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A novel algorithm to calculate radiative corrections to e+e annihilation which is both 
inclusive and exclusive is proposed. The method uses the structure functions formalism and is 
based on the factorization of mass singularities in the QED perturbation expansion. The general 
approach is presented together with its ability to reproduce the infrared and collinear singularity 
structure of QED as well as the all-order multiple photon radiation. Some numerical results arc 
given. 

1. Introduction 

In the last years a powerful way to calculate QED radiative corrections (RC) in 
e+e - experiments [1] has been brought to the attention of the scientific community. 
Given the need of very high precision predictions at LEP/SLC,  such an approach 
has already been used to calculate RC to inclusive quantities [2-5]. In this work we 
tackle the problem of a complete description of the evolution of a given QED 
process by using the structure function formalism. We build an algorithm which 
generates an arbitrary number of photons along with their individual 4-momenta. 
and which is suitable for a general application of RC to experimental data. 

This algorithm is intended for both inclusive and exclusive processes. By inclu- 
sive, we mean those reactions where the final state is only partially reconstructed or 
computed; in an exclusive reaction the entire observable final state is reproduced. 
Historically, inclusive calculations have always achieved high precision for a small 
subset of observables [6, 7]. At LEP/SLC,  for example, analytic formulae describe 
precisely the inclusive shape of the Z °. The entire class of weak corrections can be 
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dealt with analytically too, the reason being that no extra weak bosons are radiated. 
However, RC to data are in most cases an integral over a multidimensional space. 
There are three degrees of freedom for each observed particle. Extra dimensions and 
irregular integration boundaries are added by detector acceptances, resolutions, 

efficiencies and imposed cuts. As is well-known [8], a Monte Carlo procedure is the 
only way to perform such complex integrals. Finite-order perturbation methods, 
which are not precise in the most densely populated regions of the phase space, are 
strictly exclusive. This originates from allowing only a limited number of photons, 
which in turn forces the introduction of an unphysical cutoff. However, they were 
found suitable for Monte Carlo event generation [9] and have been far more 
extensively used in applications to experiments than inclusive methods. 

Here we present a method that both has aspects of a correct infrared behaviour 
and which allows generation of exclusive final states. The former aspect, together 
with its main consequence of a correct inclusion of multiple all-order photon 
radiation, is now believed to be a natural ingredient of any radiative correction 
scheme. It has also the feature of keeping track explicitly of the transverse degrees 
of freedom. In this we differ from other QED structure function Monte Carlos, 
which have a fixed number of photons and only a part  of the correct multiphoton 
4-momentum [10-12]. 

This paper  is organized as follows: In sect. 2 we discuss the poissonian properties 
of evolution equations in longitudinal phase space. We limit ourselves to the 
evolution of the initial state in e+e annihilation. In sect. 3 we implement 
the transverse degrees of freedom and add modifications as needed to push the 
precision of the algorithm beyond 1%. In sect. 4 we present some results and 
conclusions. 

2. The poissonian properties of evolution equations 

The analogy with QCD Drel l -Yan type processes carried out in refs. [1-5] is 
based on a Lipatov-Altarel l i-Parisi  evolution equation for electron or positron 
states which in the non-singlet channel, i.e. for the evolution of a single valence 
electron or positron state without any sea contribution, is 

= _ f ,  d , '  

P(z) is the regularized e ~ e + 3' vertex given by 

l + t  2 1 + z 2 ~ l d t  
- 3 ( 1 - Z ) J o  1 2 7  " e ( z )  1 - z  (2) 

The second (virtual) term is zero everywhere but at z = 1. The density D(x, s) 
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represents the probability of finding inside a parent electron (positron) of mass m, 
at the scale s, an electron (positron) with a fraction x of a given kinematic variable. 
According to the majority of QCD-type applications, e + and e are evolved 
independently, and we define, for now, 

x = p L / E =  1 - kcosO. (3) 

Here k is the fractional energy of the emitted photon in units of the beam energy E, 
PC is the longitudinal momentum and 0 is the angle between the emitted photon 
and the radiating leg. The cross section is derived from a convolution integral over 
the electron and positron legs 

o(s) = fdXl  d x  2 %(s') D(x1 ,  s )  D(x2, s) (4) 

and s ' =  xlx2s. Iterated and truncated to first order, eq. (1) is 

D ( x , s )  = B(0) 3(1 - x)  + B ( 1 ) P ( x ) .  (5) 

