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Ambiguity is uncertainty about an option’s outcome-generating process, and is character- 
ized as uncertainty about an option’s outcome probabilities. Subjects, in choice tasks, typically 
have avoided ambiguous options. Descriptive models are identified and tested in two studies 
which had subjects rank monetary lotteries according to preference. In Study 1, lotteries 
involved receiving a positive amount or nothing, where P denotes the probability of receiving 
the nonzero amount. Subjects were willing to forego expected winnings to avoid ambiguity 
near P = SO and P = .75. Near P = .25, a significant percentage of subjects exhibited ambiguity 
seeking, with subjects, on average, willing to forego expected winnings to have the more 
ambiguous option. The observed behavior contradicts the viability of a proposed lexico- 
graphic model. Study 2 tested four polynomial models using diagnostic properties in the 
context of conjoint measurement theory. The results supported a sign dependence of 
ambiguity with respect to the probability level P, such that subjects’ preference orderings over 
ambiguity reversed with changes in P. This behavior was inconsistent with all the three-factor 
polynomial models investigated. Further analyses failed to support a variant of portfolio 
theory, as well. The implications of these results for the descriptive modeling of choice under 
ambiguity are discussed. 0 1989 Academic Press, Inc. 

Suppose you feel stiffness and pain in your legs after walking several blocks. At 
the clinic, you are informed of two available treatments, Treatment A and Treat- 
ment B. You describe your choice, as to which treatment to accept, if either, by the 
tree structure shown in Fig. 1. The structure captures your beliefs that the possible 
outcomes at least partly depend upon your choice, and that the outcomes are 
uncertain. These features are components of most decision models under uncer- 
tainty that have been proposed. Your next step could be to use probabilities, 
indicated on the tree in Fig. 1, as subjective measures of your uncertainty about the 
chances that each treatment will be successful. A decision analysis would proceed 
in this fashion (Weinstein eral., 1980; Winkler, 1972). 

In structuring a choice in this fashion, we essentially treat the process whereby 
the outcomes are generated as analogous to a lottery, or chance, model with known 
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FIG. 1. Decision tree representation of a hypothetical clinical scenario with two available treatments, 
A and B (adapted from Curley, Eraker, and Yates, 1984). 

canonical probabilities (Einhorn & Hogarth, 1986; Shafer & Tversky, 1985). We 
specify our uncertainty using subjective probabilities derived from a metaphor of a 
known, probabilistic outcome-generating process. In contrast, ambiguity is uncer- 
tainty about what outcome-generating process is appropriate or about how an out- 
come-generating process is operating. In that an uncertain process or competing 
processes typically imply differing outcome probabilities, ambiguity has been opera- 
tionalized as an imprecision in the judged probabilities. Furthermore, whereas one’s 
uncertainty about decision outcomes can be captured by probabilities, the uncer- 
tainty of ambiguity is inconsistent with even a qualitative probability measure 
(Ellsberg, 1961). Probabilities only partially measure the uncertainty of interest to 
decision makers. 

Ambiguity, as a third feature of decision situations, underlies Keynes’s (1921) 
argument in the following passage: 

But it seems that there may be another respect in which some kind of quantitative comparison 
between arguments is possible. This comparison turns upon a balance, not between the 
favourable and the unfavourable evidence, but between the absolute amounts of relevant 
knowledge and of relevant ignorance respectively. (p. 71) 

Keynes’s claim was that decisions differ in the amount of knowledge one has about 
the chances of the outcomes involved. Lack of evidence is one component which 
Ellsberg (1961) identified as denoting ambiguity. Ambiguity might also be intro- 
duced by the presence of conflicting evidence, unreliable evidence, or some other 
source of inherent uncertainty about how the outcomes will be generated. Thus, 
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there may be more or better evidence regarding the outcome-generating process, 
and, consequently, about the outcome likelihoods for Treatment A than for 
Treatment B. This factor, slighted by the representation in Fig. 1, may be of concern 
to you, beyond the uncertainty measured by the probabilities. 

The usual neglect of ambiguity in structuring decisions has significance due both 
to the prevalence of ambiguity in choice tasks and to the reactions of persons to 
ambiguity. That ambiguity is prevalent has not been disputed; rarely in a decision 
situation can we precisely specify probabilities for all the possible outcomes. A 
stated probability represents a compromise among possibilities. Equally verifiable 
is the existence of ambiguity reactions. Typically the reaction is in the form of 
ambiguity avoidance, which is a preference for the option having the least 
ambiguity, when given a choice between options differing only in their degrees of 
ambiguity. In certain circumstances, systematic ambiguity seeking might also obtain 
(Einhorn & Hogarth, 1986). Since Ellsberg (1961, 1963) first defined ambiguity 
reactions, as alluded earlier by Keynes (1921) and Knight (1921), numerous empiri- 
cal studies have verified their conjecture in a variety of decision contexts (cf. Curley 
& Yates, 1985). 

Of present interest are formal models describing observed reactions to ambiguity. 
First, consider the model of statistical decision theory, which, in its general form, 
can be summarized with the form P * U, involving two functions: a probability or 
weight distribution P, whether these probabilities be subjective or otherwise, and a 
utility or value function U (cf. Schoemaker, 1982 for instances of this general form). 
In that some subjects’ behavior under ambiguity in certain situations can be 
described by the model of statistical decision theory, the model has offered a 
promising starting point for the development of descriptive models. The basic 
process implied by the model is that people make decisions as a tradeoff between 
likelihoods and values. 

Still, for choices under ambiguity, the model, which is derived for situations 
having no ambiguity, is insufficient as a general description of ambiguity reactions 
(Ellsberg, 1961). If identifiable, a descriptive model could illuminate the processes 
whereby decision makers evaluate alternatives in, as well as provide insight into the 
structure of, realistic choice situations involving ambiguity. Section 1 outlines 
generalized forms of models which have been proposed to describe ambiguity reac- 
tions, focusing upon the underlying processes which they might represent. Section 2 
presents two studies testing these models. Section 3 concludes with a general discus- 
sion of the status of descriptive choice models under ambiguity. 

PROPOSED DESCRIPTIVE MODELS 

Five plausible three-factor models that generalize the statistical decision model 
(Model 1) are displayed in Table 1 as Models 2-6. These models all include an 
ambiguity factor as an addition to the factors comprising Model 1. Models 3-6 are 
all possible combination rules involving utility, probability, and ambiguity factors 
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TABLE 1 

General Choice Models l-6 

Model 1. Statistical Decision Theory P*U 
Model 2. Lexicographic P*U,A 
Model 3. Distributive (P+A)* Ii 
Model 4. Distributive P* (UfA) 
Model 5. Dual-Distributive P* U+A 
Model 6. Multiplicative Pe U*A 

Nofe: P= a probability or subjective weight function; U=a utility or value 
function; A = an ambiguity function. 

and the two algebraic operations of multiplication (*) and addition ( + ) between 
factors which have the model P * U as a special case. Model 2 incorporates the 
ambiguity factor within a lexicographic model. 

As it turns out, most of the models in the literature are special cases of the 
models in Table 1 and were created in a similar manner, namely, by generalizing 
from the model of statistical decision theory. Also, with rare exception, the 
proposed models have not been accompanied by empirical verification. In this 
section, the models are first described; then consideration is given to differentiating 
among them. Citations for models which are special cases of each of the generalized 
forms in Table 1 are provided below (cf. Curley, 1986, for more detail on the 
relationships between the specific models and the generalized forms). 

It is possible that none of the three-factor models is adequately descriptive. Only 
in the event that none of these models proves adequate would we wish to consider 
more complex generalizations with more than three factors, or other forms. Exam- 
ples of more complex generalizations are also acknowledged below. 

Lexicographic: P * U, A (Roberts, 1963) 

This model of ambiguity avoidance is a lexicographic decision rule: The less 
ambiguous option is only selected for options which evaluate to the same 
expectation as described by the statistical decision model. Ambiguity is the second 
dimension considered. The lexicographic process can be thought of as an orderly 
tie-breaking rule. When a tie is encountered, after considering likelihoods and 
values, the rule provides a criterion for making a selection. The presence of such a 
rule allows for easy, quick evaluation of alternatives which are equivalent in 
subjective expectation. 

