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It is common knowledge that flows of viscoelastic liquids with stress 
singularities, like the extrudate swell flow, pose formidable obstacles to 
numerical computations at relatively low Weissenberg number. This paper 
describes an effort toward alleviating the stress singularity by means of a 
slip boundary condition at the die wall. The Oldoyd-B and the upper-con- 
vected Maxwell differential constitutive equations were used for simplicity 
and computational efficiency. With a no-slip boundary condition it was 
found that for Newtonian, upper-convected Maxwell and Oldroyd-B liquids 
the global solution was always mesh-dependent until the Newton iteration 
diverged at very fine tessellations in the vicinity of the static contact line. 
With a natural slip boundary condition the global solution became mesh-in- 
dependent at the same tessellations. Moreover, the macroscopic predictions 
became independent of the amount of slip in a relatively broad region of slip 
coefficient. The Newton iteration converged up to Weissenberg number 0.6 
with a no-slip boundary condition and up to 1.7 with a slip boundary 
condition for the upper-convected Maxwell liquid. For the Oldroyd-B liquid 
the maximum Weissenberg number was 0.85 without slip and 1.866 with 
slip. Although slip velocity, surface tension and Newtonian viscosity (or 
retardation time) enhanced some numerical stability in general, it appears 
unlikely that they could advance viscoelastic computations significantly. In 
the limiting case of no swelling, at infinitely large surface tension, the 
analytical solution for Newtonian and, a second order flmd showed: 

(a) elasticity increases the strength of the singularity that exists for 
Newtonian liquid at the contact line, and thus Newton iteration is expected 
to diverge at coarser and coarser tessellations as the elasticity increases in 
agreement with the finite element findings. 
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(b) Finite element predictions for the same flow agreed with the analyti- 
cal solution in the vicinity of the singularity only when a slip boundary 
condition was employed. 

(c) Slip boundary condition in the vicinity of the contact line alleviates 
the stress singularity. However, it forces the stress to go through a maximum 
which is equally catastrophic of the Newton iteration convergence. 

1. Introduction 

In flowing Newtonian or viscoelastic liquids the stress grows large near 
geometrical singularities (e.g. contraction flow) near static contact lines (e.g. 
extrudate swell flow) and near dynamic contact lines (e.g. curtain, slide and 
extrusion coating). In fact, the stress at these vicinities is made artificially 
infinitely large because the mathematical representation of the boundary 
condition fails to account for the microscale physics of the wetting there. 
The singular stress causes numerical computations to diverge when the 
tessellation is made finer and finer in order to achieve a mesh independent 
solution. In viscoelastic liquids the stress grows even larger because of the 
extensional character of the flow in the vicinity of a singularity. 

The divergence of the Newton (or any other) iteration is common in 
calculations with both differential [l-3] and integral [4-61 constitutive 
equations. The behavior of Newton iteration at about the divergence gave 
rise to speculations of turning points in the parametric space of Weissenberg 
number. Yeh et al. [7], investigated and proved the existence of these points 
in the contraction flow. Keunings [8] concluded that a limit point exists 
which goes to zero Weissenberg after extensive mesh refinement in a 
contraction flow. Papanastasiou et al. [6] concluded that these points were 
artificially induced by the inability of the constitutive equation to account 
for the discontinuous deformation about the singularity in the extrudate 
swell flow and thus abandoned the idea of pursuing them. The solutions in 
Refs. 1-8 were all obtained with a no-slip boundary condition at the 
die-wall. 

Silliman and Striven [9] investigated the extrudate swell flow of a Newto- 
nian liquid with and without slip. They found that unlike the no-slip 
boundary condition a natural slip boundary condition (relation between 
shear stress and velocity at wall) led to bounded stresses and thus to solution 
independence of the tessellation. Moreover, for a wide range of slip coeffi- 
cient values (constant of proportionality between stress and velocity at wall) 
the flow was affected only locally and the macroscopic predictions of 
extrudate swelling remained uninfluenced. Following them, Papanastasiou et 
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al. [6] introduced slip in their numerical computations with an integral 
constitutive equation and observed that slip, as expressed by a linear 
relation between the shear stress and the velocity in the vicinity of the 
singularity, led to calculations at Weissenberg numbers higher than those 
obtained under the same circumstances with a no-slip boundary condition. 
At that point the computational cost with integral constitutive equation was 
formidable and no extensive studies on slip and its significance to viscoelas- 
tic calculations were made. 

