
ORGANWATIONAL BEHAVIOR AND HUMAN DECISION PROCESSES 41, 281-299 (1988) 

Analyzing the Accuracy of Probability Judgments for Multiple 
Events: An Extension of the Covariance Decomposition 

J. FRANK YATES 

The Universiry of Michigan 

The probability score (PS) can be used lo measure the overall accuracy of 
probability judgments for a single event, e.g., “Rain falls,” or “This patient 
has cancer ” it has been shown previously how a “covariance decomposi- 
tion+’ of the mean of PS over many occasions Indexes several dtsrinct aspects 
of judgment performance (J. E Yates, Organizationa/ Behavior and Human 
Performance, 30, 132- 156 (1982)). There are many situations in which proba- 
bility judgments are reported for sample space partitions containing more than 
one event and its complement, e.g., medical situations in which a patlent 
might suffer from Disease X, Disease Y, or Disease Z, or testing situations in 
which the correct answer to an item might be any one of alternatives (a) 
through (e). The probability score for multiple events (PSM) serves as a mea- 
sure of the overall accuracy of probability judgments for the events in pani- 
iions of any size. The present anicle describes and interprets an extension of 
the covariance decomposition to the mean of PSM. The decomposition 15 
illustrated with data from two contexts, medicme and education. C 1988 ACII- 

demrc Press. Inc 

Imagine a labor consultant who considers how a union might respond 
to an offer from management. Four events are recognized as possibilities: 
A, = “Accept offer,” A, = “Reject offer. but continue negotiating,” A, 
= “Reject offer, then strike,” and A4 = “Other actions,” e.g., “Reject 
offer, then slow down.” The experr could make a deterministic judgment 
that one of these events definitely will occur. However, the consultant 
accepts the arguments for probabilistic assessments, e.g., the fact that 
they allow the decision maker to trade off uncertainty against value in. 
say, decision analyses. So the following probability judgments are re- 
ported: P’(A,) = .60, P’(A,) = P’ (A,) = -15. P’ (A,) = .10. 

The present article concerns the foilowing issue: How can we charac- 
terize and analyze the accuracy with which probabiiity judgments for K- 
event partitions of a sample space (K 3 2) anticipate the events that ulti- 
mately occur? For instance, over many different labor disputes, just how 
good are the labor consultant’s predictions; i.e., precisely how expert is 
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the expert? How does that individual’s performance compare with that of 
other authorities? It is well known that there are important and reason- 
ably distinct components of the overall accuracy of probability judgments 
for single events (cf. Yates, 1982), e.g., calibration, resolution, bias, and 
slope. What are significant aspects of accuracy for multiple-event judg- 
ments? 

The probability score (PS), also known as the Brier SCOE, is the most 
commonly used measure of probability judgment accuracy. Virtually all 
psychological research involving PS has employed its single-event form. 
However, even in his earliest papers on PS, Brier (1950) indicated that PS 
can be applied to multiple-event partitions, too. The concepts of reli- 
ability, i.e., “calibration,” as it is most often described in psychology, 
and resolution are now common in discussions of single-event probability 
judgment accuracy. Sanders (1963) and Murphy (1972a, 1973) have 
shown how ps, the mean of PS over several single-event judgment occa- 
sions, can be decomposed into various components, including measures 
for calibration and resolution. Yates (1982) has described a “covariance 
decomposition” which parcels ps into terms reflecting other aspects of 
single-event judgment accuracy. 

Murphy (1972b) has demonstrated how his single-event I% decomposi- 
tion can be extended to the multiple-event case. The purpose of the 
present paper is to describe and illustrate a similar extension of the co- 
variance decomposition of Ps to multiple-event situations. it is surprising 
that, despite the existence for some time of multiple-event methods such 
as Murphy’s Tjs decomposition, almost all analyses of probability judg- 
ment accuracy in the psychological literature have considered only the 
single-event case. In the above labor consultant example, single-event 
methods would allow us to examine in detail how the expert makes judg- 
ments for, say, the event “Accept offer.” But they would permit us to say 
nothing about all the other possibilities. As will be shown, it is often the 
case that considerable insights can be gained about judgment variation 
over several events. 

