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Abstract: A measure of variability among a set of proportions is developed. There are no 
distributional assumptions, so the measure, H, is applicable in a wide variety of situations. H is 
scaled so that its range is zero (all proportions are equal) to one (maximum variability among the 
proportions, given the weighted average). The measure can be interpreted as a distance: the value of 
H indicates the position of the proportions relative to the possible extremes of no variability or 
maximum variability. Any set of constant weights can be applied to the proportions: the weights are 
used to compute the weighted average proportion and are also used to determine the extent to 
which each proportion affects the variability measure. Comparisons are made to other measures of 
variability and a numerical example is given. 

Keywords: Homogeneity, Variability, Proportions, Cramer’s V, Tschuprow’s T, a*, weights, multi- 
nomial, product binomial sampling. 

1. Introduction 

Consider experiments in which the responses are a set of s numbers, pl,. . . , p,, 

where each pi is between zero and one, inclusive. These pi’s could arise from any 
of a variety of situations, including product binomial sampling, multinomial 
sampling, binary repeated measures, and measures that are ratios of actual values 
to maximum values; the product binomial and multinomial situations are prob- 
ably the most usual and useful. For simplicity, we call all of these pi’s “propor- 
tions”. Our question is: what is the amount of variability among the proportions? 
We develop a descriptive measure of the disparity among proportions relative to 
the maximum possible disparity. 
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Our relative interest in each p, is expressed by a set of weights, w,, . . . , ws, 

where the weights are positive and sum to one. As we are not concerned with the 
direction of differences among the proportions, we use a weighted sum of 
squares, h, in the numerator of the variability measure: h = Cw,( p, - p)‘, where 
j=Cw;p;. W e t h en scale h by dividing it by its maximum value for the given set 
of weights and J. Our variability measure H is defined by 

H=ih/max{hlw, ,..., w,, P} . 

The scale factor incorporates the fact that the maximum possible variability 
among the proportions depends upon 3. For example, consider a situation in 
which we have three proportions (s = 3) and want to weight each equally (i.e., 
WI = w2 = wj = ;. Suppose that one set of proportions is { 1, 1, 0. 7) with j = 0.9, 
and a second set is (0.8, 0.8, 0.5} with 7 = 0.7. The differences between each pi 

and the associated j are identical in the two sets. However, the pi’s in the first 
set are the most disparate possible given F = 0.9; those in the second set are not 
the most extreme, given all possible sets of three proportions with j = 0.7. 

2. Examples of application 

Example 1. Consider a multicenter clinical trial in which we record the proportion 
of patients successfully treated in each of five centers. These proportions are 
generated by binomial distributions. We are concerned about the variability of 
treatment efficacy across clinics. The extent of variability has policy implications. 
If there is high variability, then efforts should be directed towards determining 
why some clinics have substantially lower efficacy than others. Relative homo- 
geneity indicates a more uniform success rate. Equal weights or weights propor- 
tional to the numbers of treated patients are appropriate for this situation. 

Example 2. A marketing survey is done for a product, and consumers are asked to 
state their preferences from among a set of specified brands. The question of 
interest is, “Do consumers show any preferences among brands?” Low variability 
indicates consumer indifference among competing products. The numbers of 
consumers preferring each brand follow a multinomial model. Equal weights are 
a reasonable choice here, or, weights could be proportional to market share, so 
that smaller brands would not exert much influence on the measure. 

Example 3. A subject is given a battery of tests all designed to measure level of 
anxiety. The tests are given different weights according to known reliability in the 
population, the time allowed for the test, or the psychologist’s subjective estimate 
of the relative validity of each test for that subject. The measure of variability 
assesses the consistency of the subject’s responses. 
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Example 4. A survey of Hispanics in the U.S. collected data on the use of Spanish 
and English, as well as data on social variables (age, education, length of 
residence in the U.S., etc.) Each respondent was classified into one of three 
language use categories. Several different linear discriminant models were devel- 
oped to predict the language use category from the social variables. Models were 
evaluated and compared according to two criteria: the overall percentage of cases 
correctly classified, and the homogeneity of proportions of correct classifications 
across the three language categories. For this situation, equal weights for the 
language categories were used. 

