Statistics & Probability Letters 7 (1989) 201-205
North-Holland

December 1988

SINGH’S THEOREM IN THE LATTICE CASE

Michael WOODROOFE * and Myoungshic JHUN **
Department of Statistics, The Unwersity of Michigan, 1444 Mason Hall, Ann Arbor, MI 48109—-1027, USA

Received November 1987
Revised March 1988

Abstract  The asymptotic behavior of the parametnc bootstrap estimator of the sampling distnbution of a maximum
hikelthood estimator 1s nvestigated in a simple lattice case, integer valued random variables whose distributions form an
exponential farmly. The exptected value of the bootstrap estimator 1s compared with an Edgeworth expansion, less the

continuity correction
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1. The main result

Singh’s (1981) theorem asserts that the bootstrap
estimator of the distribution of a standardized
sum of n iid. non-lattice random vanables with
three moments differs from the true value by a
term of smaller order of magnitude than 1/Vn
w.p. 1 as n — co. The purpose of this note is to
investigate the lattice case. It is shown that the
expected value of the bootstrap estimator differs
from the very weak expansions of Stein (1985) and
Woodroofe (1986) by a term of order 1/vVn, the
coefficient of which is very small in many exam-
ples.

To isolate the issues, the result is presented in a
simple context. Thus, let X;, X, ... denote i.i.d.
integer valued random variables with common
discrete density (mass function) of the form

fo(x)=h(x) explox—¢(w)], x€Z,0weq,

where Z denotes the integers, A is a non-negative
function and & denotes an unknown parameter

* Research supported by the national Science Foundation,
under DMS-8413452

** Research supported by the national Science Foundation,
under DMS-8702980

with values 1n an open interval 2. It is assumed
throughout the greatest common divisor of x —y
for which A(x)> 0 and A(y) > 0 is one.

the mean and variance of X are

§=y'(«) and ¢*(8)=y"(w),

where * denotes differentiation. Regarding ¢° as a
function of 8 here is justified, since 8 and « are
increasing functions of each other.

Let X, denote the sample mean; X,=S,/n,
where S,=X,+ --- +X,, n>1. Then X, is the
maximum likelihood estimator of §, whenever it is
in ¢’(R). For purposes of inference, the distribu-
tions of the (approximately) pivotal quantities

Vn S, —né
o ovn

are of interest. The distnibution function of Z, is
denoted by

G (w, t)=P{Z,<1},

where t€R, w € 2, n> 1. It depends on the un-
known parameter w as well as n.

To estimate these distributions, Efron (1979)
has suggested the (parametric) bootstrap estimator

G,(t)=G,(&,, 1), tER, n>1,

Z,=—(X,~-0)= n>1, (1)
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where
&, =0,(X,..., X,)

denotes the maximum likelihood estimator of w
(the solution to the equation ’(w)= X,, if one
exists). For present purposes, it is convenient to
allow &,, n > 1, to denote any strongly consistent

sequence of estimators for which
b (P{|n4'(8,) ~ S, | >¢)
n

+Vn P {|&,~w|>¢e}} =0 (2)

for all ¢e> 0 and w € 2. Such a sequence may be
constructed by leting &, denote the maximum
likelihood estimator for a restricted model in which
2 is replaced by a compact £,C £ and £, in-
creases to {2 as n — 0.

For the related case in which the distribution of
X, is non-lattice, (a simple variation on) Singh’s
(1981) Theorem shows that G, and G(w, -) differ
by o(1/vVn) w.p. 1 (P,) for all w. This is not true
in the lattice case.

If t €R, denote its integer part by [¢]; and let
(t) =t —[t], denote the fractional part of ¢.

Proposition. If 2, is any compact subinterval of £,
then

G (w,1)

— o)+ %q&(r)[%(l ~ )+ R (o, z)]
+o(-1—),
Vn
uniformly mt €R and w € §2; as n — oo, where ¢

denotes the standard normal distribution function, ¢
denotes the standard normal density,

p=p(w)=y"(w)/0’,
and
Y
R,(w,1)= . {} (n8+ Vnat))
forteER, w€E€ R, andn > 1.

Proof. For fixed w, this is ssmply Theorem 1 (p.
213) of Gnedenko and Kolmogorov (1968). The
uniformity follows from an examination of the
proof.
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Corollary 1. For teR, w € 2, andn> 1, let

* - L 1=
Gl (o, 1) =@(1) + Py (1-1%)e(z).

