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Ala~tmet--In order to understand more fully some of the 
trade-ot~ involved in using a sampled-data representation of 
a continuous-time system, the effects of time-sampling on the 
ability to achieve disturbance decoupling and input-output 
decoupling for linear systems are investigated. It is shown 
that disturbance decouplability is lost through sampling 
whereas row-by-row dynamic input-output decouplability is 
preserved in a very strong way. These results are obtained by 
analyzing the structure at infinity of a sampled-data system. 

I. INTRODUCTION AND MOTIVATION 

EVEN WHEN one is controlling a continuous-time 
system, prevailing technology usually dictates 
that the compensator be implemented digitally, 
and hence operated in discrete-time. Such an 
implementation motivates working directly with 
a sampled-data model of the plant. This may be 
especially true if one is employing some sort of 
identification scheme in order to obtain a model. 

It is well known that if a finite-dimensional, 
cont inuous-t ime,  time-invariant, linear system is 

controllable (observable) then, except possibly 
for a "small" set of sampling times, its 
sampled-data versions will also be controllable 
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(observable) (Gibson and Ha, 1980; Chen, 
1984). This guarantees that if pole-placement, 
observer design, or optimal quadratic control are 
viable controller design methodologies for a 
continuous-time system, then they will also be 
applicable to a sampled-data representation of 
the plant. In other words, with respect to the 
above methodologies, no design possibilities are 
lost through sampling. 

However, if the applicability of a given design 
strategy depends upon something more than just 
controllability or observability, if it exploits 
some particular structural aspect of the system, 
for example, its inherent integration structure 
[i.e. the number of integrators (or delays) 
separating sensors from actuators], then a 
sampled-data model of a system may not be as 
suitable for design purposes as a continuous-time 
model. In particular, the conditions for ap- 
plicability of the method in question may not be 
satisfied, and hence one is better off basing the 
design upon a continuous-time model and then 
implementing it digitally via rapid sampling, 
using the generalized sampled-data hold tech- 
niques of Kabamba (1987), or seeking an 
approximate solution via the almost-invariant 
methods of Willems (1981). 

The above discussion is intended to motivate a 
more in-depth study of the effects of time- 
sampling on a linear system. This paper (see also 
Shor, 1987) will be concerned with the following 
questions. Suppose that for a given continuous- 
time linear system disturbance decoupling or 
noninteracting control is achievable, will it also 
be achievable for sampled-data versions of the 
system? If a continuous-time system is left- or 
right-invertible, will sampled-data repre- 
sentations of the system also be? Though not 
investigated here, one could also consider model 
matching (Moore and Silverman, 1972). 
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2. SOME SYNTHESIS PROBLEMS 

Consider a linear system 

Jc = Ax + Bu + Dw 
Z: (2.1) 

y = C x  

whose inputs have been separated into controls 
u ~ R" and disturbances w ~ R a, and with state 
x ~ R  n and output y ~ R  p. Suppose that the 
controls are applied in a piecewise constant 
fashion so that u is constant over the half-open 
intervals [kT, (k + 1)T), and moreover, suppose 
that it is reasonable to approximatet (or model) 
the disturbance w as also being piecewise 
constant. Then letting Xk, Uk, Wk and Yk denote 
x(kT),  u(kT), w(kT) and y(kT) ,  respectively, 
one obtains a sampled-data representation of Z 

Z,(T): Xk+l = A x k  "Jr- BU k "{- I~)W k (2.2) 
Yk = Cxk 

where ,4 = exp (AT),  b = f0rexp (Ar)B dr  and 
/5 = fo r exp (Ar)D dr. Note that C is unchanged. 
Sometimes, the notation ,4(T), /)(T), /5(T) will 
be used to emphasize their dependence on the 
sampling time. 

Several synthesis problems and their condi- 
tions for solvability are now summarized for 
continuous-time systems. The ease of discrete- 
time systems is exactly parallel. 

2.1. Disturbance decoupling 
A system is said to be disturbance decouplable 

(Wonham, 1979) if one can find a state variable 
feedback~t u = Fx + v (in continuous- or discrete- 
time) so that the resulting closed-loop system is 
disturbance decoupled; that is, the disturbances 
do not affect the output. Letting V* denote the 
maximal controlled-invariant subspace contained 
in ker C, it is known that Y can be disturbance 
decoupled if and only if Im D c V*. This will be 
exploited when the effects of time sampling on 
disturbance decouplability are considered. 

2.2. lnvertibility 
Throughout the rest of this section, it is 

assumed that the matrix D in (2.1) is identically 
zero; i.e. there are no external disturbances 
acting on the system. 

The linear system Z is said to be left 
(right)-invertible if its transfer function 

G(s) = C(sI - A ) - IB  

is left (right)-invertible over the field of rational 

t i n  particular, this is exact for biases and step 
disturbances. 

~: It can be shown that dynamic state variable feedback 
does not enlarge the class of disturbance deeouplable 
systems. 

functions in s (Silverman, 1969; Sain and 
Massey, 1969; Hautus and Silverman, 1983; 
Chen, 1984). In particular, if the rank of G(s) 
equals the number of inputs, the system is 
left-invertible, and if the rank of G(s) equals the 
number of outputs, the system is right-invertible. 
Roughly speaking, left-invertibility concerns the 
ability to recover the input from the output and 
its derivatives, and right-invertibility concerns 
the ability to produce (or track) a very rich set of 
output functions via appropriately applied 
controls. Right-invertibility is known to play an 
important role in the input-output decoupling 
problem (Morse and Wonham, 1971). 