The slip of polymer melts in capillaries is experimentally justified [lo]. 
Very recently Cohen and Metzner [ll] reported results from experiments 
with several polymer solutions in capillaries and concluded with an em- 
pirical relation 

v, = ar,” 0) 

to model apparent slip of polymeric solutions. Here V, and 7w are the slip 
velocity and the wall shear stress respectively. The exponent m and the 
coefficient (Y depended on the elasticity of the liquid and the magnitude of 
the shear stress 7w at the wall. Equation (1) can be used as a working 
hypothesis for slip in general independently of obvious differences in the 
physics between the behavior of solutions and melts. 

In this work we investigate the significance of slip, as expressed by eqn. 
(l), on the accuracy of the predictions and on the numerical stability of 
extrudate swell flow calculations for Newtonian and viscoelastic liquids. The 
main goal is to alleviate the singular stress by means of eqn. (1) and achieve 
solutions at Weissenberg numbers higher than those obtained without slip. 
The effects of retardation time or Newtonian viscosity and surface tension 
are also investigated. The numerical prediction are supplemented by analyti- 
cal results in the case of a stick-slip flow of a second order fluid. 

2. Governing equations 

The geometry of the flow is shown in Fig. 1. A sheet of liquid issuing 
from a slit at zero Reynolds number swells owing to the abrupt change in 
boundary condition at the exit of the slit. The governing conservation 
equations are 

v -u=o, 
v a(-pI+T)=o. 

The system closes by the constitutive equation of Oldroyd-B liquid 

7 + A,i = 240 + h,h), 

(2) 
(3) 

(4) 
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or equivalently [2] with 

7 = 71 + 72, w 

T1+ A,?, = 2prD, (5b) 

72 = 2clzD, (5c) 

h,=h,A 
c11+cL2' 

P=Pl+P2* 

Here A, and A, are the relaxation and retardation times respectively, and I_L 
the zero shear viscosity. Commonly ~1~ = 8~/9, p2 = p/9 and thus X2 = X,/9. 
The superscript dot denotes upper convected derivatives of stress or rate of 
strain [2]. The integral analogue of eqns. (5a) to (5~) is 

7=2p2D+ 
/ 

* I4 
2 exp (B,(t’) -I) dt’, 

--oo 1 

where B,( t’) is the Finger tensor of past states t’ relative to the present state 
at t, and so eqn. (4) models solutions of viscoelastic liquid of relaxation time 
A, and constant viscosity p1 in a Newtonian solvent of viscosity p2. Thus if 
eqn. (6) is to be adopted eqn. (1) is appropriate too. 

To calculate the location of the free surface the kinematic condition 

n-u=0 (7) 

that forbids mass penetration across the free surface of normal unit vector n 
is solved simultaneously with eqns. (2), (3), and (4). 

The boundary conditions to the system of equations are shown in Fig. 1. 
They are either essential boundary conditions when the velocity is specified, 
or natural boundary conditions when the traction is specified at the 
boundary. 

-5.0 ~xy=o,v=o 0.0 
s5 

5.0 

- AI. - 

Fig. 1. The flow domain with the boundary conditions. 

v=o Dmax 
s4 

1 
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Equations (2), (3), (4), and (7) are made dimensionless by choosing 
convenient units of stress (pV/O), velocity (V) and length (D) 

v*.u*=o, (8a) 

V** 
i 

-p*1+1:+2~0* =o, 
1 

w 

q*+Xyil*-2 1-h 
i 1 P 

D*=O, (84 

n**u* =o. (W 

The dimensionless number of interest here is the Weissenberg number 

ws=x,y,=x;~~, (9) 
where q,,,, is the wall shear rate. The Deborah number for this flow is defined 
as De = Ws/3. Equation (8~) reduces to the upper-convected Maxwell 
model when p2 = 0 and to the Newtonian law when X, = 0. 