Distributive: (P + A) * U (Ellsberg, 1961; Gardenfors, 1979; 
Gardenfors & Sahlin, 1982a, 1982b, 1983) 

This distributive model of ambiguity reactions might describe a process in which 
the decision maker arrives at a composite measure of uncertainty, combining 
outcome and process uncertainty, before incorporating the value information. The 
process, for example, could result from a modification of the best-guess probability 
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to account for a worse, or worst, possible case. Such a process would induce 
ambiguity avoidance as has been observed. In other situations or for other decision 
makers, a better, or best, possible case could be more compelling, leading to 
ambiguity-seeking behavior. 

Distributive: P * (U + A) (Smith, 1969) 

The second distributive model is similar to the first as potentially arising from an 
additive modification process. In this case, ambiguity is perceived as affecting deci- 
sions through value modification with a utility, or disutility, being attached to the 
presence of ambiguity. The composite utility has value (U + A). The value modilica- 
tion might be prompted by consideration of a utility for gambling, similar to that 
which has been applied for decisions under risk (Fishburn, 1980), or by a value- 
uncertainty interaction effect similar to that observed between value and judged 
probability (Lee, 1971; Slavic, 1966). 

Dual-Distributive: P * U + A (Toda & Shuford, 1965) 

The dual-distributive model could also arise from the presence of a utility for 
gambling or process uncertainty. This model more closely resembles Fishburn’s 
(1980) model. Whereas the distributive model P * (U+ A) applies the value of 
ambiguity to each outcome separately, the dual-distributive model describes a 
process whereby the ambiguity of the option, as a whole, is used in modifying the 
evaluation of the option. This is perhaps a more natural mechanism through which 
a utility for ambiguity might operate. Other processes whereby ambiguity is 
evaluated as a global aspect of the option and then applied to modify the option’s 
evaluation may be similarly described with the dual-distributive form. For example, 
the measure could indicate that the decision maker is reserving part of his or her 
belief to an unattached state, in reaction to uncertainty about the outcomes’ relative 
likelihoods (Fellner, 1961). Similar interpretations are given by Shafer (1976) to a 
“degree of belief” measure and by Zadeh (1978) to, a “possibility” measure. 

Multiplicative: P * U * A (Fellner, 1961) 

The multiplicative model may arise from a process similar to any of those 
described for the distributive and dual-distributive models. Thus, the decision 
maker might employ multiplicative composite uncertainty measures (P * A), which 
are then combined with values; the decision maker might evaluate multiplicative 
composite utilities (U * A), which are then weighted by the probabilities; or the 
decision maker might modify the expectation (P * U), incorporating ambiguity 
more globally. The underlying processes may be equivalent to those described for 
the other models; only the form of the modifications differs. 

More than Three Factors (Einhorn & Hogarth, 1985, 1988) 

An example of a model which is more complex than those in Table 1 is presented 
by Einhorn and Hogarth (1985). The model was proposed primarily as a model of 
likelihood judgments for options involving ambiguity. One possible adaptation to 
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the choice task can be summarized as (P + A * P’) * U, where P’ is an ambiguity- 
dependent probability function, in contrast to P, which is independent of the 
presence of ambiguity. For example, in Einhorn and Hogarth’s model, P’ = 
(1 - P - PB), where /I is a measure of the individual’s attitude toward ambiguity in 
situations of the considered type and represents a differential weighting of probabil- 
ity values above and below P. This generalized form of their model is just one of 
many possible polynomial forms utilizing more than three factors. An alternative 
choice model, involving more than four factors, is described by Einhorn and 
Hogarth (1988). 

Other Forms 

Other models have been developed to describe decisions under risk, which can be 
generalized to choice under ambiguity in the same way that we have generalized the 
statistical decision theory model. One example is portfolio theory as described by 
Coombs and Meyer (1969) and Coombs and Huang (1970). Portfolio theory 
describes choice under risk via a preference plane over the two dimensions of 
expected value and risk. The variable of risk is left undefined. However, the model 
does propose several assumptions about the effects of changes in the option 
parameters upon perceived risk. Portfolio theory can be adapted to represent choice 
under ambiguity by including ambiguity as another parameter which influences the 
undefined variable of perceived risk. In other words, perhaps ambiguity is just 
another form, or aspect, of risk which can be incorporated into the theory. 

Differentiating the Models 

Which, if any, of the models in Table 1 best describes subjects’ reactions to 
ambiguity in choice situations ? The models which have been proposed in the 
literature, and which have been generalized to the forms in Table 1, differ in two 
respects. Each involves a different definition of the ambiguity function A used to 
modify Model 1; and the models differ in the composition rule for combining the 
function A with the functions P and U. These two differences are separable, 
representing two distinct descriptive issues: How is ambiguity operationally 
defined? and What is the model of choice? The present state of knowledge 
regarding each of these questions is incomplete and worthy of attention. Curley, 
Young, and Yates (1989) and Budescu and Wallsten (1985) describe experimental 
approaches for the first of these issues; the present studies address the second. 

There is a benefit to separating the issues of defining the function A and of 
modeling choice behavior. By differentiation of the models without explicit 
specification of the ambiguity function A, the results of the investigation may be 
generalized beyond the specific operationalizations of ambiguity that have been 
used in the literature. This allows analyses among the more general versions of the 
models shown in Table 1, rather than specific versions of those models which incor- 
porate particular characterizations of ambiguity, including those explicit in the 
literature. 

Testing among models which contain an ambiguity factor A that is not defined 
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appears problematic, but it is not untenable. The situation parallels several which 
have appeared in the literature. One example is that of models of choice which 
incorporate “risk” as a construct, in the absence of a well-characterized concept of 
risk (e.g., Coombs, Donnell, & Kirk, 1978; Coombs & Huang, 1970; Libby & 
Fishburn, 1977; Slavic, 1964). The approach is to extract some property, or proper- 
ties, of the undefined concept about which there is consensus. The consensual 
properties are then included as assumptions in the testing of the model. In fact, 
authors have used a similar approach in handling the issue of defining risk. Proper- 
ties of risk are used in developing possible models, which can then be axiomatized 
and examined in detail (e.g., Lute, 1980; Pollatsek & Tversky, 1970). 

A similar strategy has been employed in demonstrations of the influence of repre- 
sentativeness upon judgments (Kahneman & Tversky, 1972, 1973; Tversky & 
Kahneman, 1971). Options are devised about which there is consensus as to their 
ordering with respect to representativeness. It is then demonstrated, using these 
options, how subjects’ behavior depends upon the concept of representativeness, a 
concept which is not well-defined. 

The present research involves two studies designed to illuminate the issue of 
descriptive models of choice under ambiguity. Study 1 provides a test of Model 2. 
The study was also designed to obtain approximate measures of the strength of 
ambiguity reactions using a choice paradigm. To date, such measures have only 
been elicited using pricing procedures (Becker & Brownson, 1964; Yates & 
Zukowski, 1976). However, a subject’s behavior in a pricing task does not 
necessarily generalize to choice situations (Goldstein, 1985; Goldstein & Einhorn, 
1987; Grether & Plott, 1979; Lichtenstein & Slavic, 1971). Study 2 examines the 
three-factor Models 3-6, using procedures derived from the theory of conjoint 
measurement. The study also addresses the described adaptation of portfolio theory 
for ambiguous choice situations. 

EXPERIMENT 

Both Studies 1 and 2 were conducted in a single experimental session with the 
same subject population. They involved similar stimuli and experimental tasks. The 
general method used in the experiment opens this section. 

General Method 

Subjects 

Thirty-one undergraduates at the University of Michigan participated in fullill- 
ment of a requirement of several introductory psychology courses. Each of the 
subjects took part in both studies. Subjects worked individually in the presence of 
the experimenter. They were not paid for their participation, but were able to 
actually play three of the lotteries they viewed, receiving their winnings. The 
maximum payoff for the three lotteries was $30, and the minimum payoff was $0. 
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Lotteries 

A general representation of an ambiguous lottery appears in Fig. 2. There is an 
imprecise probability p of receiving the outcome x, and a complementary imprecise 
probability of receiving nothing. The probability of the outcome x may lie 
anywhere within the interval [Pmin, P,,,], having range R = P,,, - Pmin and 
center P. Three parameters specify the lottery: the center of the interval P, the out- 
come x, and the range of imprecision R. In general, whenever R > 0, the lottery is 
ambiguous; and when R= 0, the lottery is nonambiguous. All the lotteries in 
Studies 1 and 2 were of this form. 

