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MASSES FROM AN INHOMOGENEOUS PARTIAL DIFFERENCE EQUATION 

WITH HIGHER-ORDER ISOSPIN CONTRIBUTIONS* 
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In the present work, a mass equation obtained as the solution of an inhomogeneous partial 
difference equation is used to predict masses of unknown neutron-rich and proton-rich nuclei. The 
inhomogeneous source terms contain shell-dependent symmetry energy expressions (quadratic in 
isospin), and include, as well, an independently derived shell-model Coulomb energy equation which 
describes all known Coulomb displacement energies with a standard deviation of a, = 41 keV. 
Perturbations of higher order in isospin, previously recognized as a cause of systematic effects in 
long-range mass extrapolations, are also incorporated. The most general solutions of the inhomoge- 
neous difference equation have been deduced from a X2-minimization procedure based on the recent 
atomic mass adjustment of Wapstra, Audi, and Hoekstra. Subjecting the solutions further to the 
condition of charge symmetry preserves the accuracy of Coulomb energies and allows mass predic- 
tions for nuclei with both N > 2 and 2 > N. The solutions correspond to a mass equation with 470 
parameters. Using this equation, 4385 mass values have been calculated for nuclei with A b 16 
(except N = 2 = odd for A < 40), with a standard deviation of 6, = 194 keV from the experimental 
masses. 0 1988 Academic F’res, Inc. 
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INHOMOGENEOUS PARTIAL DIFFERENCE 
EQUATIONS AND GENERAL SOLUTIONS 

operator can be written as a product of three first-order 
operators, 

with 
O”‘B(N, 2) = A’*-lA1,oAo,‘B(N, Z) (3) Binding energy (or mass) relations can be written 

as sums and differences of the binding energies of a few 
neighboring nuclei (see, for example, Ref. 1) as 

A’*jf(N, Z) = f(N, Z) -f(N - i, Z - j). (4) 

It represents4 the difference with respect to neutron ex- 
cess of the effective neutron-proton interaction I&N, 
Z) = A’,‘A’,‘B(N, Z). Equation (3) can be approxi- 
mately written as 

z aij(N, Z)B(N + i, Z + j) = T(N, Z). 
(LA 

(1) 

Equation (1) can be applied recursively to predict new 
binding energies if only one value B(N, Z) in this equa- 
tion is unknown. The physical contents of Eq. (1) are 
contained in the structure of the relation, the coeffi- 
cients Uij(N, Z), and in the inhomogeneous source 
term 7(N, Z). 

Relations are called homogeneous if the source 
term 7(N, Z) = 0; otherwise they are inhomogeneous. 
They are called hybrid relations if the coefficients aij(N, 
Z) and/or the inhomogeneous source term 7(N, Z) are 
not constant but contain an explicit dependence on (N, 
Z). Such hybrid binding energy relations therefore have 
certain properties in common with binding energy 
equations. 

The left-hand side of Eq. (1) can be expressed in 
terms of a partial difference operator 0” of order m if 
the coefficients aij(N, Z) are independent of N and Z. 
Properties of several second- to fourth-order difference 
equations 

(5) 

The solutions of the inhomogeneous partial dif- 
ference equation (2) represent binding energy expres- 
sions. They are of the form 

BW, Z) = &,hom(N, z) + &om(N, z), (6) 

where &h&N, Z) represents a special solution of the 
inhomogeneous equation, and &,,.,,(N, Z) represents the 
most general solution of the homogeneous equation. In 
particular, if 0” is given by Eq. (3), the binding energy 
expression becomes 

B(N, Z) = BinhAN, Z) + G,(N) 

O*B(N, Z) = T(N, Z) (2) 

have been discussed recently.2 Of particular interest is 
the third-order difference operator 0” which is con- 
tained in the transverse Garvey-Kelson relation.’ This 

+ G,(Z) + GdN + Z) (7) 

with point functions G#). This is a many-parameter 
binding energy (or mass) equation. Once the functions 
Gi(k) are constructed from a X2 minimization of the 
differences B(N, Z) - B,,,(N, Z), Eq. (7) can be used to 
predict binding energies and masses of unknown nuclei. 
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COULOMB ENERGIES, SYMMETRY ENERGIES, 
AND HIGHER-ORDER EFFECTS IN ISOSPIN 

Coulomb and symmetry energies (taken for exam- 
ple in the analytical form of the liquid drop model) are 
expected to be responsible for small inhomogeneous 
source terms in Eq. (2) with 0”’ from Eq. (3). Statistical 
tests, while compatible with this expectation, provide 
only weak evidence for the existence of inhomogeneous 
source terms (see, for example, Refs. 4 and 5). 