2.3. Input-output&coupling 
Suppose that the output of the linear system 

(2.1) has been partitioned into blocks; that is, 
y , = ( y V , . . . , y ~ , )  (, denotes transpose) and 
each yi is (possibly) a vector of outputs. One 
then says that (2.1) is regularly statically 
input-output decouplable (Wonham, 1979; 
Morse and Wonham, 1971) if there exists a 
regular§ static state-variable feedback u = Fx + 
Gv and a block partitioning of the new inputs 
v' = (v  1', . . . .  v v') with respect to which the 
resulting closed-loop system is input-output 
decoupled; that is, v ~ does not affect yJ for j ~: i. 
When each y~ is a scalar, this is referred to as 
row-by-row decoupling as opposed to block 
decoupling when at least o n e  y i  has dimension 
greater than one. 

In contrast to disturbance decoupling, quite a 
bit can be gained by allowing dynamic 
compensation in order to achieve input-output 
decoupling (Morse and Wonham, 1971; Won- 
ham, 1979, Chapter 9). A system is said to be 
dynamically input-output decouplable if it can be 
decoupled with regular dynamic state-variable 
feedback, that is, a feedback of the form 

u = Fix + F2z + Glv 

~ = H l z + H 2 x + G z v .  

where the transfer function from v to u is 
right-invertible. When z is zero-dimensional this 
reduces to regular static state-variable feedback. 

2.4. Zeros at infinity 
The properties of left- or right-invertibility and 

static or dynamic input-output decouplability 
can be characterized in terms of the system's 
so-called structure at infinity (Commault and 
Dion, 1982; Rosenbrock, 1970; Morse, 1976; 
Verghese, 1978; Pugh and Ratcliff, 1979; 
Silverman and Kitapci, 1983). 

§Regular means that [G[#:0. This is to avoid certain 
difficulties; see Descusse et al. (1985). 
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The currently accepted definition proceeds as 
follows. A matrix of transfer functions M(s) is 
said to be bicausal if M(s) is proper and M-t(s) 
exists and is proper. Then, given any transfer 
matrix G(s), there exist bicausal matrices M(s) 
and N(s), and unique integers {m~ . . . . .  ink} 
such that 

G(s) = M(s) diag (sl_~, __1 ) . . . . .  sm k, 0 . . . . .  0 N(s ) .  

One says that G(s) has k zeros at infinity of 
orders { m r , . . . ,  mk}. It is often convenient to 
define p~': = cardinality {m~lm~/>/~}, the num- 
ber of zeros at infinity of order greater than or 
equal to/z. Note that pi ,  the number of zeros at 
infinity, is equal to the rank of G(s) over the 
field of rational functions of s, R(s). 

Some recent work by Malabre (1982) and 
Nijmeijer and Schumacher (1985) shows how to 
calculate the structure at infinity of a linear 

system Z: ~ = Ax + Bu 

y = C x  

from the V*-algorithm (Wonham, 1979). One 
first defines 

V ° -- R" (2.3) 
V ~'+t = ker C n A-L(V u +Im B) # ~> 0. 

It can easily be shown that this algorithm 
converges in at most n steps to V*, the maximal 
controlled-invariant subspace contained in the 
kernel of C. One can calculate the list of integers 
{P~'}~,=I by 

pU = dim (Ira B rl W '-~) - dim (Ira B O V*). 
(2.4) 

The same procedure can be applied to the 
"subsystem" 

Z~: :i = Ax + Bu 
y ' =  Cex 

to obtain, for each i, the corresponding list 
n {P~}~,=l. Finally, applying the above to the 

sampled system Zs(T), and to the sampled 
"subsystems", 57~(T), one obtains the lists 
{p (T))~,=I and {p,(T)},=~, i=1, ., v. 

The importance of these integers is given in 
the following Lemma. 

Lemma 2.1. 
(a) 57 is left-invertible if, and only if, p l = m, the 

number of inputs (Silverman, 1969; Mal- 
abre, 1982). 

(b) Z is right-invertible if, and only if, p X =p, 
the number of scalar output components 
(Silverman, 1969; Malabre, 1982). 

(c) 57 is regularly statistical input-output  

decouplablet if, and only if (Descusse et al., 
1983), 

v 

~ p ~ = p U  / z = l  . . . .  ,n .  
d = L  

(d) 57 is dynamically input-output  decouplable 
if, and only if (Descusse, 1987; see also 
Appendix B), 

~ p~=pl. 
i ~ l  

The same results hold for discrete-time 
systems. Hence, to understand how the inver- 
tibility and input-output  decouplability prop- 
erties of a system are affected by time sampling, 
it suffices to analyze the effects of sampling on 
the system's structure at infinity. In Astr6m et al. 
(1984) the effects of sampling on the finite zeros 
of a single-input single-output system are 
investigated. 

3. SAMPLING, INFINITE ZEROS, AND SYNTHESIS 
PROBLEMS 

Recall, from the previous section, that the 
conditions for left- and right-invertibility and 
dynamic input-output  decouplability depend 
only on the number of zeros at infinity of the 
system and associated subsystems, whereas the 
condition for static input-output  decouplability 
also depends on the orders of the zeros at 
infinity. 

