to the hypothermic effects of oxotremorine 

(Dilsaver et al., in press a). Treatment with AMI, 10 mg/kg ip twice daily for 26 

days and 20 mg/kg ip twice daily for an additional 5 days produced a 20-fold increase 

in the sensitivity to oxotremorine. Supersensitization was also demonstrated by 

varying the dose of AM1 and holding the dose of oxotremorine constant at 1 mg/kg ip 

(Dilsaver and Snider, 1986). The higher the dose of AM1 administered the greater the 

hypothermic response. 

The study reported in this article was designed to assess the capacities of the 

least potent antimuscarinic agent among the TCAs, desipramine (DMI), and the 

dibenzoxazepine derivative, amoxapine (AMX), to produce supersensitivity of a central 

muscarinic mechanism. AMX weakly displaces the mAchR antagonist, quinuclidinyl 

benzilate (QNB) (Coupet et al., 1985) in vitro. This implies that it may only 

minimally antagonize muscarinic cholinergic systems. However, drugs can produce 

supersensitivity of cholinergic systems without directly blocking the mAchR. Agents 

activating systems which inhibit the release of acetylcholine through actions on the 

presynaptic cholinergic neuron are among these (Dilsaver, in press). For instance, 

activation of dopaminergic neurons (Ehlert et al., 1981a) and treatment with 

isoproterenol (Nomura et al., 1982a) can increase the density of mAchRs in the 

striatum and myocardium of rats, respectively. AMX inhibits the uptake of 

norepinephr-ne and its withdrawal is associated with atropine-responsive symptoms 

suggesting cholinergic rebound (Dilsaver et al., 1983a). Thus, its effects on 

muscarinic mechanisms in vivo are of interest. 
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TeRIDeratUre Measurement 

Methods 

Model VM Mini-Mitters (Mini-Mitter Co. Sun River OR) were implanted into the 

peritoneal cavity of adult male Sprague-Dawley rats. These devices emit Hertzian 

waves at a rate directly proportional to temperature. A transistor radio set to an AM 

frequency served as a receiver. Time to emit 10 sounds was measured using a digital 

display stopwatch. This measurement was then converted to temperature using a linear 

regression equation which was derived by measuring the emission rate of the 

thermosensors at three temperatures in a temperature controlled waterbath. These 

instruments can be sensitive to a change in temperature of O.l”C (Tocco-Bradley et 

al., 1985). 

Oxotremorine Challenge 

All oxotremorine challenges were conducted between 1000 and 1100 hours and were 

preceded by the administration of methylscopolamine nitrate, 1 mg/kg ip to block the 

peripheral effects of the muscarinic agonist. Baseline temperature (i.e., time to 

emit 10 discrete sounds) was measured 30 minutes later. Oxotremorine (base), 1 mg/kg 

ip was then administered and temperature recorded every 10 minutes for 120 minutes. 

Table 1 outlines steps in the preparation of Mini-Mitters, the recording of raw 

data, the con--ersion of these data to absolute core temperature and change in 

temperature relative to the pretreatment thermic response to oxotremorine. 

Pharmaceuticals 

DMI was purchased from Sigma Chemical Company (St. Louis, MO) and administered in 

the form of the hydrochloride. The regime of 10 mg/kg twice daily was based upon 

reports by Nomura et al. (1982b,1983) that it produces up-regulation of the mAchR and 

supersensitivity to acetylcholine in rat myocardium. AMX hydrochloride was provided 

as a gift by Lederle. The dose of AMX (molecular weight = 313.8) we selected 

presented the advantage of being essentially equimolar to the dose of DMI (molecular 

weight = 302.8) we used. Doses of DMI and AMX both refer to the salt form. 

Animals 

This study involved two samples of Sprague-Dawley rats, one of which received 

treatment with AMX (mean weight f SEM = 307 f 22.2 grams) and the other DMI (mean 

weight + SEM = 316 + 30.2 grams). 

Exoerimental Desinn 

The experimental design is illustrated in Figure 1. The experiment involved three 

phases. Phase I began with the implantation of the thermosensors and concluded after 

the animals had five days to recover from surgery. The first oxotremorine challenge 

marked the end of Phase I and beginning of Phase II. This challenge provided a 

baseline against which all subsequent data obtained in oxotremorine challenges was to 

be evaluated. During Phase II all animals were treated with either AMX or DMI 10 
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Table 1 

Data Collection 

Step 1: The Model VM Mini-Mitter is calibrated. bv allowinn it to come into ~ _ 

Step 2: 

Step 3: 

Animal 

equilibrium in a temperature controlled water bath, and measuring the rate at 
which it emits sounds detectable with an AM receiver at three (3) 
temperatures. 

