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MASS PREDICI’IONS FROM THE GARVEY-KEJSON MASS RELATIONS* 

J. JANECKE and P. J. MASSON 
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Ann Arbor, Michigan 48 109 

Part A: The transverse Garvey-Kelson mass relation represents a homogeneous third-order 
partial difference equation. Procedures are described for estimating masses of nuclei with N 2 Z from 
the most general solution of this difference equation subject to a X2 minimization, using the recent 
atomic mass adjustment of Wapstra, Audi, and Hoekstra as a boundary condition. A judicious 
division of the input data into subsets of neutron-rich and proton-rich nuclei had to be introduced to 
reduce systematic errors in long-range extrapolations. Approximately 5600 mass-excess values for 
nuclei with 2 < Z 6 103, 4 6 N d 157, and N 2 Z (except N = Z = odd for A c 40) have been 
calculated. The standard deviation for reproducing the known mass-excess values is u, w 103 keV. 

Part B: The charge-symmetric mass relation of Kelson and Garvey for estimating masses of 
nuclei with Z > N and T 3 1 is described. The calculations make use of the experimental Coulomb 
energy differences between T = 3 mirror nuclei for A d 59 and of estimated values for A > 59. Some 
250 mass-excess values have been calculated. The standard deviation for reproducing the known 
values is u ,,, w 23 1 keV. o NM Academic mess ITIC. 

* Supported in part by the U.S. National Science Foundation and the U.S.-Israel Binational Science 
Foundation 

0092-640X/88 $3.00 
Copyright 0 1988 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 265 Atomic Data and Nudear Data TAMS, Vol. 39. No. 2. July 1999 



J. JANECKE and P. J. MASSON Garvey-Kelson Mass Relations 

CONTENTS 

PARTA:NUCLEIWITHN,Z . . . . . . . . . . 
The Transverse Garvey-Kelson Relation 
Method of Mass Prediction . . . . . . . . . . . 

PART B: NUCLEI WITH Z > NAND T a 1 
The Kelson-Garvey Relation . . . . . . . . . 
Method of Mass Prediction . . . . . . . . . . . 

PART A: NUCLEI WITH N a 2 

The Transverse Garvey-Kelson Relation 

The ground-state energies M(N, Z) of a system of 
A nucleons (N neutrons and Z protons) can in principle 
be obtained from the general solutions of the many- 
body problem, making use of the nuclear many-body 
Hamiltonian. Approximations, assumptions, or models 
must be introduced for any practical application. Alter- 
nately, one may consider whether differences M(N 
+ AIv, Z + AZ) - M(N, Z) can be understood on the 
basis of more limited information about the nuclear 
many-body system. In particular, one may construct a 
homogeneous difference equation 

5 CiM(N + ANi, Z + AZi) NN 0 (1) 
i=l 

with small integer coefficients Ci (= + 1, +2, l l * ) and a 
small number of terms (Y, for arbitrary values of N and 
Z. Such an equation, if approximately satisfied, can be 
used as a recursion relation to estimate ground-state 
binding energies of nuclei if only one of the experimen- 
tal mass values in Eq. (1) is unknown. Repeated appli- 
cations of Eq. (1) permit long-range extrapolations. 

Equation (1) may also be viewed as a partial dif- 
ference equation in the variables N and Z. The general 
solution of this difference equation can be used to con- 
struct a mass equation with the known experimental 
masses as a boundary condition. Usually, the number of 
known masses exceeds the number of adjustable param- 
eters, and an appropriate ?-minimization procedure is 
therefore indicated. 
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The transverse Garvey-Kelson relation’,’ was in- 
troduced about 20 years ago as a tool for predicting 
masses of unknown neutron-rich and proton-rich nu- 
clei. It is the simplest nontrivial homogeneous mass re- 
lation and can be written as 

M(N+2,Z-2)-M(N,Z)+M(N+ 1,Z) 

-kqv+2,z- l)+M(N,z-1) 

-M(N+ l,Z-2)-O. (2) 

It is displayed schematically in Fig. 1. 
The most direct heuristic proof of Eq. (1) follows 

from an independent-particle picture with fourfoldde- 
generate Hartree-Fock or Nilsson-like single-particle 
levels. Figure 2a displays a representation of Eq. (2), and 
it can be seen that single-particle energies, as well as 
effective interactions between proton-proton, neutron- 
neutron, and neutron-proton pairs, cancel out in this 
model. One has to assume, though, that these quantities 
vary slowly and smoothly with nucleon number A. The 
relation cannot be used to cross the N = Z line, and the 
cancellation of terms is not valid if one member in Eq. 
(2) is a self-conjugate nucleus with N = Z = odd. This 
behavior is displayed in Fig. 2b, where, unlike Fig. 2a, 
the effective neutron-proton interaction energies in- 
volve particles from different orbits and do not cancel. 