REVIEW OF THE SINGLE-EVENT COVARIANCE DECOMPOSITION 

As a review, consider the case of a single target event A, e.g., “Rain,” 
to be concrete. l The probability judgment for the target event is denoted 
f = P’ (A) and is, of course, between 0 and 1. The outcome index on a 
given occasion is defined as 

d = I, if event A occurs 

1 More compkte discussions of single-event decompositions of s can be found in ar- 
titles by Yates (1982, 1984) and Yates and Curley (1985). 
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= 0, if event A does not ucccuf. (1) 

The outcome index can be seen as the probability judgment of a clair- 
voyant , “God’s probability,” as some put it. The probability score is for- 
ma@ defined as the squared difference between.f and d: 

PS(f,4 = (f - 6)*. (2) 

Clearly, 0 4 PS s 1, and a judge’s objective should be to minimize PS. 
Over N occasions, indexed by i = I, , . . , n, the mean of PS is given by 

pS(,f,d) = (l/NJ i cfi - di)*. 
i=.l 

(3) 

The % covariance decompositiolz (Yates, 1982; Yates & Curley, 1985) 
can be expressed as 

%cf,d) = Var(d) + MinVarV) + Scatw 
+ Bias2 - 2[SlopeJ[Var(d)l. (41 

The KN~XK c5mpUnenfS of m DD the right-haml side of Eq, (4) haye the 
following definitions and interpretations: 

Var(d) is the variance of the outcome index, which, in its simplest 
form. can be written as 

where 

Var(d) = ;i(l - a. 

d = (I/N) ~ di 
i=l 

(6) 

is the relative frequency, or “base rate,” with which the target event A 
Occurs. In many situations, the target event is completely outside the 
judge’s control, e.g., when A = “Rain” or A = “IBM stock declines.” 
In Wch instances, d and, hence, the Var(d) part of s are beyond the 
judge’s influence, too. 

The bias statistic is defined by 

Bias = 7 - 2, 

in which 

(7) 
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is the mean probability judgment reported for the target event. The bias 
statistic reflects a type of overall miscalibration, the extent to which the 
judge’s assessments are generally too high or too low, ie., by how much 
they are biased. The square of the bias, which is what actually appears in 
the covariance decomposition, is sometimes called the “reliability-in- 
the-large” @IL), i.e., 

RIL = Bias2. (9) 

Clearly, RIL characterizes overall miscalibration irrespective of the di- 
rection of the error. 

The term Slope in Eq. (4) is given by 

Slope = J‘, - fO, (10) 

where 

is the conditional mean probability judgment for the target event A over 
those N, occasions when that event actually occurs (hence the & nota- 
tion, corresponding to d = l>;f, is defined similarly for the remaining Iv, 
instances when the target event does not occur, with iV = iV, + N,,. In 
the ideal case, the judge always reports f = 1 when the target event is 
going to occur andf = 0 when it is not. This situation would yield the 
maximum possible value of Slope = 1. Thus, it makes sense for slope to 
contribute to ps negatively, as it does. The name for the statistic is ap- 
propriate because it is literally the slope of the regression line when prob- 
ability judgments are regressed on outcome indexes. The rerm “covari- 
ante decomposition” applies because slope is so important to ps and 
because the covariance of the judge’s assessments and the outcome in- 
dexes can be expressed as 

Covcf, 4 = K31opellVar(d)l. (12) 

which, with a multiplier of 2, is the last term in the decomposition. 
The definition of the Scat(f) term in the covariance decomposition of 

B is given by 

Scat0 = (1/1V)[N,Var(fi) + NaVar(&)], (13) 

in which 



is the conditional variance of the probability judgments for the target 
event A on those N, occasions when it in fact occurs; VarVo] has a similar 
definition and interpretation for the remaining N,, occasions when the 
tar!33 event does not occur. Varcfi) and VarV-,) measure variability in the 
judge’s assessments which is unrelated to whether or noI the targel event 
happens. SO, from the perspective of anticipating that event, this vat+ 
ability is noise, or “scatter.” Scatm, the weighted mean of VarCf,) and 
Vat&J, is thus an index of the overall scatter contained in the judge’s 
PfUbabiiiity statements. 