3.1. Number of infinite zeros, invertibility and 
dynamic I - 0  decoupling 

The effect of time sampling on the number of 
zeros at infinity of a continuous-time linear 
system is as follows~t. 

Theorem 3.1. Suppose that the continuous-time 
system 5" has p l= min (m, p} zeros at infinity. 
Then, for all T in the complement of a discrete 
set with no accumulation points, the associated 
sampled system 57s(T) also has # t ( T ) =  
rain (m, p} zeros at infinity [i.e. for any bounded 
subset of the reals, the subset of sampling times 
for which #I(T) < p l  is finite]. 

Remark 3.2. As noted by one of the reviewers, 
the above may even hold for all T #: 0. 

The consequence of this for preservation of 
left- and right-invertibility under sampling is 
Corollary 3.3. 

Corollary 3.3. Suppose that the continuous-time 
system 57 is left (right)-invertible. Then the 

# It is emphasized that decoupling with internal stability 
requires additional considerations. 

$ Proofs of the theorems are given in subsequent sections. 
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sampled-data system Y.,(T) is left (right)- 
invertible for all sampling times T in the 
complement of a discrete set with no accumula- 
tion points. 

Hence, invertibility of a linear system is 
essentially preserved under the operation of 
time-sampling. Therefore, any design scheme 
depending on the invertibility properties of the 
system (for example, tracking-type problems) 
would be just as applicable to the sampled 
system (2.2) as it would have been to the original 
continuous-time system (2.1). In this respect, 
one has not lost anything by passing directly to a 
sampled-data representation of the system. 

The consequence of Theorem 3.1 for the 
preservation of row-by-row dynamic input-  
output decouplability is Corollary 3.4. 

Corollary 3.4. Suppose that X can be row-by- 
row decoupled with dynamic feedback. Then 
Xs(T) can also be row-by-row decoupled with 
dynamic feedback for all T in the complement of 
a discrete set without accumulation points. 

Hence, with regards to dynamic row-by.row 
decoupling, no design possibilities are lost 
through the introduction of time-sampling. 

Note that a key assumption in Theorem 3.1 is 
that the underlying continuous-time system has 
the maximum possible number of zeros at 
infinity. If the continuous-time system has fewer 
zeros at infinity, then sampling may indeed 
increase the number of zeros at infinity. 
Consequently, a system may become invertible 
through the introduction of sampling, and 
dynamic block input-output  decouplability may 
be destroyed. 

To see this, consider a system with transfer 
function 

s 1 s 2 , 
G (s )=  

l s zb s z SJ 
which clearly has rank one over the field of 
rational functions in s, hence, one zero at 
infinity. One calculates the sampled system 
Gr(z) to be 

1 - e - r  1 1 - e -2r 
O P ( Z ) = z _ e _  r G~?(z)=~z_e -2r 

a~.~= 1 i [(1-e-r)2 
z - L z - e  ---~ ~ (7" + e - r  -:1)] 

I [l(l-e-Zr)2 
GW(z)--72i- I L~ z ~ e  - - ~  

(~ l e - 2 r - l )  ] + r + ~  

which, for all T ~ 0, has two zeros at infinity and 
is invertible over the field of rational functions 

i n  z .  

From this observation, it is easy to exhibit 
continuous-time systems that are dynamically 
block input-output  decouplable, but for which 
this property is destroyed by time sampling. 
Simply consider 

1 1 
s + l  s + 2  

1 1 
G(s)= s(s + l) s(s + 2) (3.1) 

1 1 
s + 3  s + 4  

and let the output blocks be given by the first 
two rows, and the last row, of G(s), 
respectively. Then one calculates that 

pX=2,  P I = I ,  P I = I ,  

establishing the dynamic block input-output 
decouplability of (3.1), whereas (for T 4:0) 

p ' ( T )  = 2, p I ( T )  = 2, p~,(r) = 1, 

showing that Gr(z) cannot be dynamically 
input-output decoupled. 

3.2. Orders of infinite zeros and static I - 0  
decoupling 

Attention is now turned to static row-by-row 
decoupling, that is, to row-by-row input-output  
decoupling with static state variable feedback. 
According to Lemma 2.1, one must study how 
the orders of the zeros at infinity are affected by 
sampling; in the case of dynamic decoupling, it 
was sufficient to understand how their number 
was affected. 

When Y. is a (strictly proper) SISO system and 
its transfer function is nonzero, it is well-known 
that Xs(T) will have one zero at infinity of order 
1, for "almost all" sampling times T, irrespective 
of the relative degree of X. Indeed, the rank of 
c(T)b(T), the first Markov parameter, will be 
one for "almost all" T. 

A natural MIMO conjecture would be: 
suppose that X has pl=min{m,p}  zeros at 
infinity, then £s(T) also has pl  zeros at infinity, 
all of order 1, for "almost all" sampling times T. 
The following example shows that this need not 
be the case. Consider the linear system 

[i00 07 xl [i °1 o 3 0 l l x q +  o ruq 
= o o I / V  q  jLu J 

.e,, 0 0 OJLx, J  [xq 
/ ! 
LX4d 
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One calculates that it has two zeros at infinity, of 
orders 1 and 3. However, a straightforward 
computation gives that the sampled system has, 
for all T > 0, two zeros at infinity, one of order 1 
and one of order 2. 

