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Let F be a strongly non-lattice distribution function with a positive mean, a positive variance, 
and a finite third moment. Let Xt ,  X2 , . . .  be i.i.d, with common distribution function F;  and let 
S, - Xt + - .  • + X ,  and t ° - inf{n ~> 1: S, > a} for n ~> 1 and a > 0. The main result reported here 
is a two term asymptotic expansion for Ho(n, z) = P{t ° < n, S, - a <<- z} as a --, ao. Assuming higher 
moments, a three term expansion for P{t ° ~ n} and refined estimates for the probability of ruin 
in finite time are obtained as simple corollaries. A key tool is an asymptotic expansion in Stone's 
forrnu!a*,ion of the local limit theorem. 

A M S  (1980) Classifications: Primary 60F05; Secondary 60J15. 

Edgeworth expansions • local limit theorem * ruin problems 

1. Introduction 

The purpose of this article is to develop asymptotic expansions related to first 
passage titk~es, under weak moment and smoothness conditions. Towards this end, 
let F denote a (right continuous) distribution function with a positive mean ~,  a 
positive variance ¢r 2, a finite third moment, and higher moments as needed. Suppose 
further that F satisfies Cram6r's Condition (is strongly non-lattice); that is, 

lim sup I ¢s)l < 1, 
$..-~o0 

where 

fR eiSXF(dx)' s ~ R .  0(s)= 

Let Xm, X2,.. be i.i.d, random va~ables with common distribution function F; 
and denote the random walk and first passage times by So = 0, 

S. = XI +" " + X . ,  n >- l, 

t ° = i n f { n ~  > 1: S, > a}, a > 0 ,  
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and 

t~ =inf{n~> 1: S,,~<a}, a ~ R ,  

where the infimum of the empty set is understood to be oo. Here t ~ < ~ ,  w.p. 1 for 
all a > 0, since ft > 0; the probability that t,, < oo is estimated below. 

The main result of this paper is a two term asymptotic expansion, as a--> oo, for 
the function 

H, , (n , z )=P{ ta<n ,S , -a<~z} ,  

defined for z ~R, n ~> 1, and a > 0. A three term asymptotic expansion for the 
distribution of t a is derived as a simple corollary. 

These results have potential applications to sequential analysis, where stopping 
times of the form t a and ta arise naturally. For example, the stopping time of the 
sequential probability ratio test is the minimum of two such first passage times. 
After tilting, there are also applications to the ruin problem. These are indicated in 
Corollary 3. 

There are also more speculative potential applications. In principle, the main 
result allows one to compute higher order expansions for the distributions of 
randomly stopped sums, as in Woodroofe and Keener (1987); and the main result 
here is a first step towards its own extension to non-linear boundaries. These 
possibilities are sufficiently complicated to warrant separate consideration, however. 

This paper is similar to Takahashi (1987) and Keener (1987) in that higher order 
expansions for boundary crossing probabilities are sought. It is also similar to Lalley 
(1984) in that weak moment and smoothness conditions are sought. 

A useful alternative expression for Ha(n, z) is presented in Section 2. An 
asymptotic expansion in Stone's (1965) formulation of the local limit theorem is 
developed in Section 3. This is a key tool which may be of independent interest. 
The main result and its corollaries are presented in Section 4; and the main result 
is proved in Section 5. Remarks and examples occupy Section 6. 

The notations and assumptions listed in the first two paragraphs are used 
throughout this paper, except in Section 3, where the mean may be non-positive. 
They are not repeated in the statements of lemmas and theorems. 

2. An identity 

Let f k denote the distribution function of Sk, the k-fold convolution of F with 
itself, for k>~ 1; and let Mk denote a regular conditional distribution for 
m i n { S , , . . . ,  Sk-,} given Sk for k ~> 2. In symbols, 

Fk(x)= P{S  

and 

Mk(x; y ) =  P { m i n [ S , , . . . ,  Sk_,] ~< risk = x} 
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for all x, y ~ R  and k ~  > 2. In addition, it is convenient to let M~(x; y ) = 0  for all x 
and y. The same symbol is used to denote a distribution function and the induced 
measure. 

If G is a monotone function, then G ( y - )  denotes the limit of  G ( x )  as x --> y from 
below. The symbol I b means I(,.b]; and I b_ = l[.,.b], etc. 