3. Finite element formulation 

The velocity components u and u and the stress components rXX, rX,,, and 
r,,,, are expanded in terms of biquadratic basis functions cp’, the pressure p in 
terms of bilinear basis functions J/‘, and the free surface elevation from the 
midplane in terms of quadratic basis functions 3: 

9 9 

1 

h = ;hi& 
1 

Then eqns. (8a) to (8d) (with asterisk here and hereafter omitted) are 
weighted integrally by each of the basis functions, the divergence theorem is 
invoked and the resulted weighted residuals are required to vanish which 
determines the LI&IOWII coefficients Ui, Vi, ri, qi, ri, pi and hi: 



R;= 07) 
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Equation (12) is replaced by the essential boundary condition u = A(1 - 
u2) at the inlet (S,) and u = 0 at the wall (S,) when the no-slip condition is 
applied. The third line integral is the tangential traction on the free surface 
(S,) and is zero when the surface tension is vanishingly small. The fourth 
boundary term is the normal traction at the outlet plane (S,) and is zero for 
the assumed plug flow. The fifth term is the tangential traction at the 
midplane of symmetry (S,) and is zero. Similar replacements or substitu- 
tions apply to the other momentum eqn. (13). No boundary conditions on 
the viscoelastic extra-stress at the inlet were found necessary. In fact, 
numerical experiments with stress inlet boundary conditions yielded wiggly 
stress profiles near the inlet. Nevertheless, solutions obtained with and 
without stress inlet conditions yielded identical predictions except the stress 
near the inlet. It appears that by not imposing essential boundary conditions 
on the stress at the inlet, allows the constitutive equation to hold within the 
flow domain and at the inlet where it serves as a mixed natural boundary 
condition. To apply the slip boundary condition the second boundary term 
of eqn. (12) is replaced by eqn. (1): 

Tl,xy + - - + ;( ;; $#$ ds= -j;zP+i ds. (18) 

To account for surface tension the third boundary terms of both equations 
are substituted by the capillary traction [12] 

=& jt* dS-&[#t,-&,], 
s, ds 

(1% 

where n and t are the normal and tangent unit vectors to the free surface 
and Cu the capillary number defined as 

Ca = @/a, (20) 

where p and u are the viscosity and the surface tension of the viscoelastic 
solution respectively. In all the following calculation the surface tension was 
neglected unless otherwise stated. 

To solve the system of the resulting nonlinear algebraic equations we used 
full Newton iteration 

sW+l) = SW) -J@(W). ~(~W’)_ 

Here S is the vector of the unknowns 

s= (r4, Ul, 9, ql, rl, pl, . ..u., u,, r,, qnP r,, pn, h,) 

(21) 
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and J is the Jacobian of the residuals R with respect to the nodal unknowns 
(coefficients in the expansions (1Oa) to.(lOd)). The simultaneous solution of 
eqns. (11) to (17) by Newton iteration provides rigorous distinction between 
convergence and divergence. 

4. Results 

4. I. Newtonian liquid 

The results for Newtonian liquid were obtained with A, = 0 in eqns. (11) 
to (17). The tessellation is shown in Fig. 1. The four square elements 
adjacent to the contact line, Figure 1, were subdivided further and further as 
follows. The predicted extrudate swell at these tessellations is plotted in Fig. 
2. When no-slip was assumed the Newton iteration diverged before the 
solution became independent of the tessellation. When slip according to a 
linear relation shown in Fig. 2 was assumed, the Newton iteration converged 
at a finer tessellation near the singularity and the solution was independent 
of the tessellation. Thus the most appropriate boundary condition for a 
Newtonian liquid appears to be the one which accounts for some slip 
because it produces a solution which is independent of the tessellation. Our 
results are in agreement with the conclusions of Silliman and Striven [9] 
arrived at by a different method. 