The remaining term in the covariance decomposition of pS is 
MinVar(jI, which can be shown to be 

MinVar(fl = Var(,f> - Scat(f), (15) 

where VarCf> is the variance of the entire collection of probability judg- 
merits for the target event. It can also be shown that 

MinvarCf) = ~slope~‘D’ar(~‘JY, 1161 

which contains the elements of the covariance of judgments and outcome 
indexes. Accordingly, Eq. (15), which can be rearranged as 

Varyt = MmVarV) t ScarCr), (173 

can be seen as similar to a partition of variance in the analysis of vari- 
ance, with MinVarCf) analogous to effect variance and Scatcf) corre- 
SPMdkg to en-or variance. Shce VarV> contrjbutes to ps positively, ide- 
Al3 one would want to minimize it. But this would ehminate the slope, 
too. Thus, conditional upon the attainment of a given slope, MinVarCf) 
reflects the amount of judgment variability that must be tolerated. That is 
why it is called the “condirional mrnimum judgment var&cc.” 

THE MULTIPLE-EVENT COVARIANCE DECO~pOSITlOfq 

Now consider the multiple-event case. Let A,, A,, . . , AK constitute 
a K-event sampie space partition, with K 2 2. Then in the naiural fashion 
we can define outcome indexes dk for each event according to Eq. (I), k 
= 1 . * 7 K. Similarly. the respective probability judgments for A,, A,, 
. . ) ’ Axcanbedenoledhyfk, k = 1,. . . K. The outcome indexes and 
judgments can be represented compactiy by vectors d = (a’,, d,, . . I 
4 and f = cfi,.L . . . ,fK), respectively. So, in the labor expert ex- 
ample, f = C.60, .15, .15, .lO). If the union rejects management’s offer 
and strikes (event A,), then d = (0, 0, 1, 0). 
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The multiple-event probability score (PSM) 
Murphy, 1972b) 

PSM(f,d) = (f - d)(f - 
K 

can be described as (cf. 

d)’ 

= c cfk - dkj2 
k=l 

k=l 

It is straightforward to show that 0 G PSM c 2. If i, with i = 1, . , . , N, 
is used to index multiple-event judgments fi and outcome indexes di over 
N different occasions, then the mean of PSM can be defined in the ex- 
pected way: 

PSM(f,d) = (l/N) i PSM(fi,dJ 
i=l 

k=l 

where, to simplify the notation, Sk represents the mean probability 
score for the kth event in the partition. Thus, the sum of the mean proba- 
bility scores for the individual events constitutes an overall measure of 
accuracy for the multiple-event judgments.2 

A combination of Eqs. (4) and (19) yields the PSM covariance decom- 
position: 

PSM(f,d) = $ Var(d,) + 5 MinVarCf& 
k=l k=I 

K K 

+ 2 Scatvk) + 2 Bias8 
k=l k=l 

- 2 5 [sloPekl[var(dkk 

k=l 
Gw 

2 The reader might note that the single-event situation is equivalent to the multiple-event 
situation in which the partition of the sample space consists of two events (K = 2), the 
target event and its complement. In that case, PS = (1R)PSM. 
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in which the subscripts on the summands correspond to the respective 
individual events in the sample space partition. Each sum on the right- 
hand side of Eq. (20) has a meaning which generalizes the interpretation 
of the individual-event summands discussed previously. For example, 

K 

normally c Var(d,) is a part of the overall accuracy measure which is 
k=l 

outside the judge’s influence. And the sum of squared biases indexes the 
general extent to which the judge’s assessments are miscalibrated. 

As indicated above, Murphy (1972b) has derived other decompositions 
of what is called here m. Yates (1982) has shown what the relationship 
is between the single-event “new” Murphy (1973) decomposition of ps 
and the covariance decomposition of the same. The relationships be- 
tween the corresponding decompositions of PSM follow directly. It is 
probably inappropriate to say that any probability score decomposition is 
in every respect “better” than the others. Each offers a different per- 
spective on judgment accuracy that can inspire insights that are not en- 
couraged by the alternatives. That is why any given accuracy study 
would do well to apply more than one analytical technique. The following 
illustrations serve to highlight the particular kinds of understanding 
prompted by the covariance decomposition. 