Lemma 1. With the notation o f  the previous two paragraphs, 

n - - I  

H,,(n, z ) =  ~, ha(n, k, z), 
k = !  

(1) 

where 

h a ( n , k , z ) =  • [ 1 - M k ( X ; y - ) ] F " - k ( d y + a - x ) F k ( d x )  

for  k =  1 , . . . ,  n - l ,  n >  1, z~R,  a > 0 .  

Proof. It suffices to consider fixed n, z, and a. Since the joint distributions of  
S ~ , . . . ,  S,  and S, - S , -k ,  k = 1 , . . . ,  n, are the same, 

Ho(n, z) = P{Sk > a, =lk < n, S. - a  <- z} 

= P{Sk < S . - a ,  : lk < n, S .  - a  <~ z} 

n - - I  

= Y. P{Sj>>-S.-a ,  V j < k ,  S k < S . - a < ~ z } .  
k = l  

Next, for fixed 2 < ~ k < ~ n - 1 ,  (a version of) the conditional distribution of  
m i n { S l , . . . ,  Sk-l} and S , - S k  given Sk = X is the product of  Mk_~(x ; ' )  and F "-k 
for a.e. x ~ R(Fk) .  So, 

P{ Sj >~ S.  - a, Vj < k, Sk < S.  - a <~ zlSk =x} 

- [ 1 - M k ( x ; y _ ) ] F , - k ( d y + a _ x )  

for a.e. x ~ z (F  k) and k = 2 , . . . ,  n - 1 by Fubini's Theorem applied to the conditional 
distributions; and the last relation is also tree if k = 1. The lemma then follows by 
integrating over x ~ z and summing over k = 1 , . . . ,  n -  1. El 

Many of the terms in (1) contribute negligibly. To see why, let 

qm = P{ISk -- k:*l> kl~/2, 3 k  >I m} 

and 

q ( z )  = " "  r~,z < = P{Sk <~ z, 3 k  >~ l} 

for m = 1, 2 , . . .  and z e R. Then, since F is assumed to have a finite third moment, 

r o 
Y. mqm < oo and j Iz lq(z)  d z  < oo. (2) 

m = l  - o o  
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See, for example, Baum and Katz (1965) and Chow and Teicher (1978, pp. 362 and 
368). Of course, (2) implies that qm + q ( -m)  = o(m-2), since both are non-increasing. 

Next, let 

where 

m 

l-Ia.m(n , 7,)= E ha.m(n, k, z), 
k=l 

h a ' m ( n ' k ' z ) = I ~ i ~ [ 1 - M k ( X ; Y - ) ] F n - k ( d y + a - x ) F k ( d x ) m  

for k= 1 , . . . ,  n - l ,  m, n ~  1, zeR ,  and a > 0 .  

Lemma 2. With the notation of the previous two paragraphs, 

IHa(n, z ) -  Ha.re(n, z)l~< qm + q ( - m )  (3) 

for - m  < z < ml~/2, n> m, and a > 0 .  

Proof. If z < m/z/2 and n > m, then the left side of (3) is at most 

n--! m 
~, ha(n~k,z)+ ~, [ha(n,k,z)-ha.m(n,k,z)]<~P{Sk<Z,=lk>~m } 

k = m  k = l  

+P{Sk <~-m, 3k>~l}<~qm+q(-m). [:] 

There is a useful alternative expression for Ha.m, which may be obtained by 
integration by parts. 

Lemma 3. For z > -m,  n > m, and a > 09 

m I_' Ix: Ha.m(n,z)= ~ [Fn-k(a+y--x)--F"-k(a) lMk(X; dy)Fk(dx) 
k=l m 

+ ~, [Fn-k(a+z--x)--F"-k(a)][1--Mk(X; z)lFk(dx). 
k=l m 

(4) 

Prooi. if M is a distribution function and G is non-decreasing and right continuous, 
then 

[ 1 - M ( y - ) ] G ( d y ) =  + M(dw)G(dy)  

- [ a ( w )  - C ( x ) ] M ( d w )  + [ 1 -  M ( z ) ] [ a ( z )  - a ( x ) !  

for all x < z, by Fubini's theorem. The !emma follows easily. D 
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3. A local expansion 