Only recently’*4 has a new type of test established 
the need for inhomogeneous terms as well as their gen- 
eral characteristics. In this test all available mass data are 
systematically divided into subsets. The parameters are 
determined from one subset, and the remaining data are 
compared to the predictions. 

An example is displayed in Fig. 1. Here, the resid- 
uals, that is, the differences between experimental and 
calculated masses, are shown. Only nuclei with a neu- 
tron excess E = N - 2 in the range EStab - 3 W c E 
d Estab + 3 W with Estab = 0.4A2/(200 + A) and W = 8 
were used to determine the point functions G#). The 
empty band along the stability line represents this subset 

Inhomogeneous Partial Difference Equation 

of nuclei. Their mass values are reproduced very well 
with a standard deviation u,,, = 145 keV. The figure 
displays only the residuals for the extrapolated neutron- 
rich and proton-rich nuclei, which for this particular 
example display large systematic deviations (see below). 

The influence of the inhomogeneous source term 
7(N, 2) in Eq. (2) can very easily be established if 7(N, 

2) is written as 

7(N, 2) = Om&hom(~ Z). (8) 

The function &h&N, Z) will then represent one spe- 
cial solution of the inhomogeneous partial difference 
equation (2). 

The function &h,,(N, Z) was constructed with 
contributions from the Coulomb energy, Emu,, the nu- 
clear isospin-dependent symmetry energy, Esym , and 
terms higher than quadratic in &spin, EL,,,.,. It will be 
written as 

&hom(~ Z) = -&odN, Z) 

- E,,,(A, T) - E:,,(A, T), (9) 

where T= il(N- Z)I. 
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Figure 1. Differences between experimental masses and masses calculated using Eq. (7) for case II of Table B. The symbols in the figure represent nuclei 

with residuals in the indicated energy ranges. The figure displays only residuals for extrapolated mass values. 
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Binding energies will contain separate contribu- unlike the transverse Garvey-Kelson relation and mass 
tions from nuclear energies and from Coulomb energies equation which are restricted to N > Z and N = Z 
if isospin T is a good quantum number. Therefore, Eq. = even, Eq. (7) is capable of describing nuclei with Z 
(7) with &h&N, Z) from Eq. (9) must separate accord- > N. It also has the benefit of a significant reduction in 
ingly into nuclear and Coulomb terms, the number of free parameters. 

~(N, Z) = ~““Cl(N Z) + &C”dN a (10) 
where &&N, Z) satisfies charge independence of nu- 
clear forces and hence charge symmetry. More explic- 
itly, we have 

&ucdN Z) = -EsyntM T) - ~%yttU, T) + G(N) 

+ G2(Z) + G3(A) (11) 

and 

A shell-model Coulomb energy equation9 has 
been used to represent E&N, Z). The parameters de- 
scribing the Coulomb interactions and the nuclear size 
were derived from over 250 experimental Coulomb dis- 
placement energies in nuclei with 4 < A < 240. These 
data are reproduced with a standard deviation of a, = 4 1 
keV. This value of the standard deviation is preserved in 
Eq. (7) because the remainder of the equation satisfies 
charge symmetry. 

&“I(N Z) = -&o”lw, Z), (12) 

where the requirement of charge symmetry is achieved 
by imposing the constraint 

WV = G2W. (13) 
Similarly, the partial difference equation (2) with 

The nuclear symmetry energy depends quadrati- 
cally on neutron excess. In a simple shell-model ap- 
proach it is proportional to T(T + l), whereas the 
Wigner super-multiplet model yields an expression with 
T(T + 4). The equation 

Esy,,(A, T) = f$) T(T+ 1) (14) 
its third-order operator 0” from Eq. (3) will separate 
into a Coulomb energy relation and a relation for nu- 
clear energies which are both independently valid.6 The 
Coulomb energy relation describes Coulomb displace- 
ment energies between isobaric analog states, and it has 
a structure similar to the charge-symmetric Kelson- 
Garvey relation’ (see also Ref. 8). The relation for the 
nuclear energies is a relation for the excitation energies 
of isobaric analog states.‘j 

with essentially constant but shell-dependent coeffi- 
cients a(A) was found4 to represent the nuclear sym- 
metry energies rather well. However, in an extension of 
this approach it was observed that the terms linear and 
quadratic in isospin seem to follow a different depen- 
dence on nucleon number A. In the present work the 
symmetry energy was therefore written as 