The device is implanted into the peritoneal cavity and the animals are 
allowed 5 or more days to recover. 

The baseline (preantidepressant treatment) hypothermic response to 
oxotremorine (base) 1 mg/kg, intraperitoneally is measured. The data sheet 
is organized as follows: 

30 min. Post 
injection 
of methyl- 

Time in seconds to emit 10 sounds 

Mass scoDolamine UI X! JQ 40 50 H! Is! 80 %Q UQ 110 JJQ 
1 290 g 4.00 3.9 3.81 3.80 3.30 3.42 3.30 3.42 3.45 3.42 3.6 3.1 3.75 
2 
3 
4 
5 
6 
7 

Step 4: 

Step 5: 

Animal 
lo 

These time measurements are used to calculate core temperature and change in 
core temperature relative to the baseline for a particular day. The baseline 
for a given day is defined by the core temperature 30 minutes after the 
injection of methylscopolamine (i.e., immediately prior to the injection of 
oxotremorine). 

A Time (Time to emit 10 sounds in seconds at each time point) - (time to 
emit 10 sounds 30 minutes after the injection of methylscopolamine) is 
recorded. 

1 -0.10 -0.19 -0.20 -0.50 0.58 -0.70 -0.58 -0.55 -0.58 -0.40 -0.30 -0.25 
2 
3 
4 
5 
6 
7 

Step 6: A Time is then converted to A Temperature using the linear regression 
equation for the particular Mini-Mitter. 

e.g. y = 4.5 x - 50.4 
where y = core temperature (“C) and x = time to emit 10 sounds 

Table 1 continued on the next page 
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A Temperature 
Animal 

1 
60 70 80 90 100 110 120 
-3.22 -2.30 -2.53 -2.3 -1.84 -1.38 -1.15 

step 7: The animals are subjected to an experimental manipulation thought to affect 
cholinergic systems (e.g., treatment with a drug). 

PHASE I PHASE II PHASE IU 

Thermosensor 
Implantation 

Treatment with AMX OR Drug Withdrawal 
DMI, IOmgKg twice daily 

Oxotremorine 
Challenge 

t 

I 

Fig. 1. This study is d ivided into three phases. Phase I is a period of preparat ion 
during which the Model VM Mini-Mitter is implanted into the peritoneal cavity and the 
animals allowed 5 days for recovery. Phase II begins with the first of 5 oxotremorine 
challenges. This provides the baseline against which all data obtained in all 
subsequent challenges is evaluated. Treatment with either AMX or DMI (10 mg/kg ip 
twice daily) is started at the conclusion of this challenge. The animals challenged 
with oxotremorine at 7 day intervals. All oxotremorine challenges follow the 
preceding dose of antidepressant by 17-18 hours. Challenge data entering into 
statistical analyses for the treatment phase is that obtained at the end of the third 
week of antidepressant administration or available from the challenge immediately 
preceding a loss of the animal from the study due to thermosensor failure or death. 
Phase III is a period of drug withdrawal. 

mg/kg ip twice daily (at 0900 and 1700). At seven day intervals, 17-18 hours after 

the last dose of the antidepressant, oxotremorine challenges were repeated. This 

continued for three weeks. The data used in the analyses reported here were obtained 

at the time of the fourth oxotremorine challenge (i.e., at the conclusion of the three 

week period of antidepressant treatment) or at the point at which animals were lost to 

the study due to thermosensor failure (n=l) or in the case of one animal death. Phase 

III was a period of drug withdrawal. During this phase the animals were left 

undisturbed and untreated so that we could assess whether the effects of 
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antidepressant treatment were detectable one week after its discontinuation. Table 1 

sumarizes steps in the use of Mini-Mitters and in the process of data collection. 

