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We report on a magneto-Raman scattering investigation of free and donor-bound electrons in
GaAs/Al Ga, _ As quantum wells. For fields perpendicular to the layers, the spectra show intersub-
band transitions of photcexcited elzctrons and 15— 1s’ donor excitations. Tilted fields iead to sub-
band-Landau level and !s'-2p™* coupling. Experimental results for the latter case agree very well
with variational calcuiations. Data on combined intersubband-cyciotron resonances at arbitrary tilt
angles are accurately described by expressions valid foi parabolic wells. The parabolic approach is
shown to provide a good approximation In siiuations where coupling to higher subbands can be
neglected.

In quasi-two-dimensional (2D) electron systems the motions in the confine-
ment plane (x, y) and perpendicular to it are coupled for magnetic fields B at
angles 6 #0° with respect to z [ 1,2]. This leads to excitations of mixed character,
such as combined intersubband-cyclotron resonances, exhibiting the well-known
anticrossing behavior near degeneracy [ 2-7]. Subband-Landau level coupling has
been exiensively studied for 2D systems formed at semiconductor heterojunctions
[4-7] and Si-accumulation layers [ 3] using the technique of cyclotron resonance.
For small 8’s these measurements provide a determination of the energies of inter-
subband transitions which are forbidden at 8 =0° [2,4]. Small tilt angles were also
used 1n the far-infrared (FIR) experiments of Jarosik et al. [8] to study crossing
of donor levels in quantum-well siructures (QWS’s). In this work, we report on a
Raman scattering (RS) investigation of tilted-field-induced mixing in GaAs/
Al Ga,_ As QWS’s for both free and donor-bound electron states. Qur results
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complement those obtained from FIR experiments [3-8]; transitions that are weak
or forbidden in FIR dominate the Raman spectra. For donor excitations, we find
good agreement between the experimental results and those of calculations based
on a variational approach [9]. The data on free electrons reveal coupling between
the cyclotron mode: and €,— €, transitions associated with the ground and first ex-
cited subband states. This coupling has been investigated in the range of parame-
ters where periurbation theory applies, and beyond that range. Analytical
expressions derived for parabolic wells [ 10] were found to describe extremely well
the latter results, for arbitrary 8. This unlikely situation is explained by the close
similarity between the coupled-mode equations for parabolic and square wells un-
der conditions where the coupling to higher subbands can be ignored.

A QWS grown by molecular beam expitaxy on (001) GaAs was studied. It con-
sisted of thirty uncoupled GaAs wells of thickness L=460 A, with 125 A thick
Aly 24Gag 76As barriers. The sample was doped with Si donors at the centers of the
GaAs slabs with a concentration Np= 5% 10'3 cm 3. The width of the donor spike
was ~ L/3. Free-electron excitations were investigated on the same QWS. Carriers
were generated either by photoexcitation [ 11] or by thermal ionization of donors.
The laser beam used to obtain RS data also served to photopump the sample. Power
densities were in the range P=2-10 W cm~2, giving an estimated free-electron
density p~10° cm~2 [12]. RS experiments were perforined at fields B<7 T (the
maximum field provided by our split-coil superconducting magnet) and at angles
@ between 0° and 80°. The laser energy 7w, was tuned to resonate with the gap
derived from the E,+4, gap of GaAs. At this resonance, the scattering involving
states from the conduction band is strongly enhanced [13]. Data were recorded in
the z(x', x')Zand z(x', y' ) Z backscattering configurations, with x’ and )’ denoting
the [110] and [110] directions and with z normal to the layers. The former ge-
ometry allows scattering by charge-density fluctuations while spin-density fluctua-
tions are allowed in the latter [ 13]. No appreciable differences were found between
spectra in the two configurations, indicating that depolarization effects are negli-
gible. This is consistent with our estimate for a small value of p.

In fig. 1, we show Raman spectra of the structure with L =460 A at two different
temperatures. Features labeled D are donor-related, which is ciear from their rapid
quenching with increasing temperature due to impurity-ionization. The strongest
line at 88 cm~' is mostly due to the transition 1s—1s’ (1s’ denotes the lowest
donor state associated with the first-excited subband), while the weaker structures
at 132 and 137 cm~! are due, respectively, to the 1s—2s and Is—2p™ transitions.
The assignment of these transitions is based on the comparison with calculations
considered below (for Is—1s’, see also ref. [12]). As opposed to the 1s—Is’ and
the RS-allowed 1s— 2s transitions, the 1s—2p™ transition cannot be seen for fields
perpendicular to the layers (8=0°). The 2p* level transform like {x, y} and its
Raman activity at 8 #0° is derived from the coupling with 1s’, which transforms
like {z}. Strictly speaking, neither the 1s—2p™* nor is—1s’ transitions are allowed
at g=0 because the states have different parities (g is the scatiering wavevector).
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Fig. 1. Raman spectra of the siruuii te with L=460 A showing quenching of donor-related features

{D) at high 7. Dashed lines indic:ite the positions of the comnbined intersubband-cyclotron reso-

nances. The scattering geometry i". z(x", y')Z, P~5 W cm~2, and fiw,=1.875 eV. @ is the angle
between the magnetic field and the z-axis of the QWS.