4.2 Upper-convected Maxwell liquid 

The results for this liquid were obtained with pz/p = 0 in eqns. (11) to 
(17). Figure 3 shows the maximum Weissenberg number at which the 

1.24 

1.20 

1.16 1. 
0.00 0.02 0.04 0.06 0.06 0.10 0.12 0.14 

Side of Square Elements at Singularity 

Fig. 2. Behavior of Newton iteration with mesh refinement with and without slip for 
Newtonian Liquid. 
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Fig. 3. Maximum Weissenberg number and die-swell predictions for upper-convected Maxwell 
liquid at several tessellations about the singularity with no-slip boundary condition. 

Newton iteration converged quadratically with each of the tessellations used 
without slip. It is clear that the solution at any elasticity depended on the 
tessellation. Moreover, even for the Newtonian liquid of zero elasticity the 
Newton iteration diverged when the tessellation near the exit was refined 
further and further. 

To proceed with the slip studies we used the tessellation of Fig. 1 which 
yields the correct value of 1.2 for the extrudate swell of Newtonian liquid. 
Figure 4 shows extrudate swell predictions obtained with five different slip 
laws: 

(a) 

(b) 

(c> 

(d) 

with practically no slip when, Q, = lo6 V, (22a) 

with a linear law, 7w = 50 V,, (22b) 

which corresponds to Newtonian slip film 

with a superlinear law, TV =400~20r7,=15000~4 

which corresponds to shear thickening slip film. 

with a sublinear law, rw = 25 VSo.’ 

which corresponds to shear thinning slip film. 

(22c) 

(22d) 

The equations for each of the layers are derived in Appendix A. Here To is 
the wall shear stress and V, the velocity of the liquid at the solid wall, the 
slip velocity. The exponents were chosen arbitrarily. Then the coefficients 
were selected to predict correctly the Newtonian extrudate swell of value 
1.200 [9]. The main conclusion from Fig. 4 is that the predictions of the 
upper-convected Maxwell model are extended from Weissenberg number 0.6 
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w 

i 
+ 
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Weissenberg Number 

Fig. 4. Predicted die-swell for upper-convected Maxwell liquid with five different boundary 
conditions at the solid wall and with surface tension. 

without slip to 1.7 with slip where the quadratic rate of convergence of the 
Newton iteration deteriorated and clearly diverged beyond Weissenberg 1.8. 

The White-Metzner extension of the upper convected Maxwell model 
with strain-thinning relaxation time and viscosity did not improve the 
calculations. 

4.3 Oldroyd-B liquid 

The results for this liquid were obtained with A, = 0 and /.L~/P = 0.1111 in 
eqns. (11) to (17). Figure 5 shows the predicted extrudate swell with and 
without slip. Only slight improvements over the upper convected Maxwell 
model were obtained with either boundary condition. 

4.4 Surface tension 

The results for both viscoelastic liquids were slightly improved by 
accounting for surface tension by means of eqn. (18). The achieved improve- 
ment is shown in Figs. 4 and 5. The significance of the surface tension on 
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,, ,, 
- 0 No Slip, Ca 1000 = 

A Slip: Tw = 50 VS~.~ ca = 1@)0 
1.4- 1 Tw=50V$,ca=iO 

-I 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Weissenberg Number 

Fig. 5. Predicted die-swell for Oldroyd-B Liquid with and without slip and surface tension. 

the extrudate swell is shown in Fig. 6 for the Oldroyd-B liquid. As expected 
surface tension surpresses the free surface and thus reduces extrudate swell. 