The relation is also supported by simple shell- 
model mass equations. 2V3 Assuming that neutrons and 
protons occupy the same j shell, Eq. (2) is satisfied both 
in the seniority coupling scheme and with isospin as a 
good quantum number. Equation (2) is also satisfied 
approximately in the liquid drop model.4 
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Figure 1. Schematic representation of the transverse Garvey-Kelson 
mass relation. The boxes represent nuclei from the nuclidic chart, 
and the plus and minus signs indicate that the respective mass 
values have to be added or subtracted. 

The relation inaccuracy of Eq. (2), defined as the 
deviation of the left-hand side from zero, was found’ to 
be (+15 +_ 222) keV based on 809 mass combinations. 
The relation is better satisfied in heavier nuclei than in 
lighter ones. 

Viewing Eq. (2) as a homogeneous third-order 
partial difference equation yields2,3 

M(N, 2) = G,(N) + G*(Z) + G3(N + 2) (3) 

as the most general solution satisfying the difference 
equation. The mass parameters G,(N), G*(Z), and G3(+4) 
are arbitrary point functions of their arguments. Equa- 
tion (3) is valid for nuclei with N > Z and N = Z 
= even. Coulomb energies are not well described* by Eq. 
(3). The functions can be constructed uniquely from a 
x2 minimization of the differences M(N, Z) - M&N, 
Z). Weight factors have to be introduced, but more im- 

0 proton I 0 neutron 

portantly, one has to decide which region of nuclei to 
use as data base for determining the functions G#). 
Updated sets of mass predictions based on all the then 
available mass data appeared over 10 years ago.6 

Only recently have difficulties with long-range ex- 
trapolations established the need for inhomogeneous 
source terms5*’ The main systematic effects are asso- 
ciated with higher-order perturbations in isospin. Mass 
predictions based on the homogeneous equations [Eq. 
(2) or (3)] and the simultaneous use of all available mass 
data must therefore be treated with caution. 

Method of Mass Prediction 

The present mass predictions make use of Eq. (3). 
The point functions Gi(k) were obtained from a x2-min- 
imization procedure. The system of typically 450 linear 
equations in 450 unknown quantities is solved with a 
computer program which makes use of sparse matrix 
subroutines for manipulating nonsingular matrices with 
many vanishing matrix elements. The recent mass eval- 
uation of Wapstra et al8 served as a data base. Individ- 
ual weight factors were introduced by quadratically add- 
ing 100 keV to the experimental uncertainties. The 
added energy has the characteristics of an uncertainty of 
the theory. This leads to approximately equal weight 
factors for mass values with uncertainties less than 100 
keV. These weight factors were also used for calculating 
standard deviations. 

As an example of the difficulties with long-range 
extrapolations, Fig. 3 displays the differences between 
experimental and calculated masses (see Refs. 5 and 7 
for more details). Here, only nuclei with neutron ex- 
cesses E = N - Z in the range Estab - i W < E < Es-,, 
+ +Wwith Estab = 0.4 A*/(200 + A) near the line of fi 
stability were used to calculate the point functions Gi(k). 

&?F-o -- (a) 

t- -J I- -J 

Figure 2. Part (a) is a representation of the transverse mass relation based on an extreme single-particle picture. Part (b) shows that the relation is not 
satisfied when odd-odd self-conjugate nuclei are included. Here, terms with the effective neutron-proton interaction Inp involve particles from 
different orbits and do not cancel. 
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Figure 3. Differences between experimental and calculated masses from Eq. (3). The symbols represent nuclei with residuals in the indicated energy 
ranges. A subset of 980 nuclidic masses along the line of /3 stability (not shown) was used to determine the mass parameters. The figure displays only 
residuals for extrapolated mass values. 

Figure 3 is for W = 8, and the 980 data points (not 
shown) are reproduced very well with a standard devia- 
tion of cm = 79 keV. Only the residuals for the extrapo- 
lated masses are displayed in the figure. Systematic de- 
viations can be seen clearly. 

Separate adjustments for subsets of input data are 
needed to reduce systematic errors with long-range ex- 
trapolations. This greatly increases the number of ad- 
justable parameters. The mass predictions of the present 
contribution were obtained by treating nuclei on the 
neutron-rich and proton-rich sides of the line of /3 stabil- 
ity independently. However, a small overlap of input 
data became necessary to ensure data bases containing 
at least three input data points for each value of A. The 
adjustments were obtained using the regions 

R’,: E>Ea,,- 1 for neutron-rich nuclei 

and 

Rz: E < E-b + 1 for proton-rich nuclei. 