However, it is a matter of fact that {z}-symmetry excitations (e.g., ¢;,—¢€, intersub-
band transitions) can be observed in Raman spectra for g along z [13}. Mecha-
nisms involving g-dependent RS are required to account for these observations
[13].

The dashed lines in fig. | indicate combined intersubband-cyclotron reso-
nances. At 2 K, the intensity of the two peaks (normalized to the intensity of op-
tical phonons) increases roughly linearly with P as expected for scattering due to
photoexcited carriers [11,12]. The low-energy component at 53 cm~' is mostly
due to ¢,—¢, transitions while the peak at 98 cm~' derives from the An=1 inter-
Landau level transition. This identification is supported by our results for small
angles ( S 10°), where the coupling can be neglected except near degeneracy [2,4].
For small angles, the position of the line ascribed to the cyclotron mode closely
follows 7182, =efB/mc, with m=0.07m, (£2. is the cyclotron frequency and 7 is
the free electron mass). The measured value of m is slightly larger than
m=0.0665m,, the mass for electrons at the bottom of the GaAs conduction band.
The Raman shift of the line assigned to the ¢;— ¢, transition, at small 6’s, is £, =64
cm ™' (it does not depend much on | B| ). A calculation using the band-gap discon-
tinuities determined by Miller et al. [14] predicts E;; =56 cm ™!, which is in rea-
sonably good agreement with the experimental value. It is important to point out
that we did not observe a peak at Q. for B normal to the layers. This is unlike
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Fig. 2. Comparison between measured and calculated values of 1s—+2p~, 2p™*, 2s, 1s’ transition ener-
gies. The theoretical data are for a donor at the center of a 460 A GaAs/Al, ,4Gag 76As QWS. The
solid lines are a guide to the eye.

b—

medulation-deped QWS’s which do show scattering by the cyclotron mede at £ =0°
[15,16]. We do not know of any reason that might explain this difference.

The positions of donor-related peaks, measured at 6 =8°, are plotted in fig. 2 as
a function of |B|. Also shown are results of variational calculations as described
in ref. [9], upon which our assignment of the donor transitions is based. The most
interesting feature of these data is the coupling between 1s’ and 2p* induced by
the tilted field. This is very similar to what has been reported in FIR measurements
for donors at the edges of the wells [8].

In fig. 3, we show the measured energies of the coupled intersubband-cyclotron
modes for two different tilt angles. Level-repulsion is evident in the figure. §=8°
is within the range where perturbation theory can be applied. The prediction [2,4]
of a splitting proportional to 6 for #Q.=E,, has been confirmed by our experi-
ments (see the inset). Departures ftom results of perturbative calculations can be
seen in the data of the inset at large angles and in the results for § =60°. In partic-
ular, we find that the lower branch of the coupled modes does not approach £y, for
large B’s, but deviates considerably from that value. Tae theoretical curves in fig.
3 were obtained from expressions valid for parabolic wells [10]. The agreement
between theory and experiment is quite remarkable. This is also the case for the
asymptotic behavior of the lower branch which is predicted [10] to tend to
E,; cos @ at high fields. The reason why a square well can be approximated by a
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Fig. 3. Energy of the coupled intersubband-Landau level excitations as a function of magnetic field.

@ is the tilt angle. The theoretical curves were obtained from the expressions for parabolic wells [ 10].

The inset shows coupled-mode splitting versus & at a field of |B| =4.8 T, which corresponds to
szc = E0| .

parabolic one is basically due to the fact that the corresponding ground and first-
excited subband states are very similar. The matrix elements involved in the cou-
pled-mode problem for the two cases differ by less than 2%. Hence, one can expect
that parabolic solutions will apply to square wells if the coupling to higher sub-
bands is not important. A detailed analysis of the coupled equations indicates that
this condition is well-fulfilled for the range of parameters in our experiments.

This work was supported by the US Army Research Office under Contract No.
DAAG-29-85-K-0175 and the US Office of Naval Research.
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