Nevertheless, upon checking other examples, 
one gets the feeling that the conjecture is almost 
true. This is now made precise. Let S(n, m, p) 
be the set of all linear systems with an 
n-dimensional state, m inputs, p outputs, and 
pl  = rain {m, p} zeros at infinity. S(n, m, p) can 
be viewed as a subset of R"×"x  R ' × "  x Rpx"; 
equip it with the induced Euclidean topology. 
[Since two systems differing only by a nonsingu- 
lar state coordinate transformation are usually 
considered equivalent, one may wish to form the 
quotient of S(n, m, p)  with Gl(n), the general 
linear group, endowing S(n, m,p)/Gl(n) with 
the quotient topology. However, as the prop- 
erties to be considered are invariant under 
Gl(n), the topological statements which follow 
about S ( n , m , p )  are equally valid for 
S(n, m, p)/Gl(n).] A subset S of S is said to be 
closed under feedback if (A, B, C ) e  S implies 
that (A + BF, B, C) ~ S for all n x m matrices F. 

Interesting examples of sets that are closed 
under feedback include: (a) the set of all systems 
with a given structure at infinity {P~}~=I; (b) the 
set of all systems with a given set of 
controllability indices; (c) the set of all systems 
feedback equivalent to a given system; and (d) 
unions and intersections of the above sets. 

Theorem 3.5~ Every set SoS(n,  m,p) that is 
dosed under feedback contains a relatively open 
and dense subsett S'  to which is associated an 
integer pl ,  such that Y. E S' implies that Y.s(T) 
has p l  zeros at infinity, all of order 1, for all T in 
the complement of a discrete set with no 
accumulation points. 

Roughly speaking, Theorem 3.5 asserts that 
even if the continuous-time system has a "rich" 
structure at infinity, "almost always" its sampled 
versions will have a trivial structure at infinity; 
namely, all the zeros at infinity will be of order 
one. The consequences of this are Corollary 3.6. 

Corollary 3.6. Every S,"S(n,m,p)  that is 
closed under feedback contains a relatively open 
and dense subset S' on which the following 
statements are equivalent. 
(a) ~: is dynamically row-by-row decouplable.¢ 
(b) ~,s(T) is dynamically row-by-row decoupl- 

(e) 

able for all T in the complement of a 
discrete set without accumulation points [i.e. 
for any bounded subset of the reals, the 
subset of times at which Zs(T) is not 
dynamically input-output  decouplable is 
either empty or finite]. 
Es(T) is regularly statically row-by-row 
decouplable for all T in the complement of a 
discrete set without accumulation points. 

In other words, within the class of systems for 
which input-output  decouplability of any form is 
preserved, those sampled-data systems which 
really require dynamic compensation in order to 
achieve decoupling are quite exceptional. In 
particular, one can take S to be the set of all 
continuous-time systems in S(n, m, p) that can 
be dynamically input-output  decoupled but for 
which there does not exist any regular static 
feedback achieving decoupling. The theorem 
then asserts that, with the exception of a 
relatively closed and nowhere dense subset of S, 
the sampled-data representations of such systems 
will be input-output  decouplable with regular 
static feedback. 

3.3. Disturbance decoupling 
Attention is now turned to the effects of 

sampling on the disturbance decouplability of a 
system. 

Theorem 3.7. There exists an open interval of 
sampling times T for which the sampled-data 
system Es(T) is disturbance decouplable if, and 
only if, the underlying continuous-time system is 
already disturbance decoupled. 

In other words, disturbance decouplability is 
destroyed by time-sampling, and therefore, if 
one wishes to design such a controller, it is 
imperative to work with a continuous-time 
representation of the system. It is perhaps 
interesting to note that if one obtains an 
approximate time-discretized system by applying 
an Euler integration scheme§ to (2.1), viz. 

"'~k+I='~k + TAXk + TSUk + TDWk (3.2) 
E(T). :k = C.~k 

then ~e(T)  is disturbance decouplable if, and 
only if, Z is. As (3.2) can also be viewed as the 
first terms of a Taylor expansion (in T) of (2.2), 
this shows that the obstruction to disturbance 
decouplability is second-order, or higher, in the 
sampling interval T. On the other hand, it is also 

t A stronger statement can be made by using the notion of 
algebraic sets. 

~: Here, static decoupling can be viewed as a special case of 
dynamic decuupling---the compensator having zero dynamic 
order. 

§ (a) One should note that applying an Euler scheme to a 
linear system is a coordinate-free notion in contradistinction 
to the case of general nonlinear systems. (b) Such first order 
discretization schemes are only accurate for relatively small 
sampfing intervals. 
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clear that F,e(T) is controllable (observable) if, 
and only if, Y~ is, and thus loss of controllability 
(observability) is also a second-order, or higher, 
effect in the sampling interval. 

Finally, instead of a piecewise constant 
approximation to w, suppose that one chooses to 
do a (continuous) piecewise linear approxima- 
tion. This is equivalent to defining w = or, where 
cr is piecewise constant. Since augmenting (2.1) 
with ~i,--cr still results in a system of the form 
(2.1), Theorem 3.7 remains applicable and 
therefore the resulting sampled-data system will 
also not be disturbance decouplable for most 
sampling times T. 