Procedure 

The experiment involved a number of lotteries among which the subject indicated 
his or her preferences by ordering a set of cards, each of which contained a lottery 
display. Each lottery had two possible monetary outcomes. The outcomes depended 
upon the draw of a poker chip from a bag containing 100 chips. All lotteries 
involved a common live-step playing procedure. This procedure, and the displays 
used to represent the lotteries, were described by written instructions. One of the 
displays used to demonstrate the procedure was Lottery 2, shown in Fig. 3. The 
description of the steps in playing this lottery, as presented in the instructions, 
follows: 

1. Receive a bag containing 60 chips. Each of the chips in the bag is either 
BLUE or WHITE. You do not know how many of the 60 chips are BLUE, or how 
many are WHITE. You know only the total number of chips in the bag, and that 
each chip is either BLUE or WHITE. You cannot check the contents of this bug. It 
is these 60 unknown chips that are represented by the black region of the bar 
graph. 

2. Designate either BLUE or WHITE as your WINNING color for this 
lottery. Note that the bag is in your possession (even though you cannot yet check 

py ’ 
L 

P 
max 

T  

P R 

P A- 
ml” 

$0 0 

1-P 

FIG. 2. Representation of an ambiguous lottery and the notation used to describe the features of the 
lottery. 
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PC4 Winning Region (Green) 

Ed Unknown Region 

0 Losing Region (Red) 

FIG. 3. Display of Lottery 2, a sample lottery used in the experiment. A green region represents 10 
winning ($5) chips, a red region represents 30 losing ($0) chips, and 60 chips are of unknown color and 
not known to be either winning or losing. 

its contents), and therefore the bag’s contents cannot be biased either for or against 
you after you designate your color. 

3. Place 10 WINNING chips [green region] and 30 LOSING chips [red 
region] in the bag already containing 60 chips. Thus, the bag contains 10 chips that 
you know are WINNING chips, 30 chips that you know are LOSING chips, and 
60 chips that may be any combination of WINNING and/or LOSING chips. 

4. Draw a chip without looking. If the chip is a WINNING chip, you receive 
the upper amount pictured in Lottery 2 of $5; if the chip is a LOSING chip, you 
receive the lower amount shown of $0. 

5. At this point, you may check that the bag contains what it is said to 
contain. If the bag does not contain what it should and you did not win, then the 
lottery is repeated. 

The instructions also described the experimental task and the procedure by which 
the three lotteries would be picked for the subject to play. 

Following the instructions, the subject’s understanding of the lottery displays was 
tested by having the subject describe to the experimenter the playing procedure for 
two sample lottery displays. The subject was then reminded: (a) that the task was 
to rank, in order of preference, sets of lottery display cards; (b) that all the lotteries 
involved 100 total chips, though the numbers of WINNING, LOSING, and 
unknown chips varied; (c) that all lotteries had two possible outcomes, though the 
outcomes varied between lotteries; and (d) that three of the lotteries would be 
played at the end of the session, that the selected lotteries would partly depend on 
their preferences, and that the subject would receive the sum total of the winnings 
from the three lotteries. 

Regarding this latter point, it was noted that some of the lotteries involved losses, 
and that the total winnings of a subject could be negative. In such an event, they 
received SO. However, losses were real to the subject in the sense that a loss in one 
lottery could cancel a win that the subject would otherwise have received from 
another of the three lotteries played. 

After any questions, subjects participated in Studies 1 and 2 of the experiment, 
in that order. The details of the procedures of these studies are presented below 
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conjoint analysis is its ability to reject polynomial models, an ability which can 
greatly advance the present goal of narrowing the set of possible models. 

At the same time, conjoint measurement has a major weakness. The theory 
basically does not accommodate any errors. Even one violation of a property, in 
principle, is to be interpreted as a failure of the property and any model for which 
the property is necessary. In applying the theory to empirical data, a softer stand, 
one which allows errors, must be developed. To do this, a number of error theory 
proposals that may be useful for particular applications have been advanced (cf. 
Weber, 1984, for a review of various proposals). However, there is no currently 
accepted approach for handling errors. 

Diagnostic Properties 

The necessary conditions of diagnostic importance for the polynomials in Table 1 
are independence conditions. The properties are defined in this section for three 
factors, labelled X, Y, and Z. The relation aP is used to designate the preference 
relation “is at least as preferred as.” 

A factor X is said to be independent of a factor Y, holding a factor Z constant, 
if and only if, for all x, , x2 in X, z, in Z, 

for some y, implies that 

Xl YZZI 2, x2 YZZI 

for every y, in Y. Thus, X is independent of Y holding Z constant if the ordering 
induced on X with Y and Z fixed is independent of the level of Y. This 
independence relation is summarized as X; Y : Z, and is illustrated by Fig. 8. The 
ordering represented by each of the three line segments in the figure must be the 
same to support the conclusion that the property of independence X; Y: Z holds. 
This must be true for each of the planes in the figure defined by the level at which 
Z is fixed. However, the ordering over X does not need to be the same for all levels 
of Z. For example, the independence property X; Y: Z implies that if the option 
designated by Cell a (Fig. 8) is preferred to the option designated by Cell b, then 
Cell a’ must be preferred to Cell b’; it is not implied that Cell c must be preferred 
to Cell d. 

For simple polynomial models, the relation X; Y: Z is a necessary condition for 
factors X and Y which combine additively, X+ Y, or for factors X and Y which 
combine multiplicatively, X* Y, with Y assuming only positive values. For three 
factors, there are six possible independence properties: X, Y: Z, X; Z : Y, r; X: Z, 
XZ:X, Z;X: Y, and Z; Y:X. 

For the related condition of sign dependence, the set of levels of the factor Y is 
partitioned into three sets: Y+, Y”, and Y-. A factor X is said to be sign dependent 
on Y, holding Z constant, if and only if Y can be so partitioned with: 
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Procedure 

Within the general experimental procedure, already presented, the following was 
the specific procedure for Study 1. Subjects were given four lotteries at a time and 
were asked to order these according to preference. One of the four-lottery sets, 
Set l-l, is displayed in Fig. 5. Each set contained an ambiguous Lottery A 1 having 
a winning outcome x1 ($10.01 ), an ambiguous Lottery A, having a smaller winning 
outcome x2 (SlO), a nonambiguous Lottery N, having winning outcome x1, and a 
nonambiguous Lottery N, having winning outcome x2. For all ambiguous lotteries 
A in Study 1, the number of unknown chips was 40. For ail nonambiguous lotteries 
N, the number of unknown chips was 0. The losing outcome was $0 for all lotteries. 

For ambiguous options, we interpret the center of the unknown probability inter- 
val as the best-guess probability for the nonzero outcome x. Thus, the best-guess 
probability P = SO for all the lotteries in Fig. 5. This is primarily by assumption, 
although subjects, when asked, agreed with this assumption. Subjects uniformly 
believed that blue and white were equally likely in the composition of the bags of 
unknown chips in all Lotteries A, and A, used in the study. 

Clearly, Lottery N, dominates N, in each lottery set; and similarly, Lottery A, 
dominates A,. These dominance relations were required of each subject’s rankings. 
Under these dominance constraints, six rankings of the four lotteries in each set 
were possible (from most to least preferred within each set): 

1. N,, N,, A,, A,; 

2. A,, A,, N,, N,; 

3. N,, A,, N,, A,; 

Lottery N. Lottery A, 

Lotlery N, Lottery A2 

$10 50 

FIG. 5. Displays of Lotteries N,, A,, N,, and A, included in Set l-l of Study 1. 
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4. A,, N,, Al, N,; 

5. N,, A,, AZ, N,; 

6. A,, N,, Nz, A,. 

If a subject used a lexicographic decision rule, then he or she would respond 
with either Ranking 3 or Ranking 4. Ranking 3 signifies a lexicographic form of 
ambiguity avoidance; Ranking 4 signifies a lexicographic form of ambiguity seeking. 
If a subject was trading off expectation and ambiguity, then he or she would 
respond with either Ranking 1 or Ranking 2. Ranking 1 signifies non-lexicographic 
ambiguity avoidance; Ranking 2 signifies non-lexicographic ambiguity seeking. 
Rankings 5 and 6 are consistent with neither a tradeoff nor a lexicographic model, 
and were used for comparison. 