ILLUSTRATION 1: MEDICAL DIAGNOSES 

Habbema, Hilden, and Bjerregaard (1978) reported a collection of 
probability assessments made by a statistical model in a medical situa- 
tion. The task was to diagnose the cause of patients’ complaints about 
stomach ailments. In each instance, probability “judgments” were of- 
fered for three diagnoses: A, = “Nonspecific abdominal pain,” A, = 
“Acute appendicitis,” and A, = “Other diseases.” Fifty cases were con- 
sidered. Because the cases were so few in number, it should be recog- 
nized that the analyses described here are for demonstration purposes 
only. 

Table 1 shows the ps and PSM covariance decomposition statistics for 
the alternative diseases. It is useful to have standards of comparison for 
values of ps and m. One standard is the performance of the “uniform 
judge.” The uniform judge reports that all events in the given partition 
are equal&~ likely; i.e., fk = l/K, ior k = I, . . . , K. For example, in the 
present illustration, the uniform judge would indicate that P’ (Nonspe- 
cific abdominal pain) = P’ (Acute appendicitis) = P’ (Other diseases) = 
l/3. The covariance decomposition of PSM permits the direct conclusion 
that, fur the uniform judge, m = I - UK. So, in the present diagnostic 
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TABLE 1 
!%AND PSM COVARIANCEDECOMWSITION TERMS FORDISEASE 

PROBABILITY-JUDGMENTS 

Event/Disease 

Term Sum 

A, 
Nonspecific 

abdominal pain 

A2 

Acute 
appendicitis 

4 
Other 

diseases 

Ek 
Var Cd& 
MinVar (fk) 
Scat Cf& 
Bias: 
- 2WpeJWar(dL)J 

o PSM 0. 

.2735” .1131 I333 .1271 

.5704 .I924 .I344 .2436 
.1500 .0281 .0700 .0519 
.1154 .0388 .0225 .0541 
.003-f .ooo9 .0004 JO24 

- .5660 - .I471 -.I940 - .2249 

situation, the judge could assure PSM = 2/3 by simply considering each 
of the possibilities to be equally likely. As indicated in Table 1, the as- 
sessments recorded by Habbema er al. surpassed the standard set by the 
uniform judge. This may seem like a minor achievement. But in a study 
of judgments concerning stock price activity, StaCl von Holstein (1972) 
found that only 3 of 72 subjects outperformed the uniform judge. 

The “base rate judge” offers a second, more exacting comparison 
standard. The base rate judge reports that the probability of each event is 
equal to its base rate; i.e., fk_= &, k = 1, . . . , K. The base rates for the 
respective alternatives were d, = 26% for nonspecific abdominal pain, d2 
= 16% for acute appendicitis, and 2, = 58% for other diseases. These 
would be the corresponding probability judgments for the base rate 
judge, too. Of course, one would have to be clairvoyant to know the 
exact value of & before the events actually occur. However, suppose a 
large data base is available, such that the relative frequencies of the 
events are very stable, near some value a,, for k = 1, . . . , K. Then, for 
any reasonably sized sample of occasions, a, should be close to i& also. 
That is, 6, could be taken as a good estimate of CC&. 

An inspection of the ps decomposition makes it clear that, for the base 

rate judge, ps, = Var(d,J. It then also follows that PSM = 5 Var(d,). 
k=l 

Table 1 shows that the predictions listed by Habbema ef al. were superior 
to those of the base rate judge, both overall and for each disease individu- 
ally. 

Figure 1 shows an ensemble of “covariance graphs” for the events in 
the diagnosis sample space. Such displays afford visual appreciation of 
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the judgment aspects indexed by the components of ps and PSM covari- 
ante decompositions. For convenience, relevant statistics are superim- 
posed on the covariance graphs, too. Covariance graphs sometimes can 
be difficult to understand, especially when they are seen for the first 
time. Thus, the meanings of various features of such representations are 
discussed in some detail for the first covariance graph shown in Fig. 1, 
that for the diagnostic event “Nonspecific Abdominal Pain.” 