In this section only, the mean/~ may be non-positive. 
If  F has a finite pth moment, where p ~> 3, then F"  has an Edgeworth expansion; 

that is, uniformly in s ¢ !~, 

F"(s) = *p,-n +o [n  (5) 
orx/r/ J 

where 

p-2 
%..  = ¢ +  Y. n-J/'Q. 

j= l  

denotes the standard normal distribution function, and Q~, 0 2 , . . .  are linear 
combinations of the derivatives of d~ = ~' ,  whose coefficients are determined by the 
cumulants of F. See, for example, Feller (1966, pp. 509 and 515) or Gnedenko and 
Kolmogorov (1954, Sections 38 and 45). In particular, Q1 =-(p/6o'3)d/ '  and 02 = 
(K/24or4)~"+ (p2/720r6)~(iv), where p and K denote the third and fourth cumulants. 

Theorem 1. I f  F has a finite pth moment, where p >~ 3, then there is a 0 < 8 < 1 for 
which 

F " ( b + c ) - F " ( b - c ) = ~ r . [ b + c - n l z l  [ - c--n/~l  +o [n  8"} _£/_. b 
• " J 

( 6 )  

uniformly with respect to b ~ R and c > O. 

Proof. There is no loss of  generality in supposing that /~ = 0 and cr = 1. For fixed 
c > 0 and m > 1, let g = g ( . ;  m, c) be the symmetric function for which g(x) = 1 for 
0<~ x<~ c, g(x) = 1 -  r e ( x - c )  for c<x<~ c+ l /m,  and g(x) = 0  for x >  c+ l /m.  Then 
g dominates the indicator of the interval for - c  to c. So, 

F"(b+ c ) -  F"(b-c)<~ E{g(S , , -b)}  (7) 

for all b, c, m, and n. Let ~ denote the Fourier transform of g; that is ~ ( s ) =  
~aeiSXg(x)dx, s eR .  Then it is easily seen that ~,(O)=2c+l/m and ~ai~,(s)]ds~ 
(4mc+ 2)¢r. Now, 

E{g(S, , -b)}=~"~ ~(s) e-isb~,(S)" ds 

and 

g ( x - b )  P'"\,/n] =2-~ ~,(s) e-i~bop..(s,/n) ds, 
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where 0p.. denotes the Fourier transform of (the signed measure) ~p... Let e > 0 
be so small that [O(s)l<~exp(-s2/4) for all I~1~ ~. Then 

I f. ("x)l ' E{g(S,,-b)}- g(x-b)~p.,, ~ <~---~(I+J), (8) 

where 

i =  I~(s)ll,t,(s)" -,/,,,..(s,/,,)l ds 
f .  

and 

J =  2 f :  I~(s)l[Iq,(s)l" + Iq,,..(~-./,,)l] ds. 

In view of Cram6r's Condition, the form of the derivative of ~p,., and the bound 
on the integral of Ig[, it is easily seer. that there is a 0 < 8 < 1, for which 

J ~<483" f: Ii(s)l ds<~(8mc+4)cr6  3" (9) 

for all b, c, m, and n. Moreover, since [~(s)[<~ ~(0) = 2 c +  1/m, for all s ~ R ,  

 c+"mf'ni(s) i I ~  dn a-~,/. ~ ~ -~ . . ( s )  ds 

2e+ 1/no[e,r_2)/2], 
- x / n  (10) 

uniformly in b and c, where the final equality follows from standard arguments. 
(See, for example, Feller (t966, p. 507) or Gnedenko and Kolmogorov (1954, Section 
45).) Finally, it is easily seen that there is a C for which 

g ( x -- b ) (t) p,n ~ p, n ~ d ll I P'n ~'-~n l J <~ m ~/---"~ (11) 

for all b, c, m, and n. Letting m =  1/6 3"/2 and combining (7)-(11) shows that the 
left side of (6) is less than or equal to the right; and a similar lower bound, using 
g( . ;  c -  i/,w, m) in place of g ( . ;  c, m) may be obtained to complete the proof. I--] 

4. The mz~n theorem 

In the statement of the main theorem and its corollaries, let 

K,(z)= L q(y) dy= L P{t, < oo} dy, 

and 

K2(z) = (y-St,+lzty)dP dy, 
J -oo  r.~. < ~ }  
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The relation between K~, K2, and F is explored in Section 6. That K2 is finite is 
shown in the proof. 