Eight series of four-lottery sets were presented to each subject. The eight series 
are summarized by Table 2 and detailed in Table 3. First, consider Series 1, which 
is outlined in the second columns of Tables 2 and 3. This series involves systemati- 
cally increasing X, the winning amount, upward from $10 for Lotteries A, and Nr. 
Suppose the subject gave Ranking 1 for the first lottery in this set, Set l-l (the set 
illustrated by Fig. 5). The subject was characterized as willing to trade off SO1 to 
avoid ambiguity in the vicinity of P = .50. This was concluded from the preference 
for Lottery N, over Lottery A,. The subject then received Set l-2 to determine if 
he or she would be willing to trade off $.05, and so on, until a point was reached 

TABLE 2 

Summary of the Eight Series of Four-Lottery Sets (Study 1) 

Series i 

1 2 3 4 5 6 7 8 

Winning 
Amount 

OfA,, N, 

varies varies 
$lO.Ol-$14 $10 $10 $10 $10.01~$18 $10 $10 $10 

Winning 
Probability 

PforA,, N, 
SO 

varies 
.5 lb.70 SO SO .25 

varies 
.26-.45 .I5 .75 

Winning 
Amount 

of AZ, N, 
$10 

varies 
$10 %9.99-$6 $10 $10 

varies 
$10 %9.99-$7.33 $10 

Winning 
Probability 

Pfor A,, N, 
.50 .50 .50 

varies 
.49-.30 .25 .25 .75 

varies 
.74-.55 

Note: All lotteries were two-outcome lotteries, with losing amount $0, involving one draw from a 
bag containing 100 poker chips. Ambiguous lotteries A, and A2 had 40 unknown chips; nonambiguous 
lotteries N, and Nz had 0 unknown chips. 
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TABLE 3 

Values of the Varying Parameter and Manipulations Used in Each 
of the Eight Lottery Series (Study 1) 

Series i with Manipulations 

1 2 3 4 5 6 7 8 

XT pt Xl Pl x T pt Xl Pl 
near near near near near near near near 

Set i-n P=.50 P=.50 P=SO P=SO P=.25 P=.25 P=.75 P= .75 

i-1 

i-2 
i-3 
i-4 
i-5 
i-6 
i-l 
i-8 

$10.01 
$10.05 
$10.20 
$10.60 
S11.00 
$12.00 
$13.00 
$14.00 

- $9.99 
- $9.95 
.51 $9.80 .49 
53 $9.40 .47 
55 $9.00 .45 
.60 $8.00 .40 
.65 $7.00 .35 
.70 $6.00 .30 

$10.01 
$10.05 
$10.40 
S11.20 
$12.00 
$14.00 
$16.00 
$18.00 

$9.99 - 
$9.95 - 

.26 $9.87 .74 

.28 $9.60 .72 

.30 $9.33 .70 

.35 $8.67 .65 

.40 $8.00 .60 

.45 $7.33 55 

NOW: In describing the manipulations, P represents the winning probability of the lotteries in Set i 
for which that probability varies. Similarly, x represents the winning amount of the lotteries in Set i for 
which that amount varies. The arrows indicate the direction in which the probability or amount was 
altered, and the neighboring probability of winning for each series is also shown. For each series, 
subjects saw Sets i-n in order of increasing n. 

at which the subject no longer responded with Ranking 1 for this series. In this way, 
using a choice paradigm, an approximate measure of the subject’s strength of 
reaction to ambiguity in the vicinity of P = 50 was obtained by systematically 
increasing x. 

Similarly, Series 2 provided an approximate measure of the strength of ambiguity 
reactions in the vicinity of P = SO by systematically increasing P, Series 3 in the 
vicinity of P = SO by decreasing x, Series 4 in the vicinity of P = SO by decreasing 
P, Series 5 in the vicinity of P = .25 by increasing x, Series 6 in the vicinity of 
P = .25 by increasing P, Series 7 in the vicinity of P = .75 by decreasing x, and 
Series 8 in the vicinity of P = .75 by decreasing P. These manipulations are sum- 
marized in the top row of Table 3, with the values that were used for the varying 
quantity in each series being listed in the body of the table. 

Decreasing values of P and x were not used in the vicinity of P = .25 because of 
the “floor” of P = 0 that does not allow sufficient variation in P. Similarly, P = 1 
acts as a “ceiling” which prohibits increasing P in the vicinity of P = .75. In the 
vicinity of P = .50, no “ceiling” or “floor” operates. Both increasing and decreasing 
P and x series were included in this region so as to compare the results at P = .50 
with the results at P = .25 and P = .75, respectively. 

Series 1 and 2 were presented concurrently. Both involved Lotteries A, and N,, 
having best-guess probability P = .50 of receiving the nonzero outcome x = $10. The 
other two lotteries in each set, A i and N,, were varied. The subject received 
Set l-l, and ranked the four lottery cards according to preference. The subject then 

so,33 4.3 
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received Set 2-3 and ranked that set. The subject continued receiving cards from 
alternate sets, moving down through each series, as long as either Ranking 1 or 
Ranking 2 was obtained. Once a ranking from Rankings 3 through 6 was given, 
that series was ended. Thus, for each subject, for each series, the crossover point 
between Rankings 1 and 2 and Rankings 3 through 6 was determined. 

Series 3 and 4, like Series 1 and 2, were presented concurrently, as were Series 5 
and 6 and Series 7 and 8. The order of presentation of these series pairs was 
randomized across subjects. 

Measures 

For Lottery Set i-n within Series i, let E,(i-n) designate the expectation of 
Lotteries A, and N,, and let E,(i-n) designate the expectation of Lotteries A, 
and N,, using the best-guess probabilities for the lotteries in calculating these 
expectations. Then, for Series 1 and 2, E2( l-n) = E,(2-n) = $10 * .50 = $5 for all the 
lottery sets, and E,(i-n) increases as each of these two series progresses (as n 
increases). The lotteries in Series 1 and 2 increase in a systematic fashion, with 
E,( l-n) = E,(2-n), for n 2 3. Further, since E2( l-n) = E2(2-n) = $5, for all n, it also 
holds that 

E,( l-n) - E,(l-n) = E,(2-n) - E,(2-n). 

In fact, all eight series in Tables 2 and 3 are designed such that 

E,(i-n) - E,(i-n) = E,(j-n) - Ez(j-n) (1) 

for all Series i and j in Study 1 for n 3 3. This also holds approximately for n = 1 
and n = 2. Since Eq. (1) holds for all the series, a measure of ambiguity reactions 
which is comparable across series is specifiable. The standardized ambiguity- 
avoidance measure for Series i is defined by 

i 

E,(i-N) - E,(i-N), for i-N having Ranking 1 

SA(i) = E,(i-N) - E,(i-N), for i-N having Ranking 2 

0, for i-l having Ranking 3 through 6, 

where i-N is the last set in Series i having a ranking of 1 or 2. Thus, SA(i) is 
positive for ambiguity-avoiders who respond with Ranking 1 to Set i-l, negative for 
ambiguity-seekers who respond with Ranking 2 to Set i-l, and 0 for those who do 
not trade off to avoid or seek ambiguity, responding with Rankings 3 through 6 to 
Set i-l. 

For example, suppose a subject gave Ranking 1 for Sets l-l through 1-3, and 
then responded with Ranking 5 for Set l-4. For this subject and this series, N = 3; 
thus, $20 was traded off to avoid ambiguity, but $.60 was not. The series would 
be ended at this point. The subject was willing to trade off an expectation 
SA( 1) = E,( l-3) - E,( l-3) = $5.10 - $5.00 = $.lO. Alternatively, suppose a subject 
responded with Ranking 2 for Sets 2-3 through 2-5, and then responded 
with Ranking 4 for Set 2-6, having N = 5. Then, SA(2) = E,(2-5) - E,(2-5) = 
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$5.00 - $5.50 = -$.50. The subject was willing to trade off $.50 in expectation to 
play a more ambiguous lottery, the negative sign signifying ambiguity seeking. 