Statistical Analysis 

The proportion of animals in which the hypothermic response was significantly 

enhanced following antidepressant treatment (a dichotomous variable with a binomial 

distribution), change in temperature with respect to time (i.e., significance of the 

mean difference) for each individual animal, the mean and mean maximum hypothermic 

response of the sample, and change in hypothermic response at each of the 12 time 

points for each sample relative to baseline (i.e., the pretreatment phase) were 

designated as dependent variables. Dichotomous data were assessed by applying the 

binomial theorem (Lipschutz, 1965; Siegel, 1956) to calculate the probability that in 

a given number of observations, “k”, “n” outcomes would be observed where the 

probability of observing “n” by chance (a, the probability of a type I error) is 

known. The theorem allows the calculation of the probability of observing a given 

number of statistically significant outcomes in a given number of applications of a 

statistical test. 

Mean change in the hypothermic response for each animal was calculated by 

subtracting the hypothermic response prior to treatment with DMI or AMX from the 

response after treatment at all of the 12 time points and averaging these. The 

significance of the mean for these paired differences for individual animals were 

assessed using Student’s paired t-test. The maximum change in hypothermic response 

was assessed by pairing the maximum hypothermic response of each animal in the sample 

before treatment with its maximum response after treatment. The mean thermic response 

of the sample was assessed by pairing the mean thermic response of each of the animals 

before treatment with that at the end of treatment and after 7 days of abstinence by 

applying the paired t-test. All measures of variance in the results section refer to 

the standard deviation of the mean difference between matched pairs (Sd) (Goldstein, 

1964). 

Results 

m. Table 2 summarizes data on the response of individual animals (n=8) to 

oxotremorine after treatment with DMI relative to their pretreatment baseline. Four 

(4) of 8 rats exhibited enhanced sensitivity to oxotremorine at the 0.01 level or less 

following treatment with DMI (p = 1.7 x 10 
-10 , binomial test) (Segel, 1956). The 

difference in the mean (ii + Sd = 0.86 f 0.27, t = 3.19, 6 df, p < 0.02) and mean 

maximum (I + Sd = 1.19 + 0.47, t = 2.53, 7 df, p < 0.05) hypothermic responses were 

significant. After 7.5 days of abstinence the sample no longer exhibited 

supersensitivity to the hypothermic effect of oxotremorine. However, two of 6 animals 

continued to demonstrate supersensitivity to the thermic effects of oxotremorine at 
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Table 2 

Summary of Statistical Analysis of Data Collection 
on Animals Treated with Desipramine (DMI) 

Days of 
Treatment 
When Last Reason for Early Mean 

Animal Challenged with Discontinuation Hypothermic 
Number Oxotremorine from Study Responsea DFb tc Pd 

21 
21 
21 
21 
21 
21 
14 

7 
Mini-Mitter failure 
Died lo-20 minutes 
after oxotremorine 
injection following 
14 days of treatment 

X+ 

-1.18 11 -5.9 
-1.50 11 -5.12 
to.32 11 t2.00 
to.13 11 to.46 
-0.54 11 -1.8 
-.08 11 -.16 
-1.28 11 -3.76 
-0.98 11 -4.26 

SEM = -0.64 f 0.24 -2.67 

Mean Hypothermic Response 7 days 
after the last dose of DMI 
relative to the pre-treatment 
baselinef DFb 

-0.87 11 

-1.54 11 
t2.34 11 
+0.39 11 

t1.03 11 
-0.03 11 

2 + SEM = t 0.09 + 0.57 5 

tc 

-4.35 

-6.16 
t9.75 
t3.25 

t6.06 <O.OOlf 
-0.23 n.s. 

to.16 n.s. 

to.001 
to.001 
n.s. 
n.s. 
n.s. 
n.s. 
to.01 
to.01 

t0.05e 

Pd 

<O.Ol 

to.001 
<O.OOlf 
<O.Olf 

The probability that 4 or more of 8 animals would exhibit supersensitive responses to 
oxotremorine is 6.7 x 10V7. 

This mean was calculated by pairing the absolute value of the hypothermic response 
to oxotremorine at each of the 12 time points (10, 20, 30...120 minutes) after the 
injection of oxotremorine before and after treatment with DlvII or AMX and 
subtracting the latter from the former, summing these differences and dividing by 
12. Thus, the mean hypothermic response for a given animal 1 [(absolute value 
of the hypothermic response before DMI or AMX tl0, 20,...120) - (absolute value 
of hypothermic response after DMI or AMX tl0, 20...120)] f 12 
DF, Degrees of Freedom = 12 time points -1 = 11 
This statistic is calculated using the formula for Student’s paired t-test. The 
measure of variance entering into the calculation is based on the standard 
deviation of the difference, Sd, in the hypothermic response to oxotremorine at 
the 12 time points before and after treatment with DMI or AMI. 
p values refer to the two-tailed probabilities of a type I error. 
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(e) The mean in this row = C [(mean hypothermic response of each individual animal 
before treatment with DMI or AMX) - (mean hypothermic response of each individual 
animal after treatment with DMI or AMX)] f 12 
DF = sample size -1 
t was calculated using the formula for Student’s paired t-test. 