Theorem 2. Consider values o f  n = n(a)  and z = z(a)  for  which 

a - n l ~  o(x/n) and z = o ( x / n ) .  
an := crx/n - 

Then 

, } 
H a ( n ' z ) - c r ~ / n  ck(an)Kl(z) n -'~ d ~ ' ( a ' ) K 2 ( z ) + l  

+o(~)[' +(z+)'], 
as a -> oo, where z + -- max{O, z}. 

(~2) 

(~3) 

It is easy to describe the proof of Theorem 2. For appropriately chosen m = re(a),  
the expansion (6) may be substituted for F "-k in (4), and :he resulting expression 

may be simplified. The details are presented in the next section. 
The following corollary provides an asymptotic expansion for the distributions 

of  t a and m a x { S , , . . . ,  Sn}. 

Coro l lary  1. Suppose that F has a finite fourth moment. I f  n = no--> oo as a--> oo in 

such a manner that an = o(~/n), then 

p{ tO<~n}=(1-<P) (a , , )+~n  c k ( a . ) K , ( O ) - Q , ( a . )  

+ -  ~ ' (an )K2(O)+-Q~(a , , )K , (O) -Q2(an)  +o(1 /n ) .  
n o- 

Proof .  Since Sn > a i m p l i e s  t ° <~ n, 

P{t  ° <~ n} = P{S .  > a}+ P{t ° < n, Sn <~ a} 

= ( 1 -  F n ) ( a ) +  Ho(n, 0) (14) 

.... . suc, sL, Lutmg the. expansions (5) and (13) for all n and a. The cornllarv follow.g by ~ "~'" " 

ir'~o (14). D 

The next corollary provides an alternative formulation of the main result. Let 

~l°(n, z) = P{t°>~ n, O < S o - a ~  z}, 

for all z > 0 ,  n~> 1, and a > 0  Alternatively, H ° ( n , z )  = P { t ° = n ,  S n - a ~ z } ,  since 

{t ° = n } :  { s .  > a } :  {t ° <~ n}. 
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Corollary 2. Under the conditions of  Theorem 2 with z > O, 

HO(n,z)=-~-~n dp(a,,)K'(z) n -'~ 4~'(a")K2(z) o" Q~(a,,)K z) 

where 

and 

K'(z) = K,(O)- K , ( z ) +  z 

K 2 ( z ) = K 2 ( O ) - K 2 ( z ) + z 2 / 2 ,  z>O. 

Proof.  Corollary 2 follows easily from Theorems 1 and 2 and the relations 

H ° ( n ,  z) = P{0  < Sn - a <~ z} - P{ t ° < n, 0 < S, - a <~ z} 

and 

P { t ~ < n , O < S n - a < . z } = H o ( n , z ) - H o ( n , O ) .  [-1 

Corollary 2 may be used to refine Lalley's (1984) estimates for the probability of 
ruin in finite time. To see how, let G denote a distribution function with a negative 
mean, a positive variance, and a moment generating function Which is finite on 
some neighborhood 12 of the origin. Suppose also that G satisfies Cram&'s  Condi- 
tion. Then G may be embedded in an exponential family; that is, G = Go, where 

Go, (dx)=exp[ tox-y ( to ) ]G(dx) ,  x e R ,  t o e n ,  (15) 

and exp[ y(to)] is the moment generating function of G at to. The mean and variance 
of G,, are then iz(to) = y'(to) and 0-2(to) = y"(to) for all to~O. 

Let X~, X 2 , . . .  denote the coordinate functions on R ~, and let P,o denote the 
(unique) probability measure which makes X~, X 2 , . . .  independent with common 
distributior~ ~unction Go, for each to e/2. If X~, X 2 , . . .  are regarded as the monthly 
losses of an insuranc~ compancy with initial capital a > 0, under Po, then 

p(a ,  N ) =  F'o{ t a ~< N }  

is the probability of ruin within N months. This is approximated below when N is 
of the form N = a / l z ( t o )  for some fixed to for which /z ( to )>  0 and y ( to )>0 .  

Corollary 3. With the assumptions of  the previous two paragraphs, let a -> oo through 
integer multiples of  i~ (to). Then 

N)= e ' %  (16) 
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where 

A = y ( , o )  > O, 

C =  
~ry"(~o - e -*(O,) o 

Kl(z; oJ) e -O,~ dz, 

and K l ( . ;  to) is as in Corollary 2 with F = Go, (and x/[x] denotes the square root 
of x). 