4. PROOFS OF THE MAIN RESULTS 

In this section, proofs of the results announced 
in the previous section are provided. 

ately, one has 

pt(T)=rank C [ z l - I  (A(T)-I)]-~TB(T) 

= rank C[(Tz + 1)1 -A(T)I-'B(T) 
= (all T ~ O) rank C[zI - A(T)]-~B(T) 
=p,(T) 

where the above ranks are with respect to the 
field of rational functions in z. [] 

From the above lemma, one deduces that it is 
sufficient to show that pl(T)>.pl for all T in the 
complement of a discrete set with no accumula- 
tion points. First, it will be shown that, for 
k >-- 1, /~k(T) t> Rk for "most" T. This will be 
done with the following lemma, which is itself a 
simple consequence of real analyticity.t 

4.1. Proof of Theorem 3.1. 
Theorem 3.1 will be established by showing 

that p~(T) >~p~ for "almost all" T ~ R. Asso- 
ciated with the linear system (2.1), define a 
sequence of matrices by 

I CB 0 . . .  0 
CAB CB • • • 0 

CAk-IB CAe-2B . . .  CB 

(4.1) 

and define R k : = rank Je. Then it is known (Sain 
and Massey 1969; Nijmeijer and Schumacher, 
1985) that Re is related to the system's structure 
at infinity per 

R e  = k p  1 - k p  2 . . . . .  pe+l  

where, once again, p~' is the number of zeros at 
infinity of order greater than or equal to /~. In 
particular, 

pl = Rn - Rn-1 

since p~' = 0 for g>~n + 1. 

Lemma 4.1. Consider the discrete-time system 

~(T): 

1 

x,+, = T (.4(T) 

Yk = CXk . 

- 1)Xk + 1B(T) 

Let/~(T) be the number of zeros at infinity of 
~(T). Then, for all T~0 , /~ I (T )  =pl(T) .  

Proof. Defining/~e~T) in the obvious way, one 
easily shows that Rk(T)=Rk(T) for all T ~ 0  
and k ~> 1, which establishes the result. Altern- 

Lemma 4.2 (Rank Lemma). Let M(T) be a 
matrix, each of whose entries is a real analytic 
function of T. Then for all T in the complement 
of a discrete set with no accumulation points, 

rank M(T) >I rank M(0). 

For definiteness, let Jk(T) be the matrix J 
(4.1) with (A, B, C) replaced by 

and define/~k(T) : = rankle(T). Then, since 

1 
p [A(T) - 11 - r ~  ,4 

1 -  
-~B(T) ~ B, 

it follows that Jk(T) ~ J. Defining Je(0) := J 
results in J,(T) being an analytic function of T. 
Hence, by the Rank Lemma, 1~k(T)~e(0)= 
Rk, for all T in the complement of a discrete set 
with no accumulation points. [] 

To complete the proof of Theorem 3.1, recall 
that/~"(T) =p~' = 0, g I> n + 1. Hence, 

pX= lim 1 

and similarly for/~I(T). Therefore, Rk(T)>~ RI 
implies that  / ~ l ( T ) ~ p X ,  which, in conjunction 
with Lemma 4.1, yields the desired result. 

4.2. Proof of Theorem 3.5 
From (2.3) and (2.4), one deduces that, for T 

fixed, Y~s(T) has pl=min{m,p} zeros at 

t Recall that the zeros of a nontrivial analytic function are 
isolated. 



Sampling and infinite zeros 393 

infinity, all of order 1, if and only if 

f: rank C exp (A ~)B d~ -- p 1. (4.2) 

Lemma 4.3. Given any continuous-time linear 
system ~: having pl  = min{m, p} zeros at infinity, 
there exists a (feedback) matrix F such that 

rank C exp [(A + BF)~I B d~ = pZ (4.3) 

for all T ¢ 0. 
Delaying the proof of the lemma for a 

moment, it is shown how this establishes 
Theorem 3.5. Define 

S ' - -  Y- ~S I rank C e x p ( A r ) = p  1 

an open set of T}. for 

S' is easily shown to be a relatively open subset 
of S. Even more, it is dense because (4.3) and 
real analyticity imply that there exists 6 * > 0  
such that 

f0 T rank C exp [(A + 6BF)r]B dz = p l 

for all 6 e (0, 6*] and an open set of T. That is, 
one can always perturb A by an arbitrarily small 
amount, within S, and achieve (4.2). 

Proof o f  Lemma 4.3. It suffices to show that 
there exist nonsingular matrices P and G, and a 
matrix F such that 

fo r PC exp [(A + BF)r]BG dr  (4.4) 

has the required rank properties. This will be 
accomplished by an algorithm which is in some 
sense dual to Silverman's Structure algorithm 
(Silverman, 1969, 1970; Silverman and Payne, 
1971; Kitapci and Silverman, 1984); it will be 
dual in the sense that the transformations are 
performed on the inputs instead of the outputs. 