4.5 Retardation time or solvent viscosity 

Figure 7 shows the significance of the retardation time on the predicted 
extrudate swell and on the numerical stability. As expected by decreasing 
the viscoelastic to Newtonian character of the liquid, the extrudate swell 
decreases and the maximum stable Weissenberg number increases. The 

-1 
0 50 100 150 

Capillary Number, ca = P Y 

Fig. 6. Predicted die-swell for Oldroy-B liq>d of XIV/D = 0.3 at several Capillary numbers, 
cu = pV/a. 
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Fig. 7. predicted die-swell and maximum Weissenberg number of an Oldroyd-B liquid of 
Newtonian to viscoelastic viscosity ratio c(Jpz of l/8 (D), 2/7 (A), and 4/S (X) with no-slip 
boundary conditions. 

effects of the Newtonian viscosity on the predictions of the Oldroyd-B 
model at a fixed Weissenberg number are shown in Fig. 8. 

5. Discussion 

The conclusions drawn below apply to the particular method of solution 
we used by means of eqns. (11) to (17) and (21). This method is based on a 
global Newton iteration which calculates simultaneously velocities, pressure, 

1.5 

- ws~3De=o.9 

l.4- 

%! 

4 1.3 - 
.s 
0 

----\._ 

1.2- 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

Newtonian to Total Viscosity Ratio, @‘Pt 

Fig. 8. Die-swell predictions of the Oldroyd-B model at constant Weissenberg number, 
ws=3. 
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CHANNEL 
(SINGLhlYJ 

FREE SURFACE 

Fig. 9. Strain and stress along the solid wall and the free surface when there is no slip, finite 
slip and infinite slip. 

stress, and free surface location. Thus the method is mathematically more 
rigorous than methods based on Newton under Picard iteration in the sense 
that it converges with quadratic rate and so it provides a clear distinction 
between convergence and divergence. 

Figure 3 indicates that the strength of the singularity increases with the 
Weissenberg number. A theoretical explanation based on an analytical 
solution for a second order fluid at an infinitely large surface tension is 
given in Appendix B. Figures 2 and 4 suggest that the strength of the 
singularity decreases with the slip velocity. The analysis in Appendix C 
shows that in principle the singularity could be eliminated by slip but then 
the macroscopic predictions (e.g. pressure drop, extrudate swell, contact 
angle) would be altered significantly. Another limiting factor is the creation 
of maximum stresses, e.g. Fig. 9, in the vicinity of the singularity which is 
known to cause divergence. Thus the potential of the slip boundary condi- 
tion as a means for alleviating the stress singularity is limited by pragmatic 
considerations. 

The natural slip boundary condition, as expressed by eqn. (18), is the 
most appropriate because it produces numerical solutions which are inde- 
pendent of the tessellation and at relatively higher Weissenberg number. The 
divergence with mesh refinement for a viscoelastic liquid agrees with the 
results of Keunings [8] and Brown et al. [13] for contraction flow. Moreover, 
divergence with mesh refinement occurs even for Newtonian liquid. 

The slip boundary condition improves calculations with the upper-con- 
vected Maxwell liquid by a factor of almost 3, from Weissenberg 0.6 without 
slip to 1.7 with slip. The same slip boundary condition improves calculations 
with the Oldroyd-B model by a factor of 2, from Weissenberg 0.86 without 
slip to 1.866 with slip. It appears that the Oldroyd-B model embodies a 
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mechanism equivalent to apparent slip, probably the retardation time (or the 
Newtonian viscosity pz of eqn. (6)), which reduces the stress at the singular- 
ity even without slip. 

Another stabilizing factor is the surface tension even at Capillary number 
of values 100, which is typical of viscoelastic solutions, as Figs. 4 and 5 
show. The stabilization is due to the fact that with surface tension included 
the viscoelastic stresses are not required to vanish just downstream yet. 

A third stabilizing factor is the retardation time as shown by Fig. 7. By 
comparing eqns. (4) and (6) and given the relations (5~) and (5d) it is 
obvious that the retardation time X, is proportional to the Newtonian 
viscosity pz. Newtonian viscosity is known from standard linear elasticity 
theories to inhibit growth of instabilities by reducing the kinetic energy 
associated with them through viscous dissipation. 