Proof. Since the proof is similar to Lalley's, which yields (16) with o ( 1 / N )  replaced 
by o(1/~/N),  it is sufficient to outline the argument. Writing F for Go, and P for 
Po,, it is easily seen that the conditions imposed in the Introduction are satisfied. 
(See Lemma 4 of Bahadur and Rao (1960) for Cram6r's Condition.) By tilting and 

integration by parts, 

p(a, N)  = q(a) e -N'~, 

where 

q ( a ) =  ~, oJexp[-coz+(n-N)y(~o)]H°(n,z)dz.  
n=! 

It is easily seen that only values of n and z for which 0<~ N - n < ~  N ~/s and 
0<~ z<~ N l/s need be considered. Then the expansion of Corollary 2 may be sub- 
stituted for Ha; and (16) results. The reason that the coefficient of  1 /N  vanishes 
is that aN = 0  and, therefore, dp'(aN)=O = Q~(aN). I-1 

5. Proof of Theorem 2 

There is no loss of generality in supposing that or = 1, since a may be replaced 
by a/cr; and it suffices to prove the theorem for fixed functions n = n(a) and z = z(a) 
which satisfy (12). Thus, n and z are functions of  a in the proof, and limits are 

taken as a-> co, unless otherwise specified. Observe that n/a--> 1/f  t, by (12). Let 

o o  

c~=k2[qk+q(-k)]+ ~ j[qj+q(-J)], k>~ l. 
j = k  

Then Ck ->0 as k->oo. So, there is an integer valued function m = m(a) for which 

m/~/n->O, !z!/m->O and ~/n.cm/m-->O 

as a --> oo. With this choice of m, the right side of (3) is of smaller order of magnitude 

than l / n ;  so, it suffices to prove the theorem with Ha replaced by Ha.re. 
The next step is to substitute (6) into (4). Here (6) must be applied with n replaced 

by n - k, where 1 ~< k ~< m, b - c = a and b + c = a + w, where 0 <~ w ~< z + m. Now 

a + w - ( n - k ) l ~  b(w) 

,,~(n-k) = a . +  /( r~- k) '  
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where 

b( w) =r,/n - , / (n - g)]a. +(w+ kg) 

for all w (and the dependence of b on n, k, and a has been suppressed in the 
notation). Observe that [b(w)[ <~ C(k + w) for some constant C for all 1 <~ k ~  < m and 
0<~ w<~2m, so that b(w)/~/(n-k)-~O uniformly in l<~k~<m and 0<~ w<~2m. So, 
by (6), Tayior's Theorem, and the uniform continuity of $", 

F"-k(a+w)--Fn-k(a)=tl~3,n-k a.+x/(n ) , -k  4~-k)J 

+o(~_ k)[W+ 8"] 
1 1 

=V'-"-n 4'(a")W+~n {dp'(a,,)w(w+ 2k/.~) + 2Q[(a,,)w} 

+ o( 1 / n )(k 2 + w2), (17) 

uniformly in 1 ~< k ~< m and 0 ~ w <~ 2m, since x/(n - k) <~ 2/n for k ~< m and large a. 
When combined with (4), (17) shows that 

1 1 1 
Ha, m(n, z)= ~'-nn ~b(a,,) suml +-n 4~'(a,,) sum2+-n Q~(a,,) suml 

+ o(1)(Ro.i+Ra.z), (18) 

where 

and 

2 sum2 = 

. fz 
suml = ~, (y - X)MR(X; dy)Fk(dx) 

k = l  m x 

+ ~ (Z--X)[1--Mk(X; z)]Fk(dx), 
k = l  m 

,n i, i-, ~. (y -x) (y-x+2klz )Mk(X;  dy)Fk(dx) 
k = l  m 

+~1 ( z -x ) ( z -x+2k l~ ) [ | -Mk(X;  z)]Fk(dx), 
m 

Ino.,l<~ y. k~[, - Mk(X; x)lFk(dx), 
k = i  m 

.fzf IRa.21<~ v;, (y_x)2Mk(X; dy)Fk(dx) 

m i * z  

+ E j (z--x)2[I--Mk(X; z)]Fk(dx). 
k = l  - m  
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The next step is to estimate the remainder terms. Towards this end~ let T =  
inf{k: Sk = infj Sj}. Then 

f z 

j [l-Mk(X;x)]Fk(dx)<,p(~-~._ ,,~¢ w ; <  t , l . s  .-, 
- - m  

<~CP{T=k} Vk>>-l, 

where C = 1 / P{ Sj I> 0, Vj .>I ! }. Now E ( T 2) < o0, since 

So, 

P{T>k}<~P{Sj<XI,3j>k}<~qk foral l  k>~l. 