The heuristic proof for the transverse Garvey- 
Kelson relation makes use of Hartree-Fock or Nilsson- 
like single-particle orbits (see Fig. 2 of Ref. 8). Separat- 
ing the single-particle energies and the energies of inter- 
acting pairs into nuclear and Coulomb contributions on 
the basis of isospin T as a good quantum number leads 
to the two independent relations. Coulomb energies and 
Coulomb interactions are accounted for separately, and 
the picture for the nuclear energies assumes identical 
fourfold-degenerate orbits for the protons and the neu- 
trons. The relation obviously satisfies charge symmetry. 

Es&A., T) = f i [ai + bi(A - Ao)]T’, (15) 
1-l 

allowing for a linear A dependence in addition to the 
factor l/A. The coefficients al, a2, b,, and b2 were ob- 
tained (see Table A) from an iterative adjustment for 
each major shell region prior to the calculation of the 
point functions Gi(k). Only data along the line of B sta- 
bility with W = 8 were used as input to ensure a regular 
and uniform data base. 

The Thomas-Ehrman shift in light proton-rich 
nuclei is a manifestation of the breakdown of the above 
picture signifying that isospin T is not a good quantum 
number. For nuclei with unbound protons or weakly 
bound protons, corresponding proton and neutron 
orbits are not completely equivalent. The Thomas-Ehr- 
man shift of up to several hundred keV in very-proton- 
rich nuclei permits an estimate of the error which is 
made in these few extreme cases. It should be noted that 
separating the nuclear and Coulomb contributions by 
introducing charge symmetry of nuclear forces via the 
condition G,(k) = G#) extends the applicability of Eq. 
(7) to all nuclei on both sides of the N = Z line. Hence, 

Using E,,,,(N, Z) and Esy,(A, T) to initially repre- 
sent the inhomogeneous contributions, the functions 
G,(N), G2(Z), and G3(A) of Eq. (7) were calculated sub 
ject to the constraint G@) = G,(k). Figure 1, previously 
mentioned, shows the results for the extrapolated neu- 
tron- and proton-rich nuclei. Again, only mass values 
for nuclei along the line of /3 stability with W = 8 were 
used as input. As observed earlier,4 the inclusion of in- 
homogeneous contributions from the Coulomb and 
symmetry energies yields only modest improvements in 
long-range extrapolations (compare Fig. 1 with Fig. 3 of 
Ref. 8). 

Contributions of higher order in isospin, particu- 
larly contributions cubic in isospin,‘.4 are strongly indi- 
cated by these results. These additional contributions 
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TABLE A 
Coefficients for the Symmetry Energies &,,(A, T) and E&&4, T) 

Gin Znax Nmin Nmax AO al b, a2 b2 a3 b3 c3 a4 bs c4 

a 20 8 20 28.0 65.0 1.1 
20 28 20 28 48.0 91.3 -2.8 
28 50 28 50 75.5 93.4 3.6 
50 82 50 82 126.5 207.0 11.3 
82 103 82 126 206.5 76.9 0.4 

8 20 20 28 40.5 68.3 -0.7 
20 28 28 50 58.0 195.6 18.9 
28 50 50 82 106.5 447.1 10.3 
50 82 82 126 170.0 112.0 -11.6 
82 103 126 157 232.5 -204.0 -10.0 

8 20 28 50 53.0 69.0 
20 28 50 82 90.0 79.0 
28 50 82 126 140.0 87.0 
50 82 126 157 200.0 98.3 

65.0” 
57.4 
68.9 
69.0 
76.9” 

68.3” 
69.9 
64.4 
84.7 
94.7 

69.0” 
79.0a.b 
87.0”~~ 
98.3“ 

1.1 0.025 
3.1 0.418 

-0.6 0.570 
-0.5 -0.699 

0.4 1.388 

-0.7 -0.872 
-1.1 -1.614 
-0.3 -0.638 

0.4 2.960 
0.2 -0.684 

0.097b 
2.975’ 
1.210b 
5.1076 

0.409 

0.104 -0.048 0.046 
-0.096 -0.002 
-0.075 -0.002 

0.181 
-0.007 0.011 0.297 0.001 -0.00 1 

0.030 -0.003 0.131 0.009 0.000 
0.016 

0.026 b 
0.156b 
0.0536 

-0.247 b 

a A dependence on isospin of the form T(T + 1) was assumed. 
b Estimated. 