The abscissa in a covariance graph is defined by the outcome index d. 
Although the outcome index itself can assume only two values, 0 and 1, it 
proves to be convenient to mark off intermediate points between those 
extremes. It is customary to indicate in parentheses adjacent to the cor- 
responding values of d how often the target event does and does not 
occur. Thus, it is shown in Fig. 1 that 37 of the 50 patients did not have 
nonspecific abdominal pain (d, = 0), while the remaining 13 did (d, = 1). 
The ordinate of the covariance graph is identified with the probability 
judgmentffor the target event. 

A covariance graph contains two histograms, one for probability judg- 
ments for the target event when it actually occurs (d = l), the other for 
when it does not (d = 0). The scale of the histograms is indicated by 
labeling the longest bar in each with the number of cases symbolized, 
e.g., (3) for the histogram representing the 37 cases in which patients did 
not suffer nonspecific abdominal pain. Ideal judgment performance 
would be depicted by a covariance graph containing two degenerate his- 
tograms. The histogram on the right, above d = 1, would consist of a 
single bar at f = 1; that on the left, above d = 0, would have a solitary 
bar at f = 0. Roughly, accuracy is good to the extent that a covariance 
graph approaches this configuration. The various elements of the covari- 
ante decomposition, which are visually characterized by the graphical 
features distinguished below, are specific ways that real judgments fall 
short of the ideal. 

Every covariance graph contains a horizontal dotted line through the 
overall mean probability judgment J;, . For instance, Fig. 1 shows that 7, 
= .289; i.e., the average judgment for nonspecific abdominal pain was 
28.9%, over all 50 patients. The covariance graph also includes a vertical 
dotted line through the base rate &; e.g., d, = 26.0% for nonspecific 
abdominal pain. The distance of the intersection of those lines from the 
1: 1 diagonal is the absolute value of .Bias,. For nonspecific abdominal 
pain judgments, the bias was thus Bias, = +2.9%; the judgments were 
generally somewhat too high. Recall that?,, and?, are, respectively, the 
mean probability judgments for the target event when it does and does 
not actually happen; e.g., T,, = 57.2% and Tfl = 19.0%_for nonspecific 
abdominal pain. The line passing through (0, fO& and (1, flk) in a covari- 
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ante graph is the regression line for judgments regressed on outcome 
indexes. The slope of that line is Slopek = j,, - fok. When accuracy is 
perfect, the slope is 1. For nonspecific abdominal pain, we see that Slope, 
= .572 - .I90 = .382, a value far from perfection. The variability in the 
histograms on either side of a covariance graph is indexed by the condi- 
tional variances Var(f,,) and Varybk); recall that Scat(&) is the weighted 
mean of these statistics. For nonspecific abdominal pain, these statistics 
are, respectively, Vattf,,) = .0468, Var(f0,) = .0360, and Scatu,) = 
.0388. 

As indicated previously, bias, slope, and scatter are accuracy dimen- 
sions that are under a judge’s control. Note that, as is apparent from the 
pertinent statistics and the covariance graphs, these aspects of perfor- 
mance were best for the diagnosis of appendicitis. Assuming that this is 

more than an unreliable statistical aberration, two plausible explanations 
suggest themselves. The first is that, because appendicitis is such a se- 
riOUs, life-threatening condition, physicians go out of their way to learn to 
diagnose it as well as possible -in every respect. The second hypothesis 
is that appendicitis is judged more accurately than “nonspecific abdom- 
inal pain” and “other diseases” because it is more precisely defined. 
Only more pointed empirical study with large numbers of cases can settle 
the question. 