3. Properties of H 

The minimum value of H is zero; this value occurs when all the pi’s are equal. 
The maximum value of H is one and occurs when the pi’s are as varied as 
possible, given j. H can achieve its maximum and minimum values for all 
combinations of the number of categories, sample size, weights, and value of j. 

There is a clear interpretation of H as the fraction of the relative distance from 
perfect homogeneity to the hugest possible scatter of values given the average. 
When all the deviations pi - j are multiplied by the same constant c (0 < c < 
l/H), the new value of H is c times its former value. For example, consider the 
set of proportions { 1, 1, 0.7}, where each proportion receives equal weight. Then 
j5=0.9 and H= 1, as the proportions are as widespread as possible given the 
value of j. However, if the proportions were (0.98, 0.98, 0.74) (i.e., each propor- 
tion is only 80% of its former distance from j), then H = 0.8. In this sense, H 
can be interpreted as a relative distance between the situations of equal propor- 
tions and maximum variability among the proportions conditional on j3. 

The properties of H given in the previous two paragraphs are independent of 
the distribution from which the proportions were drawn. Although we usually 
tend to think of proportions as arising from discrete data, H can also be used for 
any continuous distribution bounded by 0 and 1. 

H possesses desirable symmetry properties. If the proportions represent dis- 
tances from one of the bounds of the underlying distribution (1 or 0), the value of 
H would not change if the measurements were changed to represent distances 
from the opposite boundary. For product binomial sampling, the value of H is 
the same regardless of which of the two outcomes is labeled a success. For 
multinomial sampling, H is invariant with respect to category ordering. 

Asymptotic standard errors for H depend on the sampling scheme giving rise 
to the proportions, the types of weights that are used, and whether or not all of 
the population probabilities are equal. Using properties of Pearson’s X2, we have 
obtained asymptotic standard errors for multinomial sampling with equal weights, 
and for product binomial sampling with weights proportional to sample sizes. 
Expressions for asymptotic standard errors for arbitrary weights for these two 
sampling schemes are not readily obtainable. 
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Table 1 
Asymptotic expected value and standard error of H under multinomial sampling, for equal weights 
and equal population probabilities 

s J;;-%W) J;;=,,(H) 

2 0.798 0.603 

3 0.886 0.463 

4 0.921 0.389 

5 0.940 0.341 

6 0.952 0.308 

7 0.959 0.282 

8 0.965 0.262 

9 0.969 0.246 

10 0.973 0.232 

For the following discussion, let Hi represent the underlying population 
probability for the ith proportion. X2 denotes Pearson’s statistic for testing the 
hypothesis of equal probabilities. A zero subscript on variances and standard 
errors refers to the case of equal II,‘s, while a subscript of 1 refers to the case in 
which not all the population probabilities are equal. 

In the multinomial case, the s proportions necessarily sum to one. With equal 
weights, H = /X’/[(s - l)n] , w h ere n is the total sample size. Using properties 
of the chi distribution, we have 

Var()(H)-i- 2 r* [s/21 
n (s - l)n r*[(s - 1)/2] 

when all s population probabilities are equal. Table 1 shows the asymptotic 
expectations and standard errors for this case. The asymptotic variance of H 
when the II,‘s differ (but still assuming equal weights) can be obtained by 
combining equation (30.49) in Kendall and Stuart [3] for Var( X2) with Taylor 
series methods: 

Var,( H) - 
(n - l)s2[EII; - (En;)‘] 

(s- l)nX$ ’ 

where XA is the value of X2 calculated using the population probabilities. When 
we replace the unknown population parameters by their sample estimates, we 
have 

Var,( H) - s2 
(n - l)[Cd - @PZ,‘] 

(s- 1)nX2 . 