(f) Denotes a hyperthermic response 

a < 0.01 and 3 of 6 exhibited significant decreases in the hypothermic response to 

this drug at the 0.01 level. Thus, the animals comprising the sample demonstrated 

marked variability in their responses to oxotremorine at this time. 

Treatment with DMI was associated with a significant increase in the hypothermic 

response 70 (p < O.OOl), 80 (p < O.Ol), 90 (p < O.OZ), 100 (p ( 0.02>, 110 (p < 0.02) 

and 120 (p < 0.001) minutes after the injection of oxotremorine. The probability of 6 

of 12 measurements being significant at a < 0.02 is 8.7 x 10 -10 (b’ lnomial test). 

Figure 2 illustrates the difference in the mean thermic response to oxotremorine 

across time after treatment with DMI relative to the pretreatment baseline, These 

data are presented with additional statistical information in Table 3. 

ANX -. Table 4 summarizes data on the responses of individual animals (n = 9) to 

oxotremorine after treatment with AMX relative to their pretreatment baseline. Five 

of 9 animals exhibited an enhanced hypothermic response at the 0.05 level or less (p = 

1.92 x 1o-8 , binomial test). The mean hypothermic response (X + Sd = 0.56 + 

O.l9”C, t = 2.94, 6 df, p < 0.05) increased significantly. There was also a trend 

toward a significant increase in the maximum hypothermic response (X + Sd = 0.61 + 

0.31*C, t = 1.96, 8 df, p ( 0.10) to oxotremorine, Following the 7.5 day withdrawal 

phase, the sample did not evidence enhanced responsiveness to oxotremorine. 

Treatment with AMX was associated with an increase in the hypothermic response 60 (p 

< 0.02), 70 (p < O.OOl), 80 (p < O.Ol), 90 (p < O.Ol), 100 (p < 0.011, 110 (p < 0.01) 

and 120 (p < 0.02) minutes after the injection of oxotremorine. The probability of 7 

of 12 measurements being significant at a t 0.02 is 8.0 x 10 
-12 

. Figure 3 

illustrates the difference between the mean thermic response to oxotremorine across 

time before and after treatment with AMX. These data are presented with additional 

statistical information in Table 5. 

Discussion 

Thermoregulation Paradigm 

A thermoregulation paradigm and four dependent variables (1) the proportion of 

animals exhibiting a significant hypothermic responses at the level of u c 0.05, (2) 

the difference in the mean hypothermic response of each individual animal over time 

after the injection of oxotremorine before and after antidepressant treatment, (3) the 

mean change and mean maximum difference in the hypothermic responses of a sample 

before and after DMI or AMX administration, and (4) change in the hypothermic response 
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DIFFERENCE BETWEEN THE ABSOLUTE 
VALUES OF THE HYPOTHERMIC RESPONSE 
BEFORE AND AFTER TREAMENT WITH DMI 

I I I I I 11 1 11 1 I 
IO 30 50 70 90 110 

TIME AFTER INJECTION OF OXOTREMORINE 

Fig. 2. Mean change in the thermic response + Sd at 10 minute intervals following 
the injection of oxotremorine, 1 mg/kg ip in animals treated with DMI (N=8). 

Table 3 

Change in the Mean Thermic Response (“C) + Sd Across 
Time After Treatment with Desipramine 

Minutes after the injection of oxotremorine 
10 minutes 20 minutes 30 minutes 40 minutes 50 minutes 60 minutes 

-0.02 * 0.19 -0.02 ?r. 0.26 -0.10 + 0.17 -0.14 + 0.26 -0.2 * 0.39 -0.68 f 0.41 

Minutes after the injection of oxotremorine 
70 minutes 80 minutes 90 minutes 100 minutes 110 minutes 120 minutes 

-1.18 + 0.16 -1.43 + 0.32 -1.22 * 0.35 -1.57 + 0.45 -1.27 + 0.39 -1.41 + 0.25 
p < 0.001 p < 0.01 p < 0.02 p < 0.02 p < 0.02 p < 0.001 