Another issue raised by the present illustration concerns the direction 
Of the biases observed for the three diagnoses. Christensen-&alar& and 
Bushyhead (1981) found very strong positive biases in physicians’ judg- 
ments for the diagnosis of pneumonia. Centor, Dalton, and Yates (1984) 
recorded similar large biases in physicians’ judgments for positive strep- 
tOCoccus test results for patients complaining of sore throat. An intu- 
itively appealing hypothesis that in principte could account for these re- 
sults is motivational: Since the physician does not want to “miss” diag- 
nosing a serious condition in a patient, an inordinately high probability is 
offered for that condition. However, Christensen-Szalanski and Bushy- 
head (1981) found no support for this hypothesis when they tested it via 
questionnaires about perceived diagnostic error costs. 

The complete PSM analysis of the present data suggests an additional 
hypothesis which should be pursued in furlher studies, even though it 
might not apply here, since the assessment came from a statistical model. 
Note that the observed biases were positive for the most well-defined 
diagnoses-acute appendicitis and nonspecific abdominal pain. Results 
reported by Koriat, Lichtenstein, and Fischhoff (1980) imply that 
common biases in probability judgments about general-knowledge ques- 
tions are at least partly due to attention focusing. When faced with a 
two-alternative question, subjects appear to be overly influenced by ar- 
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guments favoring one of the alternatives, to the neglect of equally signifi- 
cant but less readily accessible arguments favoring the competing possi- 
bility. Perhaps the same principle applies in medical diagnosis. Suppose 
the physician is somehow led to consider a specific disease in a diag- 
nostic situation. Then he or she is easily able to bring to mind reasons 
why that disease is the appropriate diagnosis. So a high probability is 
offered for that alternative, leaving little probability “left over” for 
catch-all categories, such as “other diseases”: What is out of sight is out 
of mind. 

ILLUSTRATION 2: GRADE PROJECTIONS 

For counseling purposes, near the middle of each term some universi- 
ties ask instructors to project the grade each of their students will earn. 
So it is of practical interest to know how well this task is accomplished. 
With this issue in mind, as well as the aim of demonstrating the useful- 
ness of the multiple-event covariance decomposition in comparisons be- 
tween judges, several university psychology instructors were requested 
to make multiple-event probability judgments for the final grades of stu- 
dents in their classes. The events were A, = “Will earn a grade of C + or 
worse,” A, = “Will earn a grade of B -, B, or B + ,” and A, = “Will 
earn a grade of A- or better.” The judgments for each student were 
constrained to sum to 1.0. They were elicited in the approximate middle 
of the term, after the instructors had had the opportunity to examine one 
or more products of every student’s work. Appropriate precautions were 
taken to protect students’ identities. 

Table 2 presents the values and covariance decomposition components 
of ps and PSM for the judgments made by Instructors 1 and 2. Instructor 
1 was the individual wwmong all those who participated, achieved the 
lowest, i.e, the best, PSM value; Instructor 2 obtained the highest. The 
sampling distributions of ps components have not yet been determined. 
So it is not possible to draw definitive conclusions about contrasts be- 
tween the stable judgment tendencies of Instructors 1 and 2. Neverthe- 
less, the present sample statistics can be used to discuss how compar- 
isons could be made when samples are large enough to rely upon limit 
theorems to defend inferences. As in the medical example, the meaning 
of each statistic is enhanced by the ensembles of covariance graphs 
shown in Fig. 2. 

First, note that, according to the scatter component of the PSM de- 
composition, Instructor 1 had less overall scatter in her judgments than 
did Instructor 2. This advantage is not immediately apparent in the dis- 
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TABLE 2 
~AND~COVARLANCEDEC~MPOS~~IONTERMSFORPR~JEC~EDG~E 