We next consider product binomial sampling. Inference about H with weights 
proportional to sample sizes is fairly straightforward. Pearson’s X2 provides a 
test of the hypothesis that the population value of H is zero. For unequal 
population probabilities, we examine the numerator and denominator of H 
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separately. The numerator of H is /‘m, where N is the total sample size 
(in the s by 2 contingency table). Combining Pearson’s approximation for the 
estimated variance of X2 in the case of unequal IIj’s with fixed marginal 
frequencies (Kendall and Stuart [3, eqn. 33.701) with a Taylor series argument, the 
asymptotic variance for the numerator of H is 

where n,j is the marginal total corresponding to the jth column (j = 1, 2), n,, is 
the row total (i = 1,. . . , s), and nii is the count in the ijth cell. Given j and the 
weights, the denominator of H is a constant, so 

Var,( H) - Var,(&)/max(h 1 wl,. . . , ws, j). 

4. The scale factor 

The maximum value of h for a given j and set of weights occurs when at most 
one of the proportions is not equal to one or zero. The maximum value of h is 
always <j(l - j); specifically, max h = j(l - j) - w&l - r), where W, is one 
of the set of s weights and r is a function of p and the set of weights (see 
Appendix 1). The maximum value of h cannot be computed explicitly except in 
special circumstances. For the case of equal weights, the maximum value of h is 
p(1 -j) - r(l - T)/s, where r = sj - [@I. For the multinomial with equal 
weights, 3 = l/s and the maximum value of h is (s - l)/.s2. A Fortran program 
to compute H and the maximum h, for any j and any vector of weights w, is 
given in Appendix 2. 

Table 2 
Maximum value of h when the weights are equal 

0.1.0.9 0.2.0.8 0.3.0.7 0.4,0.6 0.5 

2 0.010 0.040 0.090 0.160 0.250 
3 0.020 0.080 0.180 0.187 0.167 
4 0.030 0.120 0.170 0.180 0.250 
5 0.040 0.160 0.160 0.240 0.200 
6 0.050 0.133 ‘0.183 0.200 0.250 
7 0.060 0.126 0.197 0.217 0.214 
8 0.070 0.130 0.180 0.220 0.250 
9 0.080 0.142 0.187 0.213 0.222 

10 0.090 0.160 0.210 0.240 0.250 
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Table 3 
Maximum value of h when weights are equally spaced 

0.1,0.9 0.2, 0.8 0.3, 0.7 0.4, 0.6 0.5 

2 0.020 0.080 0.180 0.180 0.125 
3 0.050 0.130 0.180 0.200 0.250 
4 0.090 0.160 0.210 0.240 0.250 
5 0.065 0.160 0.193 0.240 0.233 
6 0.086 0.152 0.200 0.229 0.238 
7 0.084 0.151 0.201 0.234 0.250 
8 0.083 0.156 0.206 0.233 0.250 
9 0.084 0.160 0.204 0.240 0.244 

10 0.085 0.160 0.205 0.240 0.245 

Tables 2 through 4 show how the maximum value of h varies for j = 0.1(0.1)0.9, 
and some particular values of W. In Table 2 the weights are equal. (For the 
multinomial model with equal weights, j = l/s and the maximum value of h is 
(s - 1)/s*.) In Table 3 the weights are equally spaced, wi = 2i/[s( s + l)] (i = 
1 ,***, s), illustrating situations in which there is a variety of different weights. In 
Table 4, all weights are equal except for one that is twice as large as the others, as 
might be the case if one measurement were particularly important. These tables 
are illustrative only, and should not be used for extrapolating to other weights or 
values of j: note the lack of monotonicity both with s and with j. 