For each Series i for each subject, the strength of ambiguity avoidance was 
measured by SA(i). The measure is a conservative indicator of ambiguity reactions, 
being a lower bound for the magnitude of a subject’s reaction to ambiguity, 
whether positive or negative. The exemplar subject of the previous paragraph with 
SA( 1) = $. 10, for instance, might actually have been willing to trade off more than 
$.20 to avoid ambiguity in Series 1. The subject’s maximal tradeoff may have been 
anywhere within the interval [$.20, $.60), implying that SA( 1) could lie within 
[S.lO, $.30). The lower quantity, in absolute value, was taken as our estimate of the 
subject’s strength of ambiguity avoidance, and the definition of SA(i) stated 
appropriately. 

Results and Discussion 

Regarding the validity of the lexicographic model, Model 2 in Table 1, each sub- 
ject’s response to the first set within each series was noted. The response frequencies 
are displayed in Fig. 6. Using the frequencies of Rankings 5 and 6 for these first sets 
as error rates, Rankings 1 and 2 were significantly more prevalent (two-tailed 
binomial, p < .OOl for all eight tests). The frequencies of Rankings 3 and 4 did 
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0" 
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P = .25 

@ Rankings 1 and 2 

x Ranking 1 

0 Ranking 2 

V Rankinos 3 and 4 
P Rankings 5 and 6 

P = so P= 75 

I I I I I I I I 
5-1, xt l-i, x t 3-1, x c c 

6-3. p t t + 

7-l. x 

2-3. D 4-3. P 8-3. P 4 

First Set in Series, Manipulation 

FIG. 6. Frequencies of Rankings 1 through 6 as responses in each of the first sets in Series 1 through 
8 of Study 1. The manipulation used for each series and the neighboring probability P are indicated. 
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not significantly exceed those of Rankings 5 and 6 (p > .l for all tests). Further, the 
frequencies of Rankings 1 and 2 exceeded those of Rankings 3 and 4 (p-c .02 for 
all tests). 

This consistent pattern of results across levels of P and manipulations implies 
that subjects were indeed willing to trade off expectation in their reactions to 
ambiguity. The lexicographic response patterns, Rankings 3 and 4, did not exceed 
a chance rate of occurrence. Thus, the lexicographic model was clearly inadequate 
as descriptive of subjects’ choices. 

Comparing the frequency of Ranking 1 to that of Ranking 2, an effect of the level 
of the best-guess probability was observed. Ranking 1 predominated near P = .50 
and P = .75 (p < .02 for all tests), with Ranking 2 not exceeding the frequencies of 
Rankings 5 and 6 (p > .3). However, near P = .25, the frequency of Ranking 1 did 
not significantly differ from those of Rankings 5 and 6 (p > .l ), but the frequency 
of Ranking 2 did (p < .02). Moreover, the frequencies of Rankings 1 and 2 did not 
significantly differ (p > .l ). 

Since, at P = .25, there was a significant reaction to ambiguity, in that the fre- 
quencies of Rankings 1 and 2 exceeded a chance rate, and since Ranking 1 did not 
predominate, a significant level of ambiguity-seeking behavior was identified. This 
result, in contrast with that reported by Curley and Yates (1985), is most likely 
attributable to the greater sensitivity of the present analysis. The lack of a signili- 
cant difference between the frequencies of Rankings 1 and 2 was comparable to the 
test for ambiguity seeking used in the Curley and Yates study, which failed to iden- 
tify the behavior. In agreement with that study and others, ambiguity avoidance 
predominated at P= .50 and P= .75. Interestingly, there was no indication of 
ambiguity seeking at either of these probability levels. 

The positive relationship between ambiguity avoidance and the probability level 
P is also evidenced by Fig. 7, which shows the mean standardized ambiguity- 
avoidance measure SA(I’) for each Series i. The 95 % confidence interval for each 
mean measure is also indicated by the figure. Comparison of series across levels of 
P, involving either changes in P or x, reveals that the mean SA measure differs 
between all pairs of P values, P = .25, .50, and .75 (two-tailed t(30), p < .05 for all 
tests). 

The different within-P manipulations did not differ at any of the three levels of 
P (p > .05 for all tests). Thus, there is some consistency in the mean SA measures 
obtained. In the neighborhood of P = .75, subjects, on average, were willing to give 
up an expectation of S.65 to avoid the ambiguous option. Near P= .50, subjects 
would give up an expectation of approximately $.31 to avoid the ambiguous option. 
Near P = .25, subjects were willing to trade off an expectation of $.14 to obtain the 
more ambiguous option over the nonambiguous one. 

The value of $.31 near P = SO is comparable to the value obtained by Yates and 
Zukowski (1976), who used a pricing task and slightly different lotteries. That study 
and the present study both obtained values greater than those reported by Becker 
and Brownson (1964) in the region of P = .50. The latter study also used a pricing 
procedure, but did not encourage honest reporting of subjects’ values. 
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P = .25 P = .50 P = .75 

5. x t 1, x t 3. x c 7. x 4 
6. P t 2, p t 4. p t 8. P 4 

Series, Manipulation 

FIG. 7. Mean standardized ambiguity-avoidance measure m for each of Series 1 through 8 used in 
Study 1, along with the 95% confidence interval for each mean value. The manipulation used for each 
series is indicated. 

Study 2 

Study 1 indicated that the lexicographic model, Model 2, could be eliminated as 
a viable model of choice under ambiguity. Model 1. has also been rejected, in that 
it does not account for the reactions to ambiguity that subjects have displayed. 
Study 2 was designed primarily to evaluate the remaining models in Table 1, the 
three-factor models, Models 3-6, but also provided evidence for evaluating the 
adaptation of portfolio theory that was described. The study examined the polyno- 
mial models by means of analyses based on the theory of polynomial conjoint 
measurement, which originated with Lute and Tukey (1964). The conjoint-analytic 
approach to differentiating polynomial models involves a series of necessary proper- 
ties which are tested as part of a diagnostic procedure (Krantz & Tversky, 1971). 
The procedure that was used involved several modifications to the analytic process 
and tests described by Krantz, Lute, Suppes, and Tversky (1971), and is described 
in more detail by Curley (1986, 1989). 

One of the clear benefits of conjoint analysis is that it makes minimal scale 
assumptions about the data. In particular, only the ordering of options with respect 
to the undefined ambiguity factor is required for differentiation among the models. 
As such, conjoint analysis is a very robust procedure. A second attraction of 
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conjoint analysis is its ability to reject polynomial models, an ability which can 
greatly advance the present goal of narrowing the set of possible models. 

At the same time, conjoint measurement has a major weakness. The theory 
basically does not accommodate any errors. Even one violation of a property, in 
principle, is to be interpreted as a failure of the property and any model for which 
the property is necessary. In applying the theory to empirical data, a softer stand, 
one which allows errors, must be developed. To do this, a number of error theory 
proposals that may be useful for particular applications have been advanced (cf. 
Weber, 1984, for a review of various proposals). However, there is no currently 
accepted approach for handling errors. 

Diagnostic Properties 

The necessary conditions of diagnostic importance for the polynomials in Table 1 
are independence conditions. The properties are defined in this section for three 
factors, labelled X, Y, and Z. The relation aP is used to designate the preference 
relation “is at least as preferred as.” 

A factor X is said to be independent of a factor Y, holding a factor Z constant, 
if and only if, for all x, , x2 in X, z, in Z, 

for some y, implies that 

Xl YZZI 2, x2 YZZI 

for every y, in Y. Thus, X is independent of Y holding Z constant if the ordering 
induced on X with Y and Z fixed is independent of the level of Y. This 
independence relation is summarized as X; Y : Z, and is illustrated by Fig. 8. The 
ordering represented by each of the three line segments in the figure must be the 
same to support the conclusion that the property of independence X; Y: Z holds. 
This must be true for each of the planes in the figure defined by the level at which 
Z is fixed. However, the ordering over X does not need to be the same for all levels 
of Z. For example, the independence property X; Y: Z implies that if the option 
designated by Cell a (Fig. 8) is preferred to the option designated by Cell b, then 
Cell a’ must be preferred to Cell b’; it is not implied that Cell c must be preferred 
to Cell d. 

For simple polynomial models, the relation X; Y: Z is a necessary condition for 
factors X and Y which combine additively, X+ Y, or for factors X and Y which 
combine multiplicatively, X* Y, with Y assuming only positive values. For three 
factors, there are six possible independence properties: X, Y: Z, X; Z : Y, r; X: Z, 
XZ:X, Z;X: Y, and Z; Y:X. 