5.1 Further justification of the slip boundav condition 

The stick-slip problem of Appendix B provides an excellent opportunity 
for further justification of the slip boundary contition. The stick-slip flow of 
the second order fluid was analysed by the finite element method of Section 
3 with and without slip boundary conditions. The predicted velocity along 
the free surface is compared with the analytic solution, eqn. (B.2) of 
Appendix B, in Fig. 10. It is obvious that a slip boundary condition can 

d 
=-& I 

x I 

1x10-* trm- 

DISTFINCE FR0f-l SINGULRRITY 

Fig. 10. Predicted velocity along the free surface in a stick-slip flow of a second order fluid 
(SOF), obtained with tessellation of Fig. 1, compared with the analytic solution: - - - - - - 
Analytic solution, eqn. (A.2) of Appendix A; - - - Finite element predictions for SOF of 
N,V/pD = 0.33 and Nz = 0 with a slip boundary condition, Equation (22b); . . .+.. Finite 
Element Predictions for SOF of N,V/pD = 0.33 and N, = 0 with a no-slip boundary 
condition. 
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yield the appropriate kinematics around the singularity. In contrast a no-slip 
boundary condition yields local kinematics which disagree with the analytic 
solution. 

5.2 Behavior of viscoelastic fluid particle at a singularity 

Both the finite element analysis and the asymptotic solutions substantiate 
Fig. 9 along the solid wall and the free surface of a singularity: when there is 
no slip the rate of strain and thus the stress is infinite (Appendix B). When 
there is slip a maximum stress is obtained (Appendix C). The Newton 
iteration diverges in both cases, however, at higher KS for a maximum stress 
than for an infinite stress. 

Conclusions 

The use of a slip boundary condition in extrudate swell computations 
yields a tessellation-independent solution down to very fine mesh refinement 
near the singularity. The no-slip boundary condition yields a tessellation-de- 
pendent solution down to the point where the Newton iteration diverges. 
Further justification of the slip boundary condition is provided by its ability 
to reproduce the analytic solution to the stick-slip flow of a second order 
fluid in the vicinity of the singularity. 

Slip improves computations with the upper convected Maxwell and the 
Oldroyd-B models. Inclusion of surface tension and Newtonian viscosity 
enhance some further stability. In all cases the stabilization is either due to 
the inhibition of the inhibition of stress growth by slip just upstream the 
contact line, or due to a free surface under tension, which produces non- 
vanishing viscoelastic stresses just downstream the contact line. 

The main conclusion however is that, although slip velocity, viscosity and 
surface tension enhance some stability in numerical calculations, it is un- 
likely to advance viscoelastic computations significantly. In particular the 
behavior of viscoelastic constitutive equations in the vicinity of singularities 
where discontinuous deformation arises needs to be evaluated and then 
means to avoid the discontinuity or else to repair the constitutive equation 
need to be devised. A spectrum of relaxation times in both integral and 
differential constitutive equations is a good first step. 
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Appendix A 

Justification of slip laws 

x u=o, u=o 
01 F 

I 
n+l 

H Power-Law thin slip layer: TV,, = k 

y_____-_---- ----- --- 

Bulk viscoelastic liquid: To 

Inthinlayer: C+ gy=~_,,+c=~- CH, 
dy 

(A-1) 

-TV= g(y-H). (A-2) 

Velocity in layer: u = ;+;g(y-H) ]l+l’(l+“‘l(l+ _L)Gg 

Slip velocity: V= u( y = H) = ( ZC)l+l”n+l) - (f + i SZH)l+l”n+l) 

v= 
-- H 

(A.9 

Sliplaw: TO=k s 
n+l ()I 

n < 0, Thinning, 

n = 0, Newtonian, 
n > 0, Thickening. 

(-4.6) 

The case n = 0 was derived earlier by Joseph [14]. 
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Appendix B 

Solution to stick-slip flow [IIS] for second order fluid (SOF). 