The following procedure can be used to obtain bounds on the maximum value 
of h. The upper bound for any ij, any w, and any number of categories, S, is 
p(l - p>; the lower bound is p(l - j) - max wJ4. For weights corresponding to 
those in both Tables 3 and 4, the lower bound is p(l -p) - 1/(2s + 2). Note that 
this lower bound for h can be considerably smaller than j5( 1 - j), especially for 
values of j5 close to 0 or 1, but approaches j(1 - j) as s increases. 

Table 4 
Maximum value of h when one weight is twice as large as the others 

S P 

0.1,0.9 0.2,0.8 0.3, 0.7 0.4, 0.6 0.5 

2 0.020 0.080 0.180 0.180 0.125 
3 0.030 0.120 0.170 0.180 0.250 
4 0.040 0.160 0.160 0.240 0.200 
5 0.050 0.133 0.183 0.200 0.250 
6 0.060 0.126 0.197 0.217 0.214 
7 0.070 0.130 0.180 0.220 0.250 
8 0.080 0.142 0.187 0.213 0.222 
9 0.090 0.160 0.210 0.240 0.250 

10 0.082 0.145 0.191 0.218 0.227 
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5. Related measures 

The variability measure can be applied in different situations: s by 2 contingency 
tables, multinomial classifications, binary analogs of the randomized complete 
block design, and repeated testing situations in which the proportions are the 
fractions of achieved scores to maximum scores. In the literature, there are global 
measures of variability for a set of proportions, as well as measures and tests that 
are appropriate for specific sampling situations. 

The coefficient of variation (CV) is frequently used in social science literature 
as a measure of variability relative to the mean. Both the CV and the S measure, a 
normed version of the CV developed by Martin and Gray [5], can be calculated in 
any situation with s numbers between 0 and 1, inclusive. When applied to 
proportions, 

CV= (c(Pi-~)2/(s-l))rp 

and can exceed one. Martin and Gray derived 

s = cv/fi 

as a normed coefficient of variation-that is bounded by one. However, S achieves 
its upper bound of 1 only when exactly one proportion is 1 and all the others are 
zero. 

For s by 2 contingency tables, classical goodness of fit statistics can be used to 
test the hypotheses of equal success probabilities across s levels of the row 
variable. Association measures based on the Pearson &i-square statistic and the 
proportional-reduction-in-error measures can be used to describe the variability 
of s proportions. These measures can be considered as competitors of H only 
when the weights in H are proportional to the row margins. In s by 2 tables, the 
mean square contingency coefficient G2 and Goodman and Kruskal’s tau for 
predicting the column category are identical: Cramer’s V = @ (and 6). While the 
largest value of these measures is 1, this value is impossible to achieve for many 
sets of marginal totals. However, H can obtain its upper bound of 1 regardless of 
the marginal frequencies in a particular table. 

Let n ;. denote the row total in the i th row, j the overall proportion in the first 
column and N = Eni, Then @ can be written as 

@ = (C(n,./N)(p; -li)2)fi(1 -9) 

while H with weights proportional to row margins is 

H= [ ~h./~)h -P)‘]/(P@ -P) - v-(1 - d) - 

Therefore, H is greater than or equal to @, with equality when 
max[h I wlr -. . , ws, p] = j(1 - j). That is, @ can reach its upper limit of one only 
when the sum of a subset of the weights equals j (for equal weights, this means 
that SF is an integer). 
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Consider, for example, the set of proportions (1, 1, 1, 0.5, 0) based on equal 
sample sizes. The average proportion is 0.7. For that value of j, the proportions 
are as disparate as possible, yielding an H value of 1.0, while Cramer’s V= 0.87, 
Pearson’s P (the coefficient of contingency) = 0.66, and Tschuprow’s T = 0.62. If 
the proportions were (0.85, 0.85, 0.85, 0.60, 0.35}, which is exactly halfway be- 
tween the most disparate position and complete uniformity (given p = 0.7) 
H = 0.50, Cramer’s T/= 0.44, Pearson’s P = 0.40, and Tschuprow’s T = 0.31. A 
particular disadvantage of the S measure for s by 2 tables is its sensitivity to the 
assignment of zeros and ones to success and failure (I&h [4]). For the example 
given above where j = 0.7, S = 0.29. If the set of proportions were (0, 0, 0, 0.5, l} 
(the complement of the first example), then j = 0.3 and the values of H, V, P, 
and T are unchanged. However, S increases from 0.29 to 0.67. 