For the related condition of sign dependence, the set of levels of the factor Y is 
partitioned into three sets: Y+, Y”, and Y-. A factor X is said to be sign dependent 
on Y, holding Z constant, if and only if Y can be so partitioned with: 
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\ 
\ Z 

FIG. 8. Diagram demonstrating the independence property X, Y : Z. Shown are three levels of each 
of the three variables A’, Y, and Z. Line segments connect those cells whose orderings are to be com- 
pared. Letters denote exemplar cells in the diagram: a, a’, a”, b, b’, etc. 

(i) independence holding over each of Y+ and Y- separately, that is, 
X, Yf : Z and X; Y- : Z hold; 

(ii) any ordering induced on X with Y+ and Z fixed being the reverse of any 
ordering induced on X with Y- and Z fixed; 

(iii) the ordering over X with Y” and Z fixed being degenerate. 

The sign dependence relation is summarized as X; Y* : Z. 
In Fig. 8, any nondegenerate ordering over the cells connected by a line segment 

would have to be either identical to or the exact reverse of any ordering over the 
cells connected by other line segments. The direction of the orderings separates the 
levels of Y into the two categories Y+ and YP, with indifference over all the cells 
connected by a particular line segment characterizing levels in the category Y”. 

Note that sign dependence does impose a requirement across levels of Z. For 
example, suppose Cell a is preferred to Cell b (Fig. 8). We can arbitrarily label the 
level of Y for these cells as being within the category Y+. Further suppose Cell b’ 
is preferred to Cell a’. This implies that the level of Y for these cells is necessarily 
within the category Y-. Now, if Cell c is preferred to Cell d (this is not a necessary 
implication of X; Y* : Z) when the level of Y is within Y+, then it is implied that 
Cell d’ must be preferred to Cell c’ when the level of Y is within Y-. Similarly, if 
the subject is indifferent between Cell a” and Cell b”, indicating that the level of Y 
for these cells is within Y”, then the property implies that the subject should be 
indifferent between Cell c” and Cell d”. 

For simple polynomial models, the relation X; Y * : Z is a necessary condition for 
factors X and Y which combine multiplicatively, X * Y, with Y assuming positive 



416 CURLEY AND YATES 

and nonpositive values. Similarly to independence, there are six properties of sign 
dependence possible for the three-factor case. Which of the two properties, X, Y: 2 
or X; Y* : 2, is appropriate depends upon the structure of Y. 

Other diagnostic properties which are available, but which were not important in 
Study 2, are the joint independence properties and various cancellation conditions. 
Their use in practical applications of the conjoint measurement axioms is described 
by Curley (1989), and their use in Study 2 is presented by Curley (1986). 

In applying the tests implied by conjoint measurement theory within Study 2, the 
three factors comprised in the models--d, P, and U-were varied. Operationally, 
lotteries of the form described by Fig. 2 were employed which differed in the non- 
zero outcome x (factor U), the central probability P of the nonzero outcome 
(factor P), and the uncertainty R about this probability (factor A). The analytical 
measures used in Study 2 are described along with the results. 

Procedure 

Within the general experimental procedure and following the procedure for 
Study 1, both already described, the following was the procedure specific to 
Study 2. Two-outcome lotteries were presented on cards, using displays like that in 
Fig. 3. For all lotteries, $0 was one of the outcomes; the nonzero outcome x was 
varied. All lotteries involved 100 chips, with the number of winning, losing, and 
unknown chips varying among lotteries. Subjects were reminded of these lottery 
characteristics, and then informed of the experimental task. 

Subjects ranked sets of ten lotteries according to their preference among the 
lotteries, from most to least preferred. To aid in this task, the following method of 
accumulation was suggested (Coombs & Bowen, 1971). The subject begins with 
two lotteries from the set and decides which is preferred. The card with the 
preferred lottery is placed to the left of the other. The remaining eight lotteries, one 
at a time, are then placed relative to those already ordered. Finally, the subject 
checks the final ordering for any corrections. This method was suggested, but 
subjects were advised to use whatever method they felt appropriate, as long as the 
ordering was obtained. 

Nineteen lotteries were used in the study, allowing the use of a balanced incom- 
plete block design. Nineteen sets of lottery cards, each consisting of 10 lotteries, 
were ranked by each subject. The order of the sets was randomized across subjects. 
The design has an efhciency of 95%, and provided live replications of each lottery 
pair (Cochran & Cox, 1957). 

Eighteen of the lotteries were the factorial combination of two or three levels on 
three factors: U (2 levels), P (3 levels), and A (3 levels). The levels used were: 

U: x= $10 and -$lO 

P: P = .25, .50, and .75 

A: R = 0, .20, and .50, 

where x was the nonzero outcome with best-guess probability P of occurring and 
R was the range within which the probability p was uncertain. For example, the dis- 
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plays for the three lotteries having x = -$lO and P = .50 are illustrated by Fig. 9. 
The levels of P and R were chosen so as to span the sets of possible values. The 
values of x were selected to obtain tests of sign dependence, particularly of A, upon 
the factor U. In addition to these eighteen, the lottery having x = $5, P = .50, and 
R = .50 was added. This particular lottery was included to provide insight into the 
application of portfolio theory as a choice model under ambiguity, as described 
with the results. 

Results and Discussion 

Consistency. The live replications of each lottery pair allowed a determination 
of the consistency of subjects’ responses. Note that, of the 19 lotteries in the design, 
10 offered either a gain or nothing and nine promised either a loss or nothing. 
Clearly, the former dominated the latter, and this dominance should be reflected in 
a subject’s rankings. In addition, for the 18 lotteries in the factorial design, there 
was a probability dominance present. That is, within the 9 lotteries involving a gain 
or nothing, those having P = .75 dominated those having P = .50, which in turn 
dominated those having P = .25. This was true regardless of the level of R, for the 
values of R included in the study. The 18 lotteries in the factorial design were 
thereby partitioned into 6 groups of three lotteries each, as defined by the levels of 
P and x. One of these groups is shown by Fig. 9. 

Intrasubject consistency was measured within these groups by Kendall’s (1970) 
coefficient of agreement U. In the present design, values ranged between u = -.20, 
indicating minimal consistency, and u = 1.0, indicating maximal consistency. A coef- 
ficient was determined for each subject, for each of the 6 groups of lotteries, 
separately; its values are listed in Table 4. The coefficients indicate considerable 
intraindividual consistency. For example, 71.0 % of the coefficients were at or above 

R=O 

R = so 

50 25 

~$10 25 

R = .20 

FIG. 9. Displays of the three lotteries in Study 2 having x = -$lO and P= SO. 
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TABLE 4 

Frequencies of the Coefkients of Agreement, Study 2 

f Signiticance level” 

-.20 9 
-.07 8 

.07 13 

.20 11 

.33 13 

.47 18 

.60 16 

.73 34 
1.00 64 

p<.os 

pi.01 
p<.ool 

’ Statistical significance of values of u this extreme, on the assump- 
tion that responses were allotted purely at random. 

the value u = .47, with p < .05, in comparison with the model stating that subjects 
behaved randomly. Thus, the reliability of the subjects’ responses was accepted, in 
that there was consistency of their responses among the replications. 

Preference Ordering. In order to apply the independence properties, the 5 
replications for each lottery pair were compressed into a dominant preference 
ordering. This was done by first creating a 19 x 19 preference matrix for each 
subject. The entry in cell (i, j) of the matrix ranged from 0 to 5 and indicated the 
number of times that Lottery i was preferred to Lottery j. The entries were then 
summed over the columns, and the ordering of the row sums used as an ordering 
of the 19 stimuli for that subject. This method had the advantage of directly using 
all the information provided in the data, although an alternative method for 
producing the dominant ordering was also employed and led to equivalent results 
(Curley, 1986). 

Independence and Sign Dependence. For the present study, the six possible 
properties of independence or sign dependence were not equally diagnostic. In par- 
ticular, certain of the independence conditions were expected solely by virtue of the 
dominance relations that have been indicated. Specifically, it was expected that the 
independence properties U, A : P, U; P : A, P; A : U, and the sign dependence 
P; U* : A would obtain. 

The data supported these expectations. As summarized in Table 5, the number of 
subjects who perfectly satisfied these properties far exceeded a chance rate. Overall, 
24/31 (77.4 % ) of the subjects satisfied all four of these conditions perfectly. 