IR ,,I ~< cE( T 2) < oO. (19) 

Next, a simple integration by parts, as in the proof of Lemma 3, shows that for 
-m<x<~z and k<~m, 

(Y-x)2Mk(x; dy)+(z-x)2[1-Mk(X; Z)]=2 (y-x)[1-Mk(X; y)]dy. 

So, 

mf_  
[Ro,2l <~ Y~ 2(y-x)[1-Mk(X;y)]dyFk(dx) 

k = l  m 

~ 2 (y - St,.) dP dy 
m ty <OD} 

f:m o ° <~2 P{Sk ~ y - x ,  3k > - 1} dx dy 

<~ 2 q(w) dw dy<~ C[1 +(z+) 2] (20) 
- O O  

for some constant C. 
it remains to simplify the two sums. For the first integration by parts (as above) 

shows that 

, ; 
- j i., - ~v :k~ ;  y)]F tu,~) dy = qm(Y) dy 

k = l  m - m  - m  

where 

m 

qm(Y) = ~ P{Sj> y, V j<k , -m<Sk  <~y} 
k = l  

=P{ty=~m, St,>-m}, y > - m .  
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Now, O~q(y)--qm(y)<~q(--m)+qm, as in the proof of Lemma 2. So, for all 
sufficiently large a, 

f 
Z 

j=., I . e J ~ l - - ~ m ~ . F j j  "~g,H,L~lk u , l + q m ] ~ w k z i  . . . .~  

and ~-m q(y)dy=o(I/x/n). So, 

sum, = I z q(y) d y + o ( 1 / 4 n ) =  K~(z)+o(1/4n). 
J-~o 

(21) 

The analysis of sum2 is similar to that of suml with one exception; it is not a priori 
clear that K2(z) is finite. That J~-~o {L,<oo(Y-St,)alP} dy is finite is shown in (20). 
For the term involving t r, let ~'k, k ~ 0, denote the (strict) descending ladder epochs; 
that is, ~o=0 and T k =inf{n: S. < S,k_,}<~ oo for k ~  > 1. Also, let J = m a x { k :  T k <00} .  

Then 

J_oo j ,.d,,] d,= . , ,  ty<OO J o<OO 1 

= fto<oo {k~=l (~'k--qrk--l)(S~'k-,--'~'j)} dP 

r dP<~4E 2 2 (7",)4E(S,,); 
J 

and the last two terms are finite by (2). That K2(z) is finite for all z follows easily; 
and then an argument which is similar to, but lengthier than (21), shows that 

sum2 = K2(z) + 0(1)[1 + (z+)2]. (22) 

The theorem follows from (18)-(22). D 

6. Remarks and examples 

The functions K1 and K2 may be related to F as follows. First write K2(z)= 
K2,1(Z)-- g2,2(g) ,  where 

and 

Let 

K2,~(z) = f ~ yq(y) dy 

K2"2(z) = I~o~ { ft, <oo ( St, - I~ty) dP} dY" 

M = rain{O, Sl ,  $ 2 , . . . } ,  
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so that q(y) = P{ ty < oo} = P{ M <<- y} for all y < 0. The characteristic function of M 
is known to be 

F~i ,M}=exp~ ~ 1 f fe i's~ - ! ]  dP'~ 
J 

for all r ~ R. See, for example, Feller (1966, p. 576). The functions K~ and K2,~ are 
simply related to q and, therefore, implicitly determined by the latter expression. 
In particular, 

and 

K~(O)=-E(M)= E ~ E{S-~} 
k = l  

-2K2.,(0) = E(M2) = Y ~  E{(S~)2}+ E(M) 2, 
k = i  

where s -  = max {0, - s }. 
t~ne function K2, 2 may be computed when F is embedded in an exponential 

family, as in (15). When I t (a t )>0 ,  in the notation of Corollary 3, K,, K2.~, and 
K2, 2 may be formed with F replaced by Go; these are denoted by K~(.; to), 
K2,1(" ; to), and K2,2(" ; to). 