Proposition 4.4 (dual structure algorithm). Let 
Y,(A, B, C) be an n-dimensional right-invertible 
linear system with structure at infinity {P~}7,-1. 
Let r~ be the number of zeros at infinity of order 
i; that is, ri =pi  _p~+l for i = 1 . . . . .  n -  1 and 
rn=pn. Let i l < i 2 < ' " < i k  be such that 
(r~, . . . . .  r~} is the list of nonzero r~s 
({iz . . . . .  ik} are the orders of the system's zeros 
at infinity). Then there exists a regular static 
feedback u = Fx + Go such that, after a possible 

re-ordering of the outputs, 

di,yl 
dti( = vz 

• i2.:_i~ -.. 1 .-- dSvl 
d'2y2 = v2 + ~.~ C2 A"2- -"B1 ~ (4.5) 
dt i~ /=0 

• k - 1  ik - ia :  . . . . . . .  dSv,~ dlky k 
dtik = Vk + ~'~ E CkA"~-'-"B~ 

~=1 j=0 

where A = A + BF, B = BG, [~ll...IBk]=B 
and y' = [ y [ , . . . ,  y~,]. 

The proof of this proposition is given in 
Appendix A. 

Without loss of generality, it is supposed that 
the linear system Y- of Lemma 4.3 is right- 
invertible; for if it is not, one can always delete 
components of the output until the system is 
right-invertible and still has p Z zeros at infinity. 
Now let F and G be as in Proposition 4.4 and let 
P be a permutation matrix on the outputs so that 
(4.5) holds. Then (4.5) yields that (4.4) is a 
lower triangular matrix with diagonal 

Ti' I Tik Ik 
l il--(. 1 , . . . ,  ik--~. ' 

where/s is the r~/identity matrix. This establishes 
that it is nonsingular for all T ~ 0. [] 

4.3. Proof of  Corollary 3.6 
Since each output component yi is a scalar, 

p~ ~ {0, 1}. If p~ =0,  then p~(T) = 0  for all T 
since y" is then unaffected by the inputs. If 
p~= 1, then, by Theorem 3.1, p~(T)=  1 for 
"almost all" T. Hence, for "almost all" T, 
P P 
E p~ = E p~(T). Let S' be the open and dense 

i a l  i = l  

subset of S where, for "almost all" T,/~Z(T) =pX 
and ff~'(T)=0, /z>~2. Then on S', Lemma 2.1 
yields that dynamic and static input-output 
decouplability are equivalent. 

4.4. Proof of  Theorem 3.7 
Suppose that Xs(T) is disturbance decouplable 

for some open interval of sampling times T. 
Then it follows (Wonham, 1979) that 

C exp (Ar)D dr  (4.6) 

equals zero for all T in the same interval. Since 
(4.6) is an analytic function of T, it must 
therefore be true that (4.6) is identically zero. 
But this is equivalent to (4.6), and all of its 
derivatives, vanishing at T = 0. This yields 

I m D  + A  I m D  + .  • • + A  n-~ I m D  = k e r C ,  

which shows that Y- is already disturbance 
decoupled (Wonham, 1979). 
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Since the other direction is trivial, the proof is 
complete. [] 

5. CONCLUSIONS AND COMMENTS 
In an effort to understand some of the 

trade-offs involved in using a sampled-data 
representation of a continuous-time system for 
control purposes, this paper has investigated 
whether or not time-sampling introduces in- 
herent obstructions to the solvability of various 
linear synthesis problems. This was done by 
analyzing the effects of time-sampling on a 
system's structure at infinity, that is, its inherent 
integration structure. 

First, it was shown that (except possibly for a 
small set of sampling times) a sampled-data 
representation of a continuous-time system has 
at least as many zeros at infinity as the 
underlying continuous-time system (i.e. the rank 
of its transfer function will be as least as large). 
Hence, left (right)-invertibility or row-by-row 
dynamic decouplability of a continuous-time 
system implies that of its sampled-data repre- 
sentations. Through an example, it was shown 
that time-sampling can increase the number of 
zeros at infinity, resulting in an invertible 
(decouplable) sampled-data representation of a 
noninvertible (nondecouplable) continuous-time 
system. 

Next, the effect of time-sampling on the orders 
of a system's zeros at infinity was investigated. 
For a strictly proper single-input single-output 
system it is well known that, irrespective of the 
system's relative degree and for almost all 
sampling times, its sampled-data representations 
have one zero at infinity of order 1. In other 
words, even though the continuous-time system 
may have its input separated from its output by a 
chain of integrators, time-sampling introduces 
additional finite zeros so that the input of the 
sampled-data system appears at the output after 
only one delay. 

The case of multivariable systems was showed 
to be "richer" by exemplifying a 2-input 
2-output continuous-time system, having two 
zeros at infinity of orders 1 and 3, for which its 
sampled-data representations had two zeros at 
infinity of orders 1 and 2 for all positive sampling 
times. That is, for multivariable systems, it is not 
necessarily true that time-sampling always leads 
to a trivial structure at infinity (i.e. all zeros at 
infinity are of order 1). However, further 
analysis showed this example to be "excep- 
tional". "Most" (see Section 3.2 for a more 
precise statement) multivariable sampled-data 
systems do have a trivial structure at infinity. 
Consequently, most row-by-row decouplable 
(dynamically or statically) continuous-time sys- 

terns become, upon the introduction of sam- 
piing, decouplable with static feedback. While 
this may seem to be a very positive feature of 
sampling, one must note that as the sampling 
interval becomes small, the static decoupling- 
feedback, in some sense, wants to "explode" 
into a dynamic compensator. This phenomenon 
deserves further investigation. 