Of greater interest were the remaining two independence properties, A; P : U and 
A; U : P. First, note that the independence properties involve the extent to which 
two or more preference rankings correspond. As such, the Spearman rank correla- 
tion coefficient, rsr was used in summarizing the data. The coefficient assumes the 
value 1.0 when two rankings perfectly correspond, consistent with independence 
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TABLE 5 

Number of Subjects Perfectly Satisfying the Dominance-Implied 
Properties of Independence and Sign Dependence 

Independence/ 
Sign Dependence 

Property 

# Satisfying 
the Property 

(N=31) 

Expected # 
under Random 

Model 

U;A:P 27 .48 
U;P:A 26 .48 
P;A: U 29 .03 

P;U*:A 29 .15 

and sign dependence within the same sign category; and it assumes the value - 1.0 
when two rankings are perfectly opposed, consistent with sign dependence between 
sign categories. 

For each subject for each property, values of rs were calculated between each pair 
of orderings relevant for the property. The mean of the appropriate values of rs was 
used as an indicator of the degree to which the property obtained. For the property 
A; P : U, there were three rankings over A at each fixed level of x. A value of rs was 
determined within each of the three possible pairs which could be drawn from this 
triple of rankings. Thus, each subject’s mean rank correlation 7, was based upon six 
values of r,, there being three interdependent values of rs for each of two fixed levels 
of x. Perfect sign dependence A; P * : U was indicated by an Ys = -.33, and perfect 
independence A; P : U was indicated by an rs = 1.0. For the property A; U : P, each 
subject’s mean rank correlation r, was based upon three values of r,; one at each 
fixed level of P. Perfect sign dependence A; U * : P was indicated by an r, = - 1.0, 
and perfect independence A; U : P by an r, = 1.0. To allow for some error in 
subjects’ responding, perfect satisfaction of the properties was not required in the 
analysis. A subject whose orderings were within one pairwise reversal of either 
perfect independence or sign dependence was categorized as adequately satisfying 
the corresponding property. 

The two properties are not independent of each other; so a summary of the joint 
distribution is illustrated by Table 6. The frequencies in Table 6 indicate that nine 
subjects were within one pairwise reversal of perfect independence for both proper- 
ties, with values of r, 2 23. Since only .05 subjects would be expected to be 
classified in this cell of the table if they were responding randomly, the data support 
the existence of a group of subjects who satisfied both independence properties 
A;P:Uand A;U:P. 

There is a second, minor clustering of subjects having r, within [ - .50, -.17] for 
the property A; P : U and r, within [ -.67, -.17] for the property A; U : P. These 
subjects can be described as satisfying sign dependence A; P* : U within one 
pairwise reversal, but neither A; U * : P nor A; U : P. A better characterization of 
these subjects is possible, however, as is now described. 
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TABLE 6 

Observed Frequencies and Expected Frequencies under Random Model 
of Values J, for Properties A; U : P and A; P : U 

A;U:P 

A;P:U c-1, -X3]” [ -.67, -.17] CO, .671 [.83, 11' 

[-SO, -.17]" 
C-.08, ,671 
C.83, lib 

Actual Frequencies 

0 9 1 0 
0 2 8 2 
0 0 0 9 

Expected Frequencies 

[-SO, --.17]” SO 5.23 6.13 SO 
[ - .08, .67] .46 7.44 9.98 .46 
1.83, lib .05 .lO .I0 .05 

r? Values consistent with sign dependence version of this property within one pairwise inversion. 
* Values consistent with independence version of this property within one pairwise inversion. 

The values x = -$lO and x = $10 were selected to manipulate the factor U as a 
signed factor. It was intended that subjects would perceive the stationary outcome 
$0 as a reference point of zero utility against which x = 410 would have negative 
value and x = $10 would have positive value (along the lines of Kahneman & 
Tversky, 1979). The frequencies in Table 6 are reported under this assumption; 
however, the assumption is not a necessary requirement of the models. Suppose the 
assumption were not valid. Suppose, instead, that subjects used -$lO, or a smaller 
amount, as the reference point, against which none of the outcomes would have 
negative utility. Further, the probability P of the nonzero outcome would no longer 
be the relevant probability. Instead, P', defined as the probability of the greater out- 
come, whether $10 or $0, may be a more accurate index of the factor P. When 
x = -$lO, P = .25 implies P' = .75 and P = .75 implies P' = .25; otherwise P = P' in 
the design. Altering this assumption only affects the results for the test of the inde- 
pendence property A; U : P. The independence property under the assumption of no 
negative utilities is designated as A; U : P’ to distinguish it from the property 
A; U : P assuming negative utilities and reported in Table 6. 

Losing the assumption of $0 as a reference point apparently reduced the 
capability of the study to test the models of concern, in that the signedness of the 
factor U was not evidenced in the design and could not be exploited for model 
testing. However, the limitation was not crucial, as evidenced by the joint frequency 
distribution for the properties A; P': U and A; U : P' shown by Table 7. First, there 
is a greater number of subjects satisfying both independence properties A; P’ : U and 
A; U : P’ than random behavior would predict. This clustering of subjects was also 
noted in Table 6. However, Table 7 implies a secondary clustering of subjects whose 
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TABLE I 

Observed Frequencies and Expected Frequencies under Random Model 
of Values r, for Properties A; U : P’ and A; P : U 

A;U:P 

A;P’:U I-1. -.83]” [-.67, -.I71 lo, .67 1 C.83, Ilh 

Actual Frequencies 

[ -30, -.17]” 0 0 3 7 
[ - .08, ,671 0 1 8 3 
[.83. llh 0 0 0 9 

c-.50, -.17]O .50 
[ -.08. ,671 .46 
[.83. llh .05 

Expected Frequencies 

5.23 
1.44 

.lO 

6.13 .50 
9.98 .46 

.lO .05 

0 Values consistent with sign dependence version of this property within one pairwise inversion. 
’ Values consistent with independence version of this property within one pairwise inversion. 

reponses are now more interpretable. These are subjects who satisfied independence 
A; U : P’ and satisfied sign dependence A; P* : U. This is evidenced by the seven 
subjects (vs. SO expected if subjects responded randomly) with values of F, > .83 for 
the property A; U : P’ and values of J, Q -.17 for the property A; P’ : U. 

An important implication of this secondary clustering of subjects is that it 
represents a group of subjects who showed a sign dependence A; P* : U. This 
behavior is inconsistent with all the three-factor polynomial models of choice under 
ambiguity in Table 1. None of the three-factor models incorporates a term P which 
is signed, since P is certainly not signed in its multiplicative relationship with U. If 
it were, then, over a range of values for the probability P, a subject would prefer 
a lower probability of receiving a particular gain having positive utility. This is 
completely implausible, and therefore all of the three-factor models must be 
rejected. 

The property A; P* : U for these subjects in their choice behavior under 
ambiguity implies that they were reversing their preferences over ambiguity, 
depending upon the probability level. This process could underlie the observation 
by Curley and Yates (1985) of a positive correlation between the probability level 
P and the extent of ambiguity avoidance by their subjects as a group, as well as 
similar findings by other researchers (Einhorn & Hogarth, 1986; Goldsmith & 
Sahlin, 1982; Hogarth & Kunreuther, 1985). Moreover, the signedness of P as a 
characteristic of subjects’ behavior may be a more general phenomenon. Yates and 
Carlson (1986) hypothesized and found evidence for a similar signedness of 
likelihood judgments within a task of ordering future real-world events by their 
judged likelihood. In addition, computerized expert systems, for example, MYCIN 
(Shortliffe, 1976) and CASNET (Weiss, Kulikowski, Amarel, & Satir, 1978), have 
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used signed likelihood functions in an attempt to better approximate experts’ 
reasoning. The signedness of P, in its relation with preference over ambiguity A, is 
therefore a major finding of Study 2. 

Portfolio Theory. In addition to Models 3-6, Study 2 tested a variant of 
portfolio theory as applied to choice under ambiguity. Portfolio theory can be 
adapted to describe choice under ambiguity by including ambiguity as a factor 
which influences the undefined parameter of perceived risk. A principal feature of 
the theory is that preference is assumed to be single-peaked over risk when the level 
of expected value is fixed. Extending this viewpoint, preference would be similarly 
single-peaked over ambiguity when the expected value is fixed. This single-peaked- 
ness could result from an approach-avoidance conflict, for example, between the 
good of an increasing P,,, and the bad of a decreasing Pmin, as ambiguity increases 
(Coombs & Avrunin, 1977). Another prediction of the extended theory is that a 
subject should be indifferent between options sharing both the same expectation 
and the same level of risk/ambiguity. 