were therefore written for each major shell region as METHOD OF MASS PREDICTION 

+ Ci(A -Ao)‘](T- T~tab)~ (16) 

with Tstab = 0.U2/(200 + A). Cubic isospin contribu- 
tions with coefficients linear or quadratic in nucleon 
number A (beyond the factor l/A) were sufficient for 
most shell regions, but quartic isospin contributions had 
to be included in three major shell regions. Equation 
(16) implies a source term T(N, Z) in Eq. (2) which for 
each shell region is essentially constant (or linear in iso- 
spin). The method of determining the coefficients of the 
cubic (and quartic) correction terms is described in the 
next section. 

It is not unreasonable to expect higher-order ef- 
fects in isospin, just as the description of rotational 
bands in (ordinary) spin space requires terms with [ J( J 
+ 1)12 and beyond. In a shell-model picture the higher- 
order isospin terms are the result of departures from 
simple seniority or isospin coupling schemes, of subshell 
mixtures and of core excitations. Furthermore, the effect 
of deformed nuclear shapes on ground-state binding en- 
ergies has the characteristics of an isospin dependence. 
This may also be responsible for the different A depen- 
dences of the linear and quadratic isospin terms. Knowl- 
edge about these higher-order effects is minimal, and the 
approach taken in this work was phenomenological, but 
with the hope that some insight could be gained. 

The present mass predictions make use of Eq. (7), 
which is the solution of an inhomogeneous partial dif- 
ference equation. The special inhomogeneous solution 
of Eq. (9) includes Coulomb and symmetry energy 
terms and higher-order terms in isospin. The point 
functions Gi(k) were obtained from a X2-minimization 
procedure using the recent mass evaluation of Wapstra 
et al.” as a boundary condition. A computer program 
which makes use of sparse matrix subroutines was used 
to solve the system of typically 400 linear equations in 
400 unknowns subject to the constraint G,(k) = G&3. A 
realistic distribution of weight factors was achieved by 
quadratically adding 100 keV to the experimental un- 
certainties, and all standard deviations were calculated 
accordingly. This added energy has the characteristics of 
an uncertainty of the theory, and one obtains a value for 
x2 per degree of freedom on the order of unity. 

As mentioned before, &&N, Z) was taken from a 
recent shell-model Coulomb energy equation.’ The 
standard deviation of a, = 41 keV for reproducing the 
experimental Coulomb displacement energies is pre- 
served in the present predictions. 

The coefficients ai, bi, and ci for the symmetry 
energy terms E,,,(A, 7’) and E&&4, T) of Eqs. ( 15) and 
(16) are shown in Table A. As discussed before, the 
coefficients for &,(,4, T) were obtained from an ad- 
justment of Eq. (15) to the Coulomb-energy-corrected 
binding energies along the line of p stability. The extrac- 
tion of the coefficients for the cubic (and quartic) isospin 
terms in E&,&4, 7) of Eq. (16) was thwarted for a long 
time. It was then discovered that the point functions 
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Figure 2. Differences between experimental masses and masses calculated using Eq. (7) for case III of Table B. The symbols in the figure represent nuclei 
with residuals in the indicated energy ranges. The figure displays only residuals for extrapolated mass values. 

G&k) implicitly generate cubic isospin contributions 
which have to be included together with the true effect 
displayed by the experimental data. The coefficients 
shown in Table A were obtained from an iterative ad- 
justment to the residuals of the initial fit. Appropriate 
shifts were introduced in the shell regions not inter- 
sected by the stability line to guarantee the continuity of 
(I&, + E&J at shell crossings. In several shell regions 

with few or no data, cubic contributions were estimated 
to ensure that (I&, + E&J displays an acceptable 
change in slope at shell crossings. Extrapolations are 
very sensitive to the higher-order parameters, and a ju- 
dicious limitation in the number of adjusted parameters 
was necessary. 