PROBABILITYJUDGMENTS 

Event/Grades 

Term 
4 A3 

Sum (B-3 B, B+) (aA- 

iq 
Var Cd,) 
MinVar cf,) 
Scat If,) 
Bias; 
- 21SlopedVar(dk~l 

Es, 
Var Cd,) 
MinVar (f,) 
Scat 02 
Biasi 
- 2[SlopeklWarkQl 

Instructor 1 
.3387”,b .0449 
.5949 .I071 
.I712 .0290 
.1732 .0168 
.0309 .0034 

- .6309 -.I114 
Insrructor 2 

.5858”,b .1802 

.6258 .2400 

.0532 .0409 

.2265 .0972 
-0017 .0002 

- .3214 - .1981 

.I693 .1245 
.2498 .2380 
.05 IO .091? 
.0871 .0693 
.0071 .0204 

- 2257 - .2938 

.2640 
.2452 
.CQ24 
.0640 
.OOll 

- .0488 

.I417 
.I406 
.009R 
.0653 
.0004 
.0744 

b Due to rounding error, some horizontal and vertical sums are not exact 

persion of the histograms in the covariance graphs. Nor was that advan- 
tage uniform, in that Instructor 2’s predictions were actually less scat- 
tered for two of the grade categories, as revealed by comparisons of the 
scatter components in the corresponding m, decompositions. One po- 
tential cause of scattering in probabilistic forecasts is that the judge re- 
sponds to cues which are thought to be predictive, but which really are 
not. It is conceivable that Instructor 1 was less inclined to rely on mis- 
leading grade cues than was Instructor 2. 

Observe that Instructor I’s judgment performance was not consistently 
superior to Instructor 2’s in all components of PSM. Although predic- 
tions of the former instructor were overall less scattered, her opinions 
were much more biased. This is revealed in the larger distances of the 
intersections of theyk and dk lines from the 1: I diagonals in the respective 
covariance graphs, and is confirmed by the bias components of the de- 
compositions. The graphs also highlight across-event differences in bias. 
Especially noticeable is how overly optimistic Instructor 1 was that her 
students would earn high rather than low grades. Perhaps the difference 
in bias was due to experience. Instructor 2 had taught her course much 
longer than had Instructor 1. So she may very well have developed a 



294 J. FRANK YATES 



JUDGMENT ACCURACY 295 



296 J. FRANK YATES 

better sense of how often students tend to earn A’s, B’s, and other 
grades. 

The results show that the primary way Instructor 1 was able to achieve 
her overall superior accuracy was through judgment slopes. As indicated 
by the regression lines in the covariance graphs and by the slope compo- 
nents of the decompositions, for every event the slope for Instructor l’s 
judgments was greater than that for Instructor 2’s predictions. A plau- 
sible explanation for this difference is detailed knowledge of each stu- 
dent’s work. In general, a judge should be able to achieve a good slope 
only if he or she has access to predictive cues for every instance of an 
event and knows how to interpret those cues. Instructor I personally 
graded-the assignments and tests fur all the students in her class. How- 
ever, instructor 2 was aided by a teaching assistant who graded part of 
the course requirements. Thus, perhaps, her ability to make discrimina- 
tive judgments was limited by the information available to her. 

The outcome index variance term in the PSM covariance decomposi- 
tion favored Instructor 1. This advantage was “undeserved,” in that the 
outcome indexes were not determined by the instructors, but rather by 
the difficulty of the course material and the competence of the students. 
That is why a case can be made that a proper understanding of compara- 
tive judgment skills should not rely on gross accuracy measures like ps 
and m. Instead, it should depend on comparisons of decomposition 
terms the judges are capable of affecting, e.g., bias, scatter, and slope. 
The separation of judge-controlled and judge+dependent aspects of 
judgment accuracy is a major contribution of PS and PSM decomposi- 
tions (cf. Murphy, 1973). 

DISCUSSION 

The illustrations presented above by no means exhaust the domains in 
which multiple-event decomposition methods should be useful. Another 
context is testing. For over 20 years, probabilistic responding to mul- 
tiple-choice tests has been advocated by some observers (cf. Rippey, 
1968; Shuford, Albert, & Massengill, 1966). In probabilistic or “conft- 
dence” testing, rather than categorically asserting that alternative (b) is 
the correct answer to a five-alternative, multiple-choice item, the testee 
would assign a probability judgment that each of those alternatives is the 
correct one. Decomposition anaiyses should be a valuable tool for proba- 
bilistic test item analyses. A closely related application is in the context 
of memory research, in which the subject must identify which of several 
items is old rather than new. Yet another application is in perception ex- 
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periments, where the subject is required to say, for instance, that a stim- 
ulus has occurred in one of several alternative locations. 