Lastly, it was shown that disturbance de- 
couplability is destroyed by time-sampling in the 
sense that disturbance decouplability of the 
sampled-data representations, for an open set of 
sampling times, is equivalent to the continuous- 
time system being already disturbance 
decoupled. 

Throughout the paper, the term "generic" 
(Wonham, 1979) has been carefully avoided, 
since, as remarked by one of the reviewers, 
" . . .  [genericity] is a rather dangerous concept 
to use. Sets that may look "thin" from a 
particular mathematical perspective may not be 
so thin for certain applications, and if a given 
system is sufficiently "near" an exception[al] 
set, then the non-generic situation may be more 
typical for the system's behavior than the generic 
situation". With this in mind, the results 
concerning a system's structure at infinity may be 
summarized as saying that a sampled-data 
representation of a system tends to be more 
"generic" than the original system. For example, 
consider the set of 2-input 2-output continuous- 
time systems having an n-dimensional state. The 
property of having a zero at infinity or order 
greater than o r  equal to 2 is certainly physically 
ubiquitous, but it is non-generic. Nevertheless, 
after the introduction of time-sampling, a 
relatively open and dense subset of these systems 
will behave generically and have only zeros at 
infinity of order 1. In other words, even though 
the interconnection structure of a particular 
physical system may give it a rich (non-generic) 
structure at infinity, time-sampling will tend to 
wash this out, resulting in a system with a trivial 
(generic) structure at infinity. 

Acknowledgement--This paper has benefited greatly from 
the reviewers' critiques. 

REFERENCES 
,~tr6m, K. J., P. Hagander and J. Sternby (1984). Zeros of 

sampled systems. Automatica, 20, 31-38. 
Chen, C. T. (1984). Linear System Theory and Design. Holt, 

Rinehart and Winston, New York. 
Commault, C. and J. M. Dion (1982). Structure at infinity of 

linear multivariable system: a geometric approach. IEEE 
Trans. Aut. Control., AC-27, 693-696. 

Descuss¢, J. (1987). A new approach for solving linear 
decoupling problems. Proc. lOth IFAC World Congress, 
Munich, July. 

Descusse, J., J. F. Lafay and M. Malabre (1983). On the 
structure at infinity of linear block-decouplable systems: 



Sampling and infinite zeros 395 

the general case. IEEE Trans. Aut. Control., AC-25, 
1115-1118. 

Descusse, J., J. F. D. Lafay and M. Malabre (1985). 
Solution of the static-state feedback decoupling problem 
for linear systems with two outputs. IEEE Trans. Aut. 
Control, AC-30, 914-918. 

Flier, s, M. (1985). A new approach to the noninteracting 
control problem in nonlinear systems theory. Proc. 23rd 
AUerton Conf. on Communication, Control and 
Computing, Monticello, IL, October 1985, 123-129. 

Fliess, M. (1986). Some remarks on nonlinear invertibility 
and dynamic state-feedback. MTNS-85, Stockholm, June 
1985. In Byrnes, C. and A. Lindqulst (Eds). Elsevier, 
Amsterdam. 

Gibson, J. A. and T. T. Ha (1980). Further to the 
preservation of controllability under sampling. Int. J. 
Control., 31, 1013-1026. 

Grizzle, J., M. di Benedetto and C. H. Moog (1987). 
Computing the differential output rank of a nonlinear 
system. 26th IEEE Conf. on Decision and Controi, Los 
Angeles. 

Hautus, M. L. J. and L. M. Silverman (1983). System 
structure and singular control. Linear Algebra Applic., 50, 
369-402. 

Kabamba, P. T. (1987). Control of linear systems using 
generalized sampled-data hold functions. IEEE Trans. 
Aut. Control., AC-32, 772-783. 

Kitapoi, A. and L. M. Silverman (1984). Determination of 
Morse's canonical form using the structure algorithm. 
Proc. 23rd IEEE Conf. on Decision and Control, Las 
Vegas, December 1984. 

Malabre, M. (1982). Structure a l'infini des triplets 
invariants. Application a la poursuite parfaite de modele. 
Lecture Notes in Control and Information Sciences; 44, pp. 
43-53. Springer, New York. 

Moore, B. C. and L. M. Silverman (1972). Model matching 
by state feedback and dynamic compensation. 1EEE 
Trans. Aut. Control., AC-17, 491-497. 

Morse, A. S. (1976). System invariants under feedback and 
cascade control. Lecture Notes in Economics and 
Mathematical Systems, 131, pp. 61-74. Springer, New 
York. 

Morse, A. S. and W. M. Wonham (1971). Status of 
noninteracting control. IEEE Trans. Aut. Control., 
AC-16, 568-581. 

Nijmeijer, H. and J. Schumacher (1985). On the inherent 
integration structure of nonlinear systems. IMA J. Math. 
Control. Inf., 2, 87-107. 

Pugh, A. C. and P. A. Ratcliff (1979). On the zeros and 
poles of a rational matrix. Int. J. Control, 30, 213-226. 

Rosenbrock, H. H. (1970). State Space and Multivariable 
Theory. Nelson, London. 

Sain, M. K. and J. L. Massey (1969). Invertibility of linear 
time-invariant dynamical systems. IEEE Trans. Aut. 
Control., AC-14, 141-149. 