In the multinomial situation, classical goodness of fit statistics can be used to 
test the hypothesis of equal probabilities. If the s category weights are equal, 
there are two measures equal to H. In this situation, S = H. The measure of 
variation (MI’) (Nachmias and Rosenblum [6]), and an identical measure named 
the Index of Qualitative Variation (Ott, Larson, and Mender&all [7]) measure the 
variation in proportions for s different categories: MV= 1 - H*. H, 1 - Mv, 
and all of the other measures given above are zero when all of the proportions are 
equal. 

Co&ran’s Q (Co&ran [2]) tests the hypothesis of equal probabilities for the 
randomized block design. It uses more information than is contained in the 
treatment success proportions, and so cannot be compared directly to H. 

6. Numerical example 

The faculty of the University of Michigan was surveyed recently to ascertain their 
perceptions of merit criteria and review procedures (University of Michigan 
Committee on the Economic Status of the Faculty [S]). Questionnaires were sent 
to all regular faculty members during the 1985-1986 academic year. 

To assess the performance of the merit system, the Board of Regents was 
interested not only in the overall responses to questions, but also in the variation 
in responses for different faculty subgroups. Results were reported separately by 
rank, by ethnic background, and by school. The question of interest for each such 
breakdown was: how much variation is there? While the proportions in each 
response category should be given, summary descriptive measures of variation are 
helpful, as a great deal of data was contained in the report. Descriptive measures 
are more appropriate than inference procedures in this case, as the entire faculty 
was surveyed. 

We will focus on the responses to one particular question - “How much 
information have you been given about the criteria employed in the review 
process in your department/unit ?” The proportions were reported for the com- 
bined category of “none or little”. The summary of the report stated that “There 
are substantial differences . . . among different groups of faculty.” We use H with 
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Table 5 
Proportion of faculty reporting no or little information about review process criteria 

By Rank H = 0.16 

Rank 

Professor 
Associate 
Assistant 

By Ethnic Background H = 0.25 

Ethnic Group 

Asian 
Black 
Hispanic 
Native American 
White 

Number Percent 

782 34.8 
338 46.4 
382 50.8 

Number Percent 

53 62.2 
47 55.3 
10 40.0 
21 66.7 

1355 39.7 

By School H = 0.50 

School 

Architecture 
Art 
Business Admin 
Dentistry 
Education 
Law 
Engineering 
LSA 
Medicine 
Music 
Natural Resources 
Nursing 
Pharmacy 
Social Work 
Public Health 

Number Percent 

26 52.9 
21 33.3 
59 40.6 
95 72.6 
37 44.7 
16 88.9 

158 28.5 
417 31.9 
373 60.8 

56 31.6 
21 9.5 
48 31.3 
19 5.3 
29 3.3 
73 26.0 

equal weights to describe the variation in proportions across any one mode of 
classification. With the use of equal weights, each category contributes equally to 
H. The use of weights proportional to sample size would yield a measure that is 
dominated by categories with a large number of faculty; in particular, the results 
for whites and the school of Literature, Science, and the Arts would heavily 
influence the measures computed across ethnic groups and schools, respectively. 

Table 5 presents the responses to the question on information about review 
criteria for the faculty members broken down by rank, ethnic group, and school. 
The values of H for these three classification modes are 0.16, 0.25, and 0.50, 
respectively. In other words, the proportion of faculty with little or no informa- 
tion about review criteria varies little with rank or ethnic background, but varies 
more across schools. The school proportions are midway between the situations 
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of equality and the maximum possible variability given the average proportion. 
The variability of the proportions for various ethnic backgrounds is $ the 
maximum possible, given j. 