Extrapolations obtained with the inclusion of 
cubic (and quartic) terms are displayed in Fig. 2. Com- 

TABLE B 
Mean Values and Standard Deviations of the Residuals Obtained with Different Inhomogeneous Terms and 

Data Bases for Fits to Nuclei with N > Z and N = Z = even 

Mean and standard deviation (keV) 

CaSe Data base E mul EaYm All nuclei gRich Stable n-Rich 

I 
II 

III 
IV 

Stable 
Stable 
Stable 
AII 

No No No -41 + 695 -445 + 1468” o+ 79b 251 + 568” 
Yes Yes No -36 k 564 -260 + 1081” 0 + 145 71* 710” 
YeS Yes Yes -3 f  231 -12rt 347 o+ 145 -4 + 336” 
Yes YeS Yes Ok 188 6* 194 -1 -+ 169 -4 f  246 

Note. The “stable” subset of nuclei is defined by Emb - i W < E < E-b + t W with E = N - Z, Emb = 0.4A2/(200 + A), and W = 8. The 
inhomogeneous terms E,,I, E,y,, and E:, are included as indicated. The point functions G,(N) and G*(Z) are subject to the constraint G,(k) = G,(k). 

LI Extrapolated. 
b Functions G,(N) and G2(Z) are unconstrained. 
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TABLE C 
Statistical Data for the x2 Minimization 

Region 
All 

R s nuclei 

Z (min) 
Z (ma4 
N (min) 
N (max) 
Number of input data points 
Numbe of parameters 
Number of predicted mass values 
Standard deviation (r,,, (keV) 
Standard deviation a, (keV) for 

Coulomb displacement energies 

8 9 8 
103 30 103 

9 8 8 
157 29 157 

1515 70 1585 
470 0 470 

4054 331 4385 
188 288 194 
41 

Note. Region R contains nuclei with N > Z and N = Z = even. 
Region S contains nuclei with N c Z. 

parison with Fig. 1 clearly shows the great improvement 
in the extrapolations. This information is quantified in 
Table B, which shows mean values of the residuals and 
the associated standard deviations for all nuclei and for 

Inhomogeneous Partial Difference Equation 

the subsets of p-rich, stable, and n-rich nuclei. The large 
mean values for the extrapolated regions of p-rich and 
n-rich nuclei become small only when the higher-order 
terms in isospin, E&&t, T) are included (compare cases 
II and III). The first three entries of Table B, cases I, II, 
and III, correspond to Fig. 3 of Ref. 8 and Figs. 1 and 2 
of this contribution, respectively. 

The entry in the last row of Table B, case IV, 
shows means and standard deviations for the case where 
all known nuclidic masses are included in the data base 
for determining the point functions Gi(k). Interestingly, 
the various standard deviations are quite stable and 
change only moderately from case III to case IV. The 
standard deviations for the p-rich and n-rich nuclei im- 
prove at some expense to the stable nuclei. The overall 
standard deviation improves from 23 1 to 188 keV. The 
statistical data for this x2 minimization are given in 
Table C. The standard deviation for reproducing the 
input data of approximately 1500 mass values is 188 
keV. The total number of parameters for the functions 
Gi(k) and the coefficients of ESY,&4, T) and E&(A, T) is 
391+79=470. 

- 3200 
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3200 

2% keV 
-800 

-44% 
800 

I600 
3200 

t I I I I I 

2 8 20 28 50 82 126 
NEUTRON NUMBER N 

Figure 3. Differences between experimental masses and masses calculated using Eq. (7) for case IV of Table B. The symbols in the figure represent nuclei 
with residuals in the indicated energy ranges. All available data were used to determine the mass parameters; the figure displays the entire data base 
of region R. 
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Nuclei with 2 > N were not included in determin- 
ing any of the parameters. The uncertainties for repro- 
ducing their masses is a reflection of the uncertainties 
for predicting the masses of the corresponding light 
neutron-rich nuclei combined with the uncertainties for 
predicting Coulomb energies.’ The statistical informa- 
tion for this group of nuclei is included in Table C. 

Individual residuals for the global fit of region R 
are displayed in Fig. 3. One can see that a few very-neu- 
tron-rich and very-proton-rich nuclei such as 3’,32Na 
and 149Er are poorly reproduced. This is in part due to 
the constraint G,(k) = G*(k) but also reflects the strong 
sensitivity of extrapolations to the characteristic behav- 
ior of the higher-order isospin terms. Long-range extrap 
olations with the present approach must therefore be 
considered with caution; their quality may well be shell 
dependent. Improvements may become possible in the 
future based on a better understanding of the origin of 
the perturbations of higher order in isospin. 
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