This table lists the change in the mean hypothermic response + Sd, relative to 
baseline, at each of 12 time points for animals treated with DMI. Temperature was 
measured every 10 minutes after the injection of oxotremorine (at t = 0). Probability 
statements are based on the results of Student’s paired t-test in which the thermic 
responses before and after antidepressant administration were the matched pairs, and 
the mean difference in the absolute value of the thermic response before and after 
treatment constitutes the mean effect of treatment. 
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Table 4 

Summary of Statistical Analysis of Data Collection 
on Animals Treated with Amoxapine 

Days of 
Treatment 
When Last Reason for Early Mean 

Animal Challenged with Discontinuation Hypothermic 
Number Oxotremorine from Study Responsea DFb tc Pd 

21 

21 
21 
21 
21 
21 
21 
21 
21 

-0.78 11 
_ -1.46 11 

+0.38 11 
-0.82 11 

_ -0.83 11 
+0.21 11 
-0.37 11 
-1.08 11 
-0.52 11 

-3.9 to.01 
-9.13 to.001 
+1.9 n.s. 
-4.1 to.01 
-3.95 to.01 
+1.05 n.s. 
-1.00 n.s. 
-3.96 <O.Ol 
-2.36 to.05 

8 2.85 
: + SEM = -0.57 &- 0.19 

Mean Hypothermic Response 7 days 
after the last dose of DMI 
relative to the pre-treatment 
baseline DFb tc 

+0.82 11 +1.6 
+0.28 11 +1.56 
+1.19 11 +9.13 
-0.06 11 -0.75 
-0.35 11 -1.46 
-0.45 11 -1.41 
-0.16 11 -0.84 
+0.38 11 +2.71 
-0.03 11 -0.25 

Mean + SEM = 0.18 + 0.17 8 +l.OO n.s. 

to.05 

Pd 
n.s. 
n.s. 
tO.OOl* 
n.s. 
n.s. 
n.s. 
n.s. 
to.05 
n.s. 

This table lists the mean difference between the absolute value of the mean 
hypothermic response to oxotremorine before and after treatment with AMX. Please see 
the footnote to Table 2 for further details. 

The probability of one or more of 9 animals exhibitng a decreased hypothermic response 
to oxotremorine at a < 0.05 = 0.044. 

The probability of 6 of 9 animals exhibiting significance at a < 0.05 = 1.11 x 

10-6. 

a-e Please see the footnote to Table 1. 

* This animal exhibited a significant decrease in its hypothermic response after 
treatment. 
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DIFFERENCE OF THE ABSOLUTE VALUES OF THE HYPOTHERMIC 
RESPONSE BEFORE AND AFTER TREATMENT WITH AMX 

-I I - 
uo 
i&-12- 

+m 
zw 

-1.3- 

$F-l4- 
z 1 

IO 20 30 40 50 60 70 60 SO 100 110 I20 
TIME AFTER INJECTION OF OXOTREMORINE 

Fig. 3. Mean difference f sd between the hypothermic response to oxotremorine 1 
mg/kg at baseline (prior to treatment) and after 21 days of treatment with AMX 10 
mg/kg ip twice daily (N=9). 

Table 5 

Change in the Mean Thermic Response (“C) f sd Across 
Time After Treatment with Amoxapine 

Minutes after the injection of oxotremorine 

10 minutes 20 minutes 30 minutes 40 minutes 50 minutes 60 minutes 

-0.14 * 0.17 -0.68 0.32 + -1.40 0.29 * -0.35 0.33 + -0.02 0.35 * -0.74 + 0.23 
p < 0.10 p < 0.02 

Minutes after the injection of oxotremorine 
70 minutes 80 minutes 90 minutes 100 minutes 110 minutes 120 minutes 

-1.16 + 0.18 -1.24 + 0.24 -1.38 0.33 + -0.99 0.23 + -0.96 0.27 + -0.87 + 0.25 
p < 0.10 p < 0.01 p < 0.01 p < 0.01 p < 0.01 p < 0.01 