These predictions were tested in Study 2. Recall that a lottery having x = $5, 
P= .50, and R = .50 was included in the design. This lottery has the same expecta- 
tion and degree of ambiguity as the lottery having x = $10, P = .25, and R = .50, 
another of the lotteries used. Assuming that their degree of risk was the same in 
that no losses were involved, indifference should have obtained between these lot- 
teries. For each subject, there were live replications of this lottery pair. Of 31 sub- 
jects, 13 (41.9 % ) showed the same preference over all replications, and 10 (32.3 %) 
had four of the five agree. This distribution of preferences significantly differed from 
the binomial distribution, expected with random responses under indifference 
(x2= 101.75, p < .OOOl), that was predicted by the present variation of portfolio 
theory. 

Also telling with respect to the theory is the prediction of single-peakedness over 
ambiguity. If this aspect of the theory is useful, the number of single-peaked 
preference patterns would be expected to significantly exceed zero. For each subject 
in Study 2, there were six preference patterns over levels of the factor A, one at each 
joint level of the factors U and P, for which expectation was fixed. Each pattern 
could be classified as “monotonic,” if preference either increased or decreased with 
the level of ambiguity, “single-peaked,” if the lottery having R= .20 was most 
preferred, or “single-dipped,” if the lottery having R = .20 was least preferred. The 
latter pattern is inconsistent with portfolio theory, and so can be used in com- 
parison with the single-peaked pattern. Specifically, according to the theory, the 
frequency of single-peaked patterns should have exceeded the frequency of single- 
dipped patterns. Of 186 possible patterns, 48 were not monotonic. Of these 48, 25 
(52.1%) were single-peaked and 23 were single-dipped. These values did not 
significantly differ (binomial, z = .14, p > .8). 

Thus, neither test of the relevant data from Study 2 lends support to portfolio 
theory as operative under ambiguity. The possibility of portfolio theory being 
descriptive of choice under ambiguity does not appear, therefore, to offer promise. 
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GENERAL DISCUSSION 

Summary 

Ambiguous options were defined as those having uncertain outcome-generating 
processes, and were characterized as having uncertainty about the probabilities 
associated with the possible outcomes. Choices involving such options have 
manifested a significant degree of reaction to their ambiguity, typically ambiguity 
avoidance. The present research primarily addressed the descriptive modeling of 
individuals’ ambiguity reactions in choice situations. 

A descriptive model, if it can be constructed, may or may not correspond to any 
normative or prescriptive models that could be adopted to guide one’s choices. For 
example, the model of statistical decision theory has been espoused as a normative 
model of choice, even though it clearly does not describe ambiguity reactions 
(Raiffa, 1961; Roberts, 1963; Savage, 1972). Still, in that rationality is a criterion of 
normativeness, capturing ambiguity reactions by a descriptive model may aid the 
evaluation of the normative value of ambiguity reactions (Fellner, 1961). In addi- 
tion, a descriptive model can illuminate the processes whereby subjects evaluate 
alternatives in situations involving ambiguity. In so doing, the model would have 
value for the design of decision aids and could provide insight into the structure of 
realistic choice situations. 

In pursuit of the goal of description, a number of plausible models for choice 
under ambiguity were isolated. These models were general forms of models that 
have been proposed in the literature, and are listed as Models 2-6 in Table 1. Two 
studies were performed for the purpose of testing some of the necessary implications 
of these models, so as to differentiate among them. Study 1 addressed Model 2, the 
lexicographic model, and derived estimates of the extent of ambiguity reactions in 
a choice situation. Study 2 addressed Models 3-6, the three-factor polynomial 
models, and a model adapted from portfolio theory. 

Study 1. The lexicographic model of choice under ambiguity, in which expecta- 
tion serves as the first dimension and ambiguity the second, was not supported by 
Study 1. Significant reactions to ambiguity were obtained in the neighborhood of all 
three levels of the best-guess probability P used, P = .25, P = .50, and P = .75. This 
reaction was predominantly that of ambiguity avoidance at the higher levels of P, 
but significant ambiguity seeking at P= .25 was identified. The finding of 
ambiguity-seeking behavior was an important confirmation of a conjecture that 
such behavior exists. 

Subjects in Study 1 were willing to trade off a substantial percentage, on the 
order of 5-10 %, of their expected gain in their reactions to ambiguity. At P = .50, 
the magnitude of the tradeoff elicited from subjects’ choice responses, was com- 
parable to that which has been obtained using pricing procedures. 

Study 2. Four generalized three-factor models of choice under ambiguity were 
tested. Diagnostic necessary properties of these models were identified in the con- 
text of conjoint measurement theory and capitalized upon in the design of Study 2. 
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Subjects exhibited a consistency of behavior in Study 2 which allowed for the 
analyses. However, the manipulation of the factor U was not successful. Subjects 
did not behave as if $0 was a reference point against which the utilities of other out- 
comes were measured; their responses were not consistent with a negative value 
being attached to negative amounts. This conclusion apparently reduced the study’s 
ability to differentiate the models, except that a significant sign dependence 
A; P* : U obviated the need for the manipulation. The identification of subjects 
exhibiting the sign dependence A; P* : U was the major finding of Study 2. None of 
the three-factor models can accommodate the observed sign dependence. Thus, 
they, like the lexicographic model, were eliminated as plausible general models of 
choice under ambiguity. 

Similarly, the model describing choice as an adaptation of portfolio theory was 
not supported. Subjects were not indifferent between lotteries having equal expecta- 
tion and ambiguity. And subjects did not evidence a significant degree of single- 
peaked preference over ambiguity. 

Modeling Implications 

Since the majority of models that have been proposed in the literature to describe 
ambiguity reactions are special cases of the tested models, the research has 
efficiently excluded these more specific versions as possible descriptive theories, as 
well. This elimination has furthered the development of our knowledge regarding 
the goal of descriptively modeling subjects’ choice behavior under ambiguity, albeit 
in a somewhat negative fashion. In light of the results, what are the prospects for 
developing a descriptive choice model? 

Several possibilities still exist for the construction of a satisfactory model. First, 
a model using four or more factors may be both workable and descriptive. For 
example, models proposed by Einhorn and Hogarth (1985; 1986) have been 
discussed which use more than three factors within algebraic combination rules. 
Other models having more than three factors, besides these, can also be constructed 
which both generalize the statistical decision theory model and accommodate the 
property A; P* : U. An investigation of the models in the spirit of Study 2 might 
illuminate their applicability. 

A second possibility is to modify the function denoted by the factor A. Perhaps 
A should be conceived as a complex function which depends upon more than just 
ambiguity; for example, as being influenced by the probability level and the 
magnitude and type of outcomes involved. Whereas the four-factor models take the 
approach of complicating the composition rule, this approach complicates a func- 
tion within the simpler three-factor composition rules, Both approaches effectively 
involve adding terms to the polynomial model forms. 

A third possibility is to abandon the attempt of capturing decision makers’ 
behavior by a single algebraic form. A repertoire of model strategies used by 
different individuals in different settings might describe decisions better. This 
approach complicates the proposed metastrategy of subjects. Its lack of parsimony 
makes this a less attractive possibility, a priori. 
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Finally, we might attempt to rethink the model, qualitatively, and build a new 
model which is not generalized from statistical decision theory. Perhaps the use of 
the lottery as a representation of realistic decision situations is itself inadequate, 
and a more appropriate representation will lead to the construction of a more 
appropriate model form. 

Aside from implying the inadequacy of a three-factor model of choice, another 
significant implication of the observed sign dependence A; P* : U in Study 2 
concerns the likelihood function. One hypothesis which is consistent with the sign 
dependence is that subjects used a likelihood function which could assume negative 
as well as positive values. It was as if events were categorized as being likely or 
unlikely, with unlikely events treated as having negative likelihoods. This is in 
contrast to the probability function as a measure of likelihood, which has a strictly 
nonnegative range. The implications of a likelihood function of this form are 
considerable, in terms of both its impact on the psychology of descriptive choice 
theory and its impact on practical decision making and decision aids. 
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