It is important to recognize what procedures such as those described 
here can and cannot do. These techniques are useful in their ability to 
identify and quantify specific ways in which a person’s judgmental accu- 
racy is good or poor. It is then much easier to understand and correct 
shortcomings in that individual’s judgment processes. An analogy is ap- 
propriate. Imagine a tennis player who is consistently losing. Tiring of 
this, she hires a coach to improve her game. After watching her play for a 
while, the coach announces, “You’re not hitting the bail well. That’11 be 
$30, please.” Surely the player would refuse to pay for such vacuous, 
nonspecific “insight.” Instead, she would demand a detailed analysis of 
exactly how she is hitting the ball improperly. Only then can she begin to 
make the required adjustments. Similarly, merely reporting an overall 
index of probability judgment accuracy can have only limited utility. 
Measures of specific, controllable accuracy dimensions, as provided by 
the covariance decomposition, offer a more promising avenue toward im- 
provement . 

When judgmental accuracy is deficient, decomposition statistics isolate 
the source G$ the problem in one or more narrow areas, e.g., bias or 
slope. This is certainly helpful. But an investigator might want even more 
pointed explanations of the difficulties. If so, he or she must go beyond 
what the statistics per se can provide. Suppose, for example, that a 
person’s judgments contain an inordinate amount of scatter. There are at 
least two major reasons such a state of affairs might exist. The first is that 
the person executes his or her judgment policy in an inconsistent manner. 
The other is that, although the judgment policy is applied reliably, that 
policy relies on cues that are themselves only weakly related to the target 
event. Thus, as in the above medical and educational illustrations, while 
decomposition analyses can significantly reduce the number of plausible 
explanatory hypotheses, additional study is often necessary to arrive at 
definitive conclusions. 

Although the present results are useful, there are several problems 
concerning multiple-event decomposition techniques which need to be 
addressed in further work. One of those problems concerns statistical 
inference. No one yet understands the sampling distributions of decom- 
position statistics under various conditions of general interest. So, until 
the required studies are performed, parametric inferences about the pop- 
ulations of those statistics must be very conservative, depending upon 
large samples. Or those inferences must come from less powerful non- 
parametric methods. 

The illustrations in the present article involved probabiiity judgments 
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about discrete events. There are many situations in which the objects of 
interest are quantities, e.g., commodity prices, sales totals, task comple- 
tion times. In such contexts, the subject reports a judgment for the entire 
distribution for the quantity, perhaps via the fractile method or some 
other procedure (cf. Seaver, von Winterfeldt, & Edwards, 1978; Spetzler 
& StaCl von Holstein, 1975). Stael von Holstein (1972) has illustrated how 
the accuracy of such distribution judgments can be indexed with a mea- 
sure that is equivalent to m. This is done by partitioning the con- 
tinuum of possible values for the relevant quantity into successive in- 
tervals, e.g., A, = (--co, x,], A2 = (x,, x21, A, = (x1, x,], etc. Ordinarily, 
the only aspect of distribution judgment accuracy which receives much 
attention is calibration (e.g., Alpert & Raiffa, 1982). As demonstrated, 
the methods described here provide measures of not only calibration, but 
other accuracy dimensions, too. 

A recognized shortcoming of the probability score is its insensitivity to 
distance when applied to events that are naturally ranked relative to 
one another. As an example, suppose that fi = (.5, .2, .3) is a teacher’s 
probabilistic forecast of the grade Student 1 will earn in a course, where 
A, = “GradeofC+ orworse,“A, = “GradeofB-,B,orB+,“andA, 
= “Grade of A- or better.” Let f2 = (.2, S, .3) be the forecast for 
Student 2’s grade. Suppose each student earns an A. Both forecasts 
would be assigned the same value of PSM, even though the mass of the 
probability distribution in the forecast for Student 2 was “closer” to the 
actual grade earned. There exist measures, such as the “ranked proba- 
bility score” (Epstein, 1969; Murphy, 1971) and the “continuous ranked 
probability score” (Stae\ von Holstein, 1977), which are in fact respon- 
sive to distance. An important challenge for future efforts is to derive 
decompositions of measures like these which are comparable to the co- 
variance decomposition of a. 
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