Then
liIEn/Q\/E[G"(w, 1) = G*(w, 1)]é(w) dw=0

for all t€R and all densities ¢ with compact
support in §2.

Proof. It suffices to show that
lim [ {3 = (n6+yno)}édw=0
n JQ

for all integrable £; and since the termin { - - } is
bounded, it suffices to show this when ¢ is the
indicator of an interval (a, b) C £2, by a standard
approximation argument. See, for example, Bi-
llingsley (1979, p. 226). Let v(w)=4v¢'(w) and
v,(w)=vy (w)+ ‘/E“(w)/\/; for we @ and n>
1. Then v, converges to v and v, converges to v’
uniformly on compacts as n — o0; and v’ ="’ is
continuous and positive. So, if §2, is any compact
subset of {2, then the restrictions of v and v, to £,
have inverses w and w, for which w,_ and w)
converge to w and w’, pointwise and boundedly.
If (a, b] is any finite subinterval of £, then

fb{%-<n0+‘/ﬁa>}gdw

8, 1
=Ln {7—<W>}m—) dy,

where a,=u,(a) and B, =u,(b) for n>1. So, it
suffices to show that the right side converges to
zero as n — oo for arbitrary choices of a, b € 2.
Since w,, converges boundedly to w’, it suffices to
show this when w, is replaced by w’; by the
standard approximation, it suffices to show it
when 1/w’ is replaced by the indicator of an
interval; and the latter condition is clearly satis-
fied. O

If G(w, t) is regarded as the coverage probabil-
ity of a confidence set at w, then [,G,(w, )
{(w) dw may be regarded as the long run relative
frequency of converage in many independent rep-
lications of the experiment, when w is drawn from
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the density & so, [oG,(w, t)§(w) dw may rea-
sonably be called the average coverage probability
at £ See Woodroofe (1986) for an elaboration of
this point. The bootstrap estimator is compared to
G ¥ below.

Theorem 1. For all t € R and all w € Q for which
p(w)#0,

Ii:m/ﬁ[@n(t)—G,.*(w, t)]

1
- ;¢(T){% — {{tfne) +ipotZ,y} =0
in P_-probability, where Z, 1s as in (1).

Proof. Fix values of t€R and w € £2. Then, by
the Proposition,

Vi [G,(1) = GF (@, 1)]
= H(p— )1 = 1*)9(1)
+¢(1)R,(&,, 1) +0o(1)

w.p. 1 (P,) as n— oo, where g, = p(8,), for all
n = 1. Clearly

lim | (8, —p)(1 = #*)9(£)[ =0

i P -probability as n — oo, by the assumed con-
sistency of &,, n > 1. Next, since S, is an integer.

R,(&,,1)=6,"{3 - ((t/no) +/n(8,— o)
+nb, - 8,5}

for all n, where 6,=4¢'(&,) and 6,=o(f))
=4 "(&,). By (2), a simple Taylor series ap-
proximation, and the law of the 1iterated logarithm

tn(6,— o) +nb,—S,=LpotZ, + 0,(1)
in P -probability as n — co. So, since the frac-

tional part is continuous, except for a set of con-
tent zero,

R, (&,, t) =07}~ ((t/no) + }potZ,)}
+0,(1) €)

under P, as n — co. See the lemma below with

U,=(tVno)+tn(6,— o) +nb, -5,

and

V,=(t/no) + ipotZ,.

The theorem follows by collecting terms. O
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Corollary 2. For r>0 and 0 <m < 1, let

e(m, r)= j;[% —(m+rs)] ¢(s) ds.
Then
E{G,(1) = GX(w, 1)}

1 1
= ——¢(t)e t\/;o ,lpot +o(——)
as n— oo for all tER and all w <€ Q for which
p(w)+0.

Proof. 1f w € £, then there is a compact £,C 2,
for which P{&, & 2.} =o(1/Vn) as n = o0, by
(2). It 1s clear that

(ﬁn_p)l{&neﬂo}v n?l,
and
(1/6n)Rn(‘:’n’t)I{‘:’nEQO}’ n>1’

are uniformly integrable random variables. It fol-
lows that

HmE,{(p,— p)I{&,€2,}} =0.