Singularity 
Solid Wall: U, = U, = 0 

Flow 
+ 

Free Surface: U, = rre = 0 
--- -- 

e 

The kinematics around the singularity with respect to a polar system 
(r, S) with its origin at the singularity are after Moffat [16]: 

#=r312f(a), f(e) =A sin 8 sin !, (B.1) 

U,= +z =r112f’(e), 

u,= -2 = -ir112f(e). 

03.2) 

(B *3) 

The Giesekus-Tanner theorem [17] applies here if no slip along the solid 
wall is assumed (\t, = zero along the free surface guarantees shear stress 
rre = 0 for both Newtonian and SOF liquids). Thus close to the singularity 
the stresses for the SOF are 

T,, = pr-1/2f’ + N,r-‘F,( f, f ‘, f “), (B-4 

70s = -_ELr -“2f’+Nlr-1F2(f, f’, f”, f “‘), (W 

7re = % = br -l12(f+ :f’) +N,r-‘F3(f, f’, f”, f “‘), ( B-6) 
where p is the constant Newtonian viscosity, Ni the constant first normal 
stress coefficient (the second normal stress coefficient N, assumed zero 
without loss of generality), and Fi known functions of f( 0) and its deriva- 
tives. It is clear that for Newtonian liquid ( JV1 = 0) 

rijar-1’2, (B-7) 

and for a second order fluid (Ni # 0, N2 = 0) 

-1 rijar . 03.8) 

Thus elasticity incorporated in Ni = 0 increases the strength of the singular- 
ity from r-‘12 to r-l. 

A similar analysis for a SOF was carried out independently by Lipscomb 
et al. [18]. 
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Appendix C 

Solution to stick-slip jlow with slip-boundary condition 

Solid Wall 
I I I I I I I I I I u=o I I I I I I I I v=o Free Surface 

Tre=CYU@~ 0 7re =o 

Assume a solution 1c, = rXf,( 0). (C.1) 

Then u = ?-‘f:( a) and u = XyhplfX( e), 

wheref,(8)=AcosM?+BsinXB+Ccos(X-2)8+Dsin(X-2)8. 

At 8=0, u=O, A= -C; 

At t?=n, u=O; 

At 8 = 7r, rre = 0; 

under these conditions 

u = (~0~ x8 - 
i 

cos(X - 2)8) + 
cos( x - 2)v 

sin(X-2)?r 
sin( X - 2)e 

cos xlr 
- - sin xe (-~+l), 

sin A7r i 

U= (-A sin he++2) sin(X-2)8) + cos(x-2)n(A-2) c0s(x--2)e 
i sin(X - 1)~ 

cos xlr 
- -ha cos x8 (P-l), 

1 

7re = 
i 

-A~~osJI~+(L~)~c~s(~-~)~+ c~J(~~“l,” (A - 2)2~in( A - 2)e 

cos AT 
+- sin AT A2sin x8 (rxp2). 

i 

At e=o 

(C-2) 

and 

Tre = A&2{ -x2 + h2 - 4A + 4). 
(C-4) 



and the slip law yields 

r,,=&%vith/3=(h-2)/(&l). 

Substitution of u and rre in (C.3) and (C.4) yields 

{ -4A + 4) = a( _2~}(h9’(A-1), 
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(C.5) 

(C.6) 

where (Y is an arbitrary constant 

{ -4x + 4) = a{ _2G&)(A-2)‘(A-1). 

Equation (B.7) has many solutions with X > 2, for which the stress rre is 
not singular, dependent on the value of the slip coefficient, cy. Thus slip 
boundary conditions of the form of (B.5) alleviate the singularity in Newto- 
nian and second order liquids and in this slip layers of other liquids induced 
near solid boundaries. However, the function rre vs. r is forced to go 
through a maximum with slip and the Newton iteration still diverges. Figure 
9, which is obtained by several investigators shows exactly this divergence. 
The Newton iteration does not only diverge when infinite stresses are 
encountered but also when maximum stresses are created by slip. In general 
the Newton iteration diverges at maximum stresses or deformations ex- 
tremes of which are infinite stresses and deformations. 
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