Unlike other measures, H can achieve its upper bound of 1 regardless of the 
table margins; as a result, it is more easily interpreted than measures based on 
X2. This feature is also useful to compare relative variability across different 
tables. On the other hand, the magnitude of X2 and the size of the p-value 
measure only statistical significance, which may be of no interest, as in this 
situation where the amount of dispersion is the primary concern. 
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Appendix 1. Derivation of the maximum value of h 

Theorem. Consider a set of values p’ = (p,, . . . , p,), where all of the pi’s are 
between zero and one, inclusive. Associated with these proportions are a set of 
weights w’=(w~,..., w,), where the weights are positive and sum to one. Define 
the weighted average proportion as T, = Cwi pi. Then the maximum value of h = 

Cw;( Pi -31 f or a g iven value of p, occurs when at most one pi is not equal to zero 
or one. 

The maximum value of h for a general set of weights is p(1 - p) - w,r(l - r) for 
an appropriate choice of w, and r. For the case of equal weights, the maximum 
value of h is j(1 -j> - r(1 - r)/s, where r = sj - [SF]. 
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Part I: Consider any set of proportions p1 with more than one element 
different from zero or one. We can always find another set of proportions pz with 

the same value of J such that h(p,) > h(p,). 
Assume, WOLOG, that the first two elements of p1 are r, and r,, where 

0 < r, < 1. We want to choose X, and X2 so that pi = (A,, A,, 0,. . . ,O) + pi, 
subject to the constraints 

wlh, + w2X2 = 0, as j is fixed, (1) 

O<r,+X,<l, for i=l,2, (2) 

and 

h(P2) - NPJ ‘0. (3) 

as h(p) = Cwipf -j2, we have, from (3), 

2( wlr,h, + w2r2A2) + w& + w2P2 > 0. (4) 

We solve (1) for X2 and substitute this into (4) to get 

2h,(q - r2) + q1+ WI/W,) > 0. (5) 

Assume, WOLOG, that w1 >, w2. If rl > r,, let X, = (w,/w,)min(l - r,, r2) and, 
due to (l), we have X2 = -min(l - r,, r2). This satisfies (2), and X, is positive, so 
(5) holds. If r, < r,, let X, = -(w2/wl)min(l - r,, rl) and X2 = min(1 - r,, rl). 
Again, (2) and (5) hold. 

Part 2: If p. is any point in R” with at most one component different from 0 
or 1, then h has a local maximum at po. 

WOLOG for this part of the proof, let p; = (1,. . . , 1, 0,. . . ,O, r) = (1: 10; 1 r), 
where 0 < r < 1. To show that the directional derivative of h at po, with respect 
to any vector 8, is negative, let S be partitioned similarly: 6’ = (S,lISL ) 8,). Let w 
be the set of weights: w’ = (wi 1 w; I wr). The directional derivative of h with 
respect to 6 evaluated at p. is 

(6) 

As we are holding p constant, w’ -6 = 0. Therefore, (6) reduces to 

h(p;)4=w,4,+w,6,r. (7) 

Note that all of the elements of 8, must be non-positive, all of the elements of 8, 
non-negative, and - r Q 8, < 1 - r. Also, if 8, is positive, at least one element of 
8, must be negative; if 8, is negative, at least one element of 8, must be positive. 
If 8, is zero, then both 8, and S,,, have non-zero elements. Therefore, if 8, is 
non-positive, (7) must be negative. If 8, is positive, then, as w’ + S = 0, we have 

w,*s,= -wL.&- w,S, < - w,S, < -w&r. 

Applying this result to (7), we see that the directional derivative is always 
negative. 

Part 3: The maximum value of h is p(1 -ii) - w,r(l - r), where w, and r are 
defined in the following paragraph. 
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If all of the weights are equal, let n = [SF] and r = sj - [SF]. Then 

h = (l/s)(n + r*) -j* =j(l -p) - r(1 - T)/s. 