HmE,{(1/8,)R,(&,, 1)I{&,€2y}}

- %(b(t)e((t\/;o), 3pot) =0.

(For the latter assertion, it is convenient to con-
sider subsequences along which (t/n o) is conver-
gent.) the corollary follows easily. O

Remark. The function e decreases quickly as r
increaes. To see why, write

o0

(=% k~1—sm(2'nkt), tER.
k=1 T
Then
e(m, r)= f Lfsin(Z'nkt)lq)(t_m) dr
’ = kg r r
=Y LIm{exp(2'rrimk—2r2'1'r2k2)}
k=1 km
= i Lsin(2'rrmk) e =2k
iy ke
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and for 0 xm<1 and r>0. For example,
sup,, | e(m, 1)| <0.01, sup, |e(m, 1)| <107°.

In cases where sup,, | e(m, po/2)| is small, the
theorem suggests that bootstrap approximations
should be close to the very weak expansions cited
above. This is a weaker property than that as-
serted in Singh’s Theorem, but provides some
comfort.

Example. If X, has the Poisson distribution with
unknown mean 6 > 0, and if t =2 (as in an upper
97.5% confidence bound), then r=pot/2=1 for
all w, so that the coefficient to 1/yn 1s less than
107°.

The following lemma completes the justifica-
tion of (3).

Lemma. Let U,, n>1, and V,, n > 1, denote ran-
dom variables for which:

(1) the distrubitons of V,, n = 1, are tight,

(ii) all weak linut points of the distributions of
V., n>1, assign measure zero to Z; and

(i) U,— V, — 0 in probability as n — oc.
Then
(U, =«(V,> =0 in probability.

Proof. Let Z ; denote the set of x whose distance
from Z is at most §. Then Z; is closed, and Z;
decreases to Z as 8 decreases to zero. So,

lim limsupP{V, €24} =0,

o—0 n

by Theorem 2.1 of Billingsely (1968, pp. 11-12)
and conditions (i) and (ii) above. Thus, given

e >0, there are n, and & <& for which P{V, €
Z,5} <e/2 for all n>ny. So,

P{ICU) = (Vo)) =€}
<SP{|U,-V,| 28} +P{V,€Ly)}.

for all n>ny; and this is less than & for all
sufficiently large n.
2. A Studentized version

In this section, suppose that &, satisfies the more
stringent condition

lim/nP{6,#X,} =0, Veo. (2)
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Let
T, - (¥ /6,)(X, - )
and
H,(o, 1) =P.(T,<1)

for all t€ER, we 2, and n> 1. Then an expan-
sion for H, may be obtained as follows. For fixed
w, let A(x)=h (x)=(x—8)/6(x), for x €
¢’(2). Then 1t is easily seen that h is increasing
near x = 8, so that the restriction of A4 to a suita-
ble neighborhood of # has an inverse function
g=g,=h_'. Moreover, it is also easily seen that
g(0)=0, g'(0)=0 and g’ (0)=po. For fixed
teER and w € L, let

ty=t,(w, 1) = —‘/;Z[g(#) —g(O)]-

Then, t,=1t+pt>/2yn +0o(1/yn) as n— oo;
and, by (2") and Chebyshev’s Inequality,

H,(w,1t)
=G,(w, t,) +o(1/Vn)
=&(1) + %qs(t)[%(l +26%) + R, (, ’n)]
1

+ (f) @)

for each ¢ and w. In fact, (4) holds uniformly on
compacts with respect to t€R and w € 2. Let

ﬁ"(t) = h"(&"’ t)
and

[4 2
H*(w,t)=®(1)+ —=(1+2¢7) (¢
(w, 1) =&(1) 671( o (1)
forteR, w2, and n> 1.

Theorem 2. With the notation of the previous para-
graph,

imvn [H,(1) - H*(w, 1)]
- %¢(z){% - ((\/r?pot?‘) + %poth)} =0

In P_-probability for each t€R and we€Q for
which p(w) # 0.
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Proof. The proof is similar to that of Theorem 1,
but slightly more complicated, since 7, =1,(&,, )
depends on n and X;,..., X,. In the analysis, one
finds that (with probability approaching one),

Wb,y = Vot 0, (1),
where
Vv, = (ynot+pot’y + y1peZ,, n>1.

Here V,, n>1, satisfies the conditions of the
lemma; and the argument proceeds as above.
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