Lemma 4. With the notation of the previous paragraph, 

K2,2(z, to) _-~¢3 KI(z, to) 
am 

for all z ~ R and all at ~ fJ for which It (at)> O. 

Proof. For y ~ R, 

f{ [s,,. -It(at)ty] dP~ = f [St,. -It(to)ty] exp[atS,,.- tyY(at)] dPo 
t:.<~} t,.<~} 

_ [" 
exp[atS,, - ty(at )] dPo J, OW t,.<~} 

0 
=Oat P~{t, <oo} 

for all to for which It (at) > 0. The lemma now follows by integrating over y <~ z. [:3 

Example 1. If  F is the normal distribution with mean It and variance tr 2 = 1, then 

oo 1 K,(O)= ~, ra.t.../L.~-(~./k)~(-Itx/k)], 

2K2.,(0, 0)=  Y~ [(1 +k~2)~(-It~/k)-(It~/k)dp(-It~/k)}+ K,(O) 2, 
k = l  
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and 

o o  

K2.2(0)= E ¢,(-a,/k). 
k= l  

Remarks. 1. The proofs of Lemmas 1 and 3 did not require any moment assumptions. 
2. If the fourth moment is finite, then o(1/n)  may be replaced by O(n -3/2) in 

Theorem 1, and o(1/n)[1 +(z+) e] by O(n-3/e)[1 + ( z +  )3] in Theorem 2. This is clear 
for Theorem 1. For Theorem 2, first observe that m and Izl may be replaced by m 2 
and z e in (2); and if CR is replaced by c[, where 

O{3 

c~3= ka[qk + q ( - k ) ] +  ~, j2[oo+q(-j)], 
j=k 

in the proof of Theorem 2, then the right side of (3) is o(n-3/z). Taking an additional 
term in the Taylor series expansion in (17) shows that o(1/n)(k2+w 2) may be 
replaced by O(n-3/2) (k3+w3);  and an examination of (18)-(22) then shows that 
the remainder is O(n-3/2)[ 1 + (z+)3]. 

3. There is some uniformity with respect to F implicit in the proof of Theorem 
2. For a fixed F, as described in the Introduction, let ~: be the class of distributions 
of a X  +/3, where X has distribution function F, and (a,/3) varies in a bounded set 
for which a/~ +/3 and act remain bounded away from 0. Then (6) holds uniformly 
in this class, since the dependence on a and/3 may be absorbed into the dependence 
on b and c; and it is easily seen that the series and integral in (2) converge uniformly 
with respect to a and/3. These are the basic ingredients in the proof of  Theorem 
2; and an examination of (18)-(22) shows that (13) holds uniformly in any such class. 

This remark may be useful in extensions of the main result to non-linear problems. 
4. The final example shows that (13) need not hold, if Cram&'s Condition is 

replaced by the condition that F be nonlattice. 

Example 2. Let Y,, Y2, . . .  and Z, ,  Z z , . . .  denote independent random variables 
which take the values ±1 with probability ½ each; and let XR = 1 + Yk +',/2ZR, 
k = 1, 2, . . . .  Ther~ F is non-lattice. In this case, F" has a discontinuity of size 

P{S . -  ~}-P{~,+.--+ Y.=O}P{Z,+.  . . +Z .=O} " -2 /~n  

at n for large, even n (~f. Gnedenko and Kolmogorov (1954, Section 45)). So, if 
a = n is a large, even integer, then 

H~(n, 0 ) -  H~(n, 0 - ) =  P{t ~ < n, S. = n} 

= P{Sk <0,  :lk < his, = n}P{S, = n}. 

Since S,, = n iff Y~ + .  • • + Y, = 0 and Z, + .  • • + Z, = 0, it is not difficult to see that 
the conditional probability converges to P{Sk <0,  3k  I> I}, as in Woodroofe (1982, 
Ch. 5). Thus, Ha(n,z) has a discontinuity of order 1/n, when a =  n is a large even 
integer; and, therefore, (13) cannot hold in this case. 
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