If the weights are not equal, then several possibilities must be explored to find 
which vectors of the type p. (vectors with at most one value not equal to 0 or 1) 
maximize h. If there is any subset of weights such that their sum, W, equals p, 
then let p. have ones in the positions corresponding to the weights in W and 
zeros elsewhere. In this case, h = Cwipf - p* = j(l - j). Otherwise, let W be the 
sum of any subset of the weights such that jj - W is less than at least one of the 
remaining weights not included in W. Let w, be the smallest of those remaining 
weights, and define r = ( j - W)/w,. Then h is maximized for that particular 
subset of weights included in W by letting p,, have ones corresponding to the 
weights in W, r in the position corresponding to w,, and zeros elsewhere. In this 
case 

h = W+ w,r* -j* = (W+ w,r) - w,r+ w,r* -j* 

=p(1 -p) - w/(1 -r). 

Therefore, W must be chosen in such a way as to minimize w,r(l - r). 0 

Appendix 2. A Fortran program to calculate H 

C 
C 

C 

C 
C 

C 
C 
C 

C 
C 

C 
C 
C 
C 
C 
C 

IMPLICIT REAL*8 (A - H,O - Z) 
INTEGER S 
COMMON EQUALW,PBAR,W(20),P(20),S 

REQUEST AND RECEIVE INPUT 
S: NUMBER OF PROPORTIONS, WHERE S IS GE 2 AND S LE 20. 
P: VECTOR OF PROPORTIONS, WHERE P(1) IS GE 0 AND P(1) LE 

1. 
W: VECTOR OF WEIGHTS, WHERE THE SUM OF THE W(1) 

EQUALS 1. 

1000 CALL INPUTT 

COMPUTE H 
XNUM: A SUBROUTINE THAT COMPUTES h, THE NUMERATOR 

OF H 
XMAX: A SUBROUTINE THAT COMPUTES MAX(h), THE DE- 

NOMINATOR OF H, 
GIVEN THE WEIGHTS AND PBAR 

CALL XNUM(HNUM) 
CALL XMAX(HMAX) 
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H = DSQRT(HNUM/HMAX) 
WRITE (6,600O) H,HMAX 
GO TO 1000 

C 
6000 FORMAT (‘OH = ‘, F6.3, ‘ MAX(h) = ‘, F6.3) 

END 

SUBROUTINE INPUT-T 
IMPLICIT REAL* 8(A - H,O - Z) 
INTEGER S 
COMMON EQUALW,PBAR,W(20),P(20),S 

C 
1000 WRITE (6,610O) 

READ (5,51OO,END = 9900) S, (P(I),1 = 1,s) 
IF (S .LT. 1) STOP 
IF (S .LT. 2 .OR. S .GT. 20) GO TO 9100 

C 
PBAR = ODO 
PMAX = 1DO 
PMIN = ODO 
DO 1100 I = 1,s 

W(1) = ODO 
PMAX = DMAXl(P(I),lDO) 

1100 PMIN = DMINl(P(I),ODO) 

WRITE (6,620O) 
READ (5,52OO,END = 12OO)(W(I),I = 1,s) 
WSUM = ODO 
EQUALW = ODO 

1200 DO 1300 I = 1,s 
WSUM = WSUM + W(1) 

1300 EQUALW = DMAXl(W(I),ODO) 
IF (EQUALW .GT. ODO) GO TO 1500 

2; EQUAL WEIGHTS ARE THE DEFAULT 
C 

DO 1400 I = 1,s 
1400 W(1) = lDO/S 

WSUM = 1DO 
C 

1500 DO 1600 I = 1,s 
1600 PBAR = PBAR + W(1) * P(1) 

WRITE (6,630O) S, PBAR, (P(I),1 = 1,s) 
WRITE (6,640O) (W(J),J = 1,s) 
IF (PMIN .LT. ODO .OR. PMAX .GT. 1DO) GO TO 9200 
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IF (DABS(WSUM - 1DO) .GT. 1D - 5) GO TO 9300 
RETURN 