This table lists the mean change in the hypothermic response + sd at each of 12 time 
points after the injection of oxotremorine for animals treated with AMX. For 
additional details please see the footnote to Table 3. 
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at each of 12 time points (10, 20, 30... 120 minutes) after the administration of 

oxotremorine were useful in studying the influence of a TCA and a second generation 

antidepressant reported to minimally interact with the rnAchR on a central cholinergic 

mechanism. Both agents produce supersensitivity of a cholinergic mechanism involved 

in the regulation of core temperature. This is presumably due to central muscarinic 

effects of these antidepressants. First, the hypothermic response to oxotremorine is 

not blocked by methylscopolamine, but is by scopolamine (Dilsaver et al., in 

press,a). Though oxotremorine may have weak nicotinic effects (Bowman and Rand, 1980) 

and a TCA, amitriptyline produces supersensitivity to the hypothermic effects of 

nicotine (Dilsaver et al., in press, Dilsaver and Snider, 1986), activation of a 

nicotinic mechanism by oxotremorine is not a plausible explanation for the findings 

reported here. We demonstrated that pretreatment with mecamylamine, 2.5 mg/kg ip 

increases the hypothermic response to oxotremorine (Dilsaver and Snider, 1986; 

Dilsaver et al., in press b). This suggests either that oxotremorine’s weak nicotinic 

effects partially antagonize its muscarinic effects or that its muscarinic effects 

result in a compensatory response by an endogenous nicotinic mechanism. For example, 

muscarinic stimulation inhibits the release of norepinephrine whereas nicotinic 

agonists promote the release of this neurotransmitter within the hypothalamus 

(Westfall, 1973). In conclusion, these data strongly suggest that both DMI and AME 

produce supersensitivity of a central muscarinic cholinergic mechanism. 

Mechanism of Action 

Additional data suggests that DMI produces cholinergic system supersensitivity in 

man and animals. Chronic treatment with DMI enhances the miotic response to 

pilocarpine in depressed subjects (Dilsaver and Greden, 1983; Shur et al., 1983). 

Nomura et al. (1982b; 1983) reported that treatment with DMI, 10 zag/kg ip twice daily 

increases the negative ionotropic effects of acetylcholine and produces an exaggerated 

increase in the activity of ornithine decarboxylase in response to a cholinergic 

agonist. The discontinuation of DMI also produces withdrawal symptoms suggestive of 

cholinergic overdrive (Dilsaver et al., 1983a,b; Dilsaver and Greden, 1984a,b; 

Dilsaver et al., in press b). AMX produces a low incidence of “antimuscarinic-like” 

side effects (PDR, 1986) and its discontinuation has also been associated with 

withdrawal symptoms which suggest cholinergic rebound (Dilsaver et al., 1983a). 

Mechanisms whereby antidepressants produce up-regulation or supersensitivity Of 

cholinergic systems can be classified according to the site of their effect. Drugs 

may act postsynaptically to block the mAchR or presynaptically to inhibit the release 

of acetylcholine (Dilsaver, in press). Classical antimuscarinic agents such as 

scopolamine or atropine (Ben-Barak and Dudai, 1980; Ehlert et al., 1983; Wise et al., 

1980; Yamada et al., 1983) and related compounds such as the TCAs (Goldman and 

Erickson, 1983; Rehavai et al., 1980; Nomura et al., 1982b, 1983) which bind with 
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specificity to mAchRs all denervate cholinoceptive neurons by competitively 

antagonizing the action of acetylcholine at the postsynaptic sites. This results in a 

compensatory response involving an increased density of mAchR radioligand binding 

sites and supersensitivity (Friedman et al, 1969; Jaffe and Sharpless, 1968; Sitaram 

et al., 1979; Gillin et al., 1979; Innes and Nickerson, 1975) to cholinergic agonists. 

The second category of agents producing up-regulation and supersensitivity of 

muscarinic cholinergic systems is comprised of at least five classes of agents which 

act at the presynaptic nerve terminal to inhibit the release of acetylcholine 

(Dilsaver, in press). Opiate agonists (Domino and Wilson, 1973; Jhamandas et al., 

1973a,b), cannabinoids (Kumbarachi and Nastuk, 1980; Layman and Milton, 1971; 

Yoshimura et al., 1974), barbiturates (Nordberg and Wahlstrom, 1981; Nordberg and 

Sundwall, 1977; Wahlstrom and Nordberg, 1979; Wahlstrom and Ekwall, 1976; Wahlstrom, 