The residuals for these two adjustment regions are dis- 
played in Figs. 4 and 5. Also included are extrapolations 
into the region of the other data base. This allows a 
judgment on the quality of extrapolations. In some re- 
gions deviations exceeding 800 keV begin to appear for 
E=E,,- 3 (Fig. 4) and E = E-t, + 3 (Fig. 5). Predic- 
tions for region RI with nuclei E > Escab based on Ri, 
and for region R2 with nuclei E d Esmb based on Ri , are 
included in the main table. The statistical data for the 
two x2 minimizations are shown in Table A. The stan- 
dard deviation for reproducing all input data of approxi- 
mately 1550 mass values is 103 keV obtained by com- 
bining the results for the two regions. The combined 
number of parameters for the two adjustments is large. 
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Figure 4. Differences between experimental and calculated masses from Eq. (3). The mass parameters were determined from the adjustment in region R; 
for nuclei on the neutron-rich side of the line of fi stability. The figure displays residuals for all known N > Z and N = Z = even nuclei. 
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Figure 5. Differences between experimental and calculated masses from Eq. (3). The mass parameters were determined from the adjustment in region R$ 
for nuclei on the proton-rich side of the line of B stability. The figure displays residuals for all known N > Z and N = Z = even nuclei. 
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TABLE A 
Statistical Data for the x2 Minimizations 

RI 

Region 

R2 

All 
S nuclei 

Z (min) 
Z (ma,-4 
N (mitt) 
N (max) 
Number of input data 

points 
Number of parameters 
Number of predicted 

mass values 
Standard deviation U, (keV) 

2 4 3 2 
97 103 30 103 
4 4 2 2 

154 157 29 157 

774 772 90” 1636 
492 436 0 928 

3718 1940 250 5908 
113 92 231 114 

Note. Regions RI and R2 are for nuclei with N > Z and N = Z 
= even with RI on the neutron-rich and R2 on the proton-rich side of 
the line of j3 stability (Part A). Region S is for nuclei with Z > N (Part 
B). 

’ Number of known values to which predicted values are com- 

PART B: NUCLEI WITH 2 > NAND T 2 1 

The Kelson-Garvey Relation 

Since nuclear forces are charge-symmetric, the 
binding energies between mirror nuclei differ essentially 
only in their Coulomb energies. The unknown mass of a 
proton-rich nucleus can therefore be predicted from the 
known mass of its neutron-rich mirror nucleus if the 
electrostatic Coulomb energy difference between them 
can be estimated. A simple and successful procedure has 
been introduced by Kelson and Garvey.g,2*3 It is a mass 
relation which connects masses of higher-order mirror 
nuclei with (ordinary) mirror nuclei near the N = 2 line, 

M(A, T, = -T) - M(A, T, = +T) 

+(zT-l) 

m 2 [M(A+j,T,=-+)-M(A+j,T,=+~)]. 
j=-(2T-1) 

A+j-odd 

(4) 

Here, T, = #V - Z) is the z component of the isospin T. 
Equation (4) is schematically displayed in Fig. 6. The 
mass differences between the most-proton-rich and 
most-neutron-rich members of an isospin multiplet can 
hence be estimated from known mass differences be- 
tween T = 4 mirror nuclei. A heuristic proof of this 
relation can again be obtained from an independent- 
particle picture with fourfolddegenerate Hartree-Fock 
or Nilsson-like single-particle levels. Figure 7 (drawn for 

$ 
z+- 

Lild 
+ =o +- 

N 

(a) 
N 

(b) 

Figure 6. Schematic representation of the charge-symmetric Kelson- 
Garvey relation (4) for two examples, T = I (a) and T = ) (b). 

T = 1) shows that nuclear interactions cancel out, and 
Coulomb energies are approximately equal on both 
sides of the equation. 

Method of Mass Prediction 

The mass differences for the T = 3 mirror nuclei 
up to A = 59 were taken from the mass evaluation of 
Wapstra et al8 Additional values up to A = 99 were 
calculated from a Coulomb energy equation.” Using 
Eq. (4) and the predictions of Part A for nuclei with N 
> Z, mass predictions for approximately 250 proton- 
rich nuclei up to T, = -3 were made and combined in 
the main table of this issue with those from the first part. 
The statistical information is included in Table A. Good 
agreement with 90 known mass-excess values was 
achieved with a standard deviation of approximately 
230 keV. However, systematic deviations of up to sev- 
eral hundred keV were also observed for those very-pro- 
ton-rich nuclei which are unbound or only weakly 
bound with regard to the emission of protons or proton 

-e-4=- -+* us--+4ao-- 

-El 0 proton 
0 neutron 

A=4n 

A=4n +2 

Figure 7. Representation of the charge-symmetric Kelson-Garvey re- 
lation for T = 1 based on an extreme single-particle picture. 
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pairs. This energy shift (Thomas-Ehrman shift) is the 
result of a Coulomb perturbation in the wave function. 
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