9900 STOP 
C 
C ERROR PROCESSING 
C 

9100 WRITE (6,691O) S 
GO TO 1000 

9200 WRITE (6,692O) (P(I),1 = 1,s) 
GO TO 1000 

9300 WRITE (6,693O) WSUM 
GO TO 1000 

C 
5100 FORMAT (15, 20F10.5) 
5200 FORMAT (20F10.5) 
6100 FORMAT (‘OEnter S and P(l), . . . , P(S) separated by commas’, 

+ ‘ or (CR) to stop.‘) 
6200 FORMAT (‘If the weights are unequal, enter them.‘, 

+ ‘ Else press (CR).‘) 
6300 FORMAT (‘OS = ‘, 12, ‘ Mean P = ‘, F5.3/ 

+ ‘OProportions:‘, lOF7.3/13X,lOF7.3) 
6400 FORMAT (‘OWeights: ‘,lOF7.3/13X,lOF7.3) 
6910 FORMAT (‘0 * * * S = ‘, 12, ‘ is out of range.‘, 

+ ‘ S must be between 2 and 20.‘) 
6920 FORMAT (‘0 * * * Each proportion must be between zero and one,‘, 

+ ‘ inclusive. At least one is outside that of that interval.‘) 
6930 FORMAT (‘O* * *The weights sum to ‘, F6.3, ‘. They must sum to 1.‘) 

C 

100 

END 

SUBROUTINE XNUM(HNUM) 
IMPLICIT REAL*8(A - H,O - Z) 
INTEGER S 
COMMON EQUALW,PBAR,W(20),P(20),S 

HNUM = - (PBAR* * 2) 
DOlOOI=l,S 
HNUM = HNUM + W(1) * P(1) * * 2 
RETURN 
END 

SUBROUTINE XMAX(HMAX) 
IMPLICIT REAL*8 (A - H,O - Z) 
REAL* 8 Q( 20) 
INTEGER S, SLESSl, 1X(20) 
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C 

C 

C 

C 

C 

C 

C 

C 
C 
C 

C 
C 

COMMON EQUALW,PBAR,W(20),P(20),S 

IF (EQUALW .GT. ODO) GO TO 100 

EQUAL WEIGHTS 

N=S*PBAR 
R=S*PBAR-N 
HMAX = PBAR*(lDO - PBAR) - R*(lDO - R)/S 
RETURN 

UNEQUAL WEIGHTS 

100 SLESSl = S - 1 
NPERMU = 2* * SLESSl 
HMAX = ODO 
PBARSQ = PBAR* * 2 

COMPUTE ALL PERMUTATIONS OF S - 1 ZEROS AND ONES 

DO 500 11 = 1,s 
IS = 0 
DO 200 12 = 1,s 

IF (12 .EQ. 11) GO TO 200 
IS = IS + 1 

IX(IS) = 12 
200 CONTINUE 

FOR EACH PERMUTATION CALCULATE h AND FIND MAX(h) 
C 

DO 1 100 14 = 1, NPERMU 
H = - PBARSQ 
REMAIN = PBAR 
NUMBER = 14 - 1 
DO 300 13 = 1, SLESSl 

NDX = 1X(13) 
Q(NDX) = IABS(MOD(NUMBER,2)) 
WQ = W(NDX) * Q(NDX) 
IF (WQ .GT. REMAIN) GO TO 400 
H=H+WQ*Q(NDX) 
REMAIN = REMAIN - WQ 

300 NUMBER = NUMBER/2 
Q(I1) = REMAIN/W(Il) 

IF (Q(I1) .LT. ODO .OR. Q(I1) .GT. 1DO) GO TO 400 
400 HMAX = DMAXl(HMAX,H) 
500 CONTINUE 

RETURN 
END 