Shor, M. H. (1987). Some effects of sampling on geometric 
properties of linear systems. Masters thesis, Department of 
Electrical and Computer Engineering, University of 
Illinois at Urbana-Champaign, U.S.A. 

Silverman, L. M. (1969). Inversion of multivariable linear 
systems. IEEE Trans. Aut. Control., AC-14, 270-276. 

Silverman, L. M. (1970). Decoupling with state feedback and 
precompensation. IEEE Trans. Aut. Control., AC-15, 
487-489. 

Silverman, L. M. and A. Kitapci (1983). System structure at 
infinity. Syst. Control. Lett., 3, 123-131. 

Silverman, L. M. and H. J. Payne (1971). Input-output 
structure of linear systems with application to the 
decoupling problem. SIAM J. Control., 9, 199-233. 

Verghese, G. (1978). Infinite frequency behaviour in 
generalized dynamical systems. Ph.D. dissertation, 
Department of Elec. Eng., Stanford University, U.S.A. 

WiUems, J. C. (1981). Almost invariant subspaces: an 
approach to high gain feedback desigu--Part I: Almost 
controlled invariant subspaces. IEEE Trans. on Aut. 
Control., AC-26, 235-252. 

Wonham, W. M. (1979). Linear Muhivariable Control: A 

Geometric Approach, Second Edition Springer, New 
York. 

APPENDIX A: PROOF OF PROPOSITION 4.4 
(DUAL STRUCTURE ALGORITHM) 

Let ./kbe as in (4.1), define Rk := rankYk, and recall that 
R k = k p l _ p 2  . . . . .  pk+t. Let Ro=0  and define Ak+l:= 
Rk+ t -- Rk, k = 0, I, 2 . . . . .  It then follows that 

Ak+ 1 ~- A k + r k .  (A .1 )  

From (4.1) and (A.1) one deduces that CAJB =0  for all 
O ~ ] ~ i i - 2 ;  that is, one must differentiate the output it 
times before the input appears. Doing so one has 

d~t__~.Y = CAi'x + CAil-tBu 
dt q 

and moreover, rank CAit- tB = ri~," the number of zeros at 
infinity of order i t. If necessary, re-order the components of 
y so that the first r+t rows of CA~1-1B are linearly 
independent. Write C' =[Ci ,  C2], where Cl has rq rows. Let 
u = Fix + Gay be any regular stati,= feedback such that, upon 
writing v '  = Iv[, v~], vt having ri~ components, one has 

v t = CtA~lx + ClAq- tBu;  

this is always possible because rank CtAq- tB  = rq. Hence, 
for the resulting closed-loop systems one has 

dityt _ 
dti------ { - v 1 

2 =  ~ , ~ i ,  x + ~ 2 A ~ , - , a i t ,  i 

where ,4 =A + BE /~ = BG, [B, [ ~1 =.B, and y '  = [y;, ~1. 
Now, abuse notation and re-name A = A,  B = B, u = v. 
U ~ I / .  

Rk is invariant under regular feedback. Hence, from (4.1) 
and (A.1), one deduces that C2AIB2=0 all 0<~j~ i2 -2 .  
Therefore, 

i2'-it ~ . j 

d'2~2_ ~2A,2x + C2A'2-1B2u2 + ~ C2A 02-'-/)dtul 
dt~2 - dt J i - 0  

where rank C'2A~2-tB2= r~2. Once again, re-order the rows 
of ~ so that the first r~ rows of C72A~Z-tB2 are linearly 
independent. Write (~ = ['C~, t~;] where C2 has % rows. Let 
u = F2x + (320 be any regular static feedback such that, upon 
writing v - [o r ,  v~, va], v 1 having rit components, and v2 
hating r+, components, one has 

U i ~ /g i 

112 = C 2 A i 2 x  + C2Ai2-iB2u2;  

this is always possible because rank C2A~2-xB2 = r~z. 
Proceeding in such a manner, the right-invertibility of X 

leads to (4.5). The required feedback is simply the 
composition of the feedbacks calculated at each step. 

APPENDIX B: PROOF OF LEMMA 2.1(d) 
The necessity being obvious, only the sufficiency will be 

proved. Consider the i-th subsystem 

F i : ~ = A x + B u  
: y i  = C i x  

which has p~ zeros at infinity. Discard as many components of 
the output as necessary to obtain a system which still has p~ 
zeros at infinity, but which is now right-invertible. Denote 
this subsystem by 

~ $c = Ax + Bu 
: y~ = ~ ' x  ' 

and define 9 = (~1,, . . . .  ~v,),. This gives rise to the system 

~: $c = Ax  + Bu 
= ~x (B.1) 
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Either using transfer function arguments, or the differential 
algebraic approach of Fliess (1985, 1986), one can show that 
a eompcmator input-output decouples (B.1) if and only if 
it decouplcs the original system (2.1). By construction, ~: has 

p :  output components, and pt  zeros at infinity. Hence, 
i ~ l  v 

the relationship ~ i~l Pi •P implies that ~ is right-invertible, 

which in turn implies that ~ is dynamically input-output 
decouplable (Morse and Wonham, 1971). 

Remark .  A similar argument also works for nonlinear 
systems (Grizzle et al., 1987). 