1978)) ethanol (Rabin et al., 1980; Smith, 1983; Tabakoff et al., 1979), and certain 

serotinergic (ijgren et al., 1985a,b), dopaminergic (Ehlert et al., 1981) and 

adrenergic (Blosser, 1983) agonists are in this class. Nomura et al. (1982a), for 

example, reported that isoproterenol induced cholinergic system supersensitivity and 

up-regulation of QNB binding sites in rat myocardium. Blosser (1983) found that 

activation of B-adrenergic receptors increased the density of cholinoceptors in chick 

myotubes. These reports are consistent with the capacity of norepinephrine (Beani et 

al., 1978) to inhibit the release of acetylcholine from brain slices. Dopamine (Bluth 

and Langnicke, 1985b; Baud et al., 1985) and serotoninergic (Vizi et al., 1981) 

agonists also reduce the release of acetylcholine in the mammalian brain. Ehlert et 

al. (1981b) reported that dopaminergic agonists produced an increased density of mAchR 

binding sites in the corpus striatum of rodents. Ggren et al. (1985a,b) reported that 

chronic treatment with a serotinergic agonist produced enhanced sensitivity to the 

tremoreginic effects of muscarinic agonists. Thus, it is conceivable that DMI or AMX 

could produce supersensitivity to oxotremorine by either directly blocking the 

postsynaptic mAchR or through an effect on the presynaptic neuron. However, Coupet et 

al. (1985) reported that amoxapine weakly displaces QNB in mAchR binding studies. 

Thus, the mechanism whereby AMX produces supersensivity to oxotremorine may indeed 

involve diminution in the release of acetylcholine. 

These data have several theoretical implications. First, they illustrate that h 

vitro and in vivo studies can yield strikingly different results. The in vitro data 

suggest that AMX would have minimal cholinergic effects but the measure of a 

functional index indicates otherwise. However, seemingly contradictory in vitro and 

physiological data are reconcilable. AMX may act presynaptically to partially 

denervate postsynaptic cholinergic neurons. Secondly, Cohens and Baldessarini (1985) 

recently reported that tolerance sometimes develops to the antidepressant effects of 

TCAs. Data suggest that supersensitivity of cholinergic systems may be involved in 
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the pathophysiology of affective disorders (Dilsaver, 1986a-d). Enhancement of the 

sensitivity of cholinergic systems by antidepressants might increase the probability 

of depressive relapse. Third, physiological models, such as the thermoregulation 

paradigm set forth in this article, can be used to evaluate new antidepressants for 

their capacity to modify the sensitivity of cholinergic networks. Such models could 

have considerable value in the pre-clinical evaluation of pharmacological agents. 

Conclusions 

Rats were treated with DMI 10 mg/kg ip twice daily or AMX 10 mg/kg ip twice daily 

for up to 21 days after the baseline thermic response to oxotremorine, 1 mg/kg ip was 

determined. Temperature was measured telemetrically every 10 minutes for 120 minutes 

after the injection of oxotremorine. Oxotremorine challenges were repeated at 7 day 

intervals. Both groups of animals demonstrated enhanced sensitivity to the 

hypothermic effects of the cholinomimetic. The thermoregulation paradigm employed in 

this report has now demonstrated the capacity of AMI, DMI and AMX to produce 

supersensitization of a central cholinergic mechanism. The paradigm is applicable to 

the evaluation of novel antidepressants with unknown effects on muscarinic mechanisms. 

Thermoregulation paradigms are applicable to the study of an array of problems. For 

instance, a thermoregulation paradigm was used to demonstrate that chronic treatment 

with AM1 enhances sensitivity to the hypothermic effects of nicotine (Dilsaver and 

Snider, 1986; Dilsaver et al., in press b). Methods presented in this article were 

also used to establish that chronic forced swim stress (Dilsaver et al., 1986b) and 

inescapable footshock produce supersensitivity (Dilsaver and Alessi, in press b) of a 

central muscarinic mechanism. Thus, a thermoregulation paradigm is useful as a means 

of studying the pharmacology of antidepressants, the neurobiology of chronic stress or 

other manipulations affecting cholinergic mechanisms. It is noteworthy that the 

paradigm we used generated data indicating that AMX, a drug which weakly interacts 

with the mAchR produces supersensitivity of a central muscarinic mechamism. An b 

vitro study would suggest otherwise. The measurement of a physiological parameter 

sensitive to both pre- and post-synaptic actions of a manipulation can convey 

information that the measurement of binding variables does not. 
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