The B(n)  are the probability to radiate n photons above a physical cutoff (see sect. 
4) during the evolution, and in the unitary approximation they play the role of 
branching ratios. In the following, we will implicitly assume the kernels multiplying 
the B(n)  to be unitary, so that all the information on the branching probability will 
be contained in the B(n), which we will now determine. Iterated to third order, eq. 
(1) has the form 

°r'd' o)ds 
D(x,s)=8(1-, , :)+~[. ,  ,' P ( x ) + ~  7 - f 7 - -  p 7 P(~) 

+ 2--7/f777-fT- P 77 P ( z ) P ( y ) + " .  . (6) 

Upon integrating in x each term, above and below the dimensionless cutoff xo, one 
extracts the coefficients B(n). We drop non-dominant terms which correspond to 
the sea electrons, and find 

~2 ~3 
e ( 0 )  = a - ~ + + . . . .  e ", 

2 6 

B ( 1 )  = a B ( 0 ) ,  

B ( 2 ) = ~ Z B ( 0 ) ,  etc., (7) 
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= ( a / ~ ) L ( - I -  3 / 4 ) ,  L = l o g ( s / m 2 ) ,  l =  log(x0) .  (S) 

The probability distribution is poissonian [6,13] with an average number of photons 
depending logarithmically on the cutoff. By forcing the emission probability to be 
binomial, zero or one emitted photon, and imposing the condition that both 
probabilities be positive, we find 

B ( 0 ) = I - ~ ,  B ( 1 ) = ~ ,  0 < f f < l .  (9) 

This is the well-known limit on the cutoff that affects truncated expansion Monte 
Carlos [9], or the equivalent result given by eq. (5). Finally, the substitution 
L ~ L - 1 in eq. (8) correctly normalizes the emission probability [14] and repro- 
duces, by direct inspection of the matrix elements, all the dominant terms up to 
order a 2, and the/-dominant  terms [2]. A calculus theorem can be used to transform 
the double emission term in eq. (6) (the proof for n photons is automatic) into an 
explicit probability density 

X ~ 

<~/( t -  Xo) z d x  d~ 
(10) 

where the integration area $2 is defined by 

Z'~ Z" < 1 -- X O, ZZ' > X . 

From eqs. (7) and (10) it appears that the iterative solution of eq. (1) is an infinite 
sum of terms with poissonian normalization, and each term is given by an iterated 
convolution of an elementary kernel. The details of the proof for eq. (10) can be 
found in the appendix. 

Having generated a poissonian photon multiplicity, the algorithm proceeds to 
generate the longitudinal variable for each photon according to the kernel in eq. (2). 
In the case of two photons, the steps are: 

(1) Generate zl,  P ( z )  as defined in eq. (2), and 0 < z < 1 - x 0. 
(2) Repeat the first step for z 2. (11) 
(3) Let x = z l z  2, k x = l - z  1 and k 2 = z l ( 1 - z 2 ) .  

The second photon is allowed by the evolution to have an energy z l x  o < k l  < z 1, 

part of which is below the cutoff (fig. 1). As the phase space for the second photon 
is reduced, the cutoff is moved inward to maintain a poissonian photon multiplicity. 
The probability of radiating a photon k 1 and a second photon k 2 below the cutoff 
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(a) 

f~ 

×0 

e-  e + 

Fig. 1. Evolution of the cutoff in the approximation that the electron and positron evolve indepen- 
dently: (a) phase space allowed to the first photon; (b) phase space allowed to the second photon. 

is given by  the integral of the P(z) over the shaded area in fig. lb.  The result is: 

(o~L)2fl_ZlXO 2 d z  2 1 + z 2 
log z 1 1 - z 1 

which has to be compared  with those non-poissonian a2L 2 terms [3] where one real 

p h o t o n  plus one soft-virtual photon  are radiated. The two expressions are identical 

and the vir tual-vir tual  (no real photons)  and real-real  (two real photons)  terms are 
easily proven to be factorizable [3] in the a2L 2 terms. We conclude that our variable 

cu tof f  me thod  achieves factorization of the L-dominant  terms [2]. 
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3. Inclusion of transverse degrees of freedom 

Eq. (1) can be generalized [15] to take also into account transverse degrees of 
freedom. In QED, by keeping the masses and by using the correct kinematics, the 
evolution equation becomes 

O~ X , 3D(x, pr,  s' ) 1 f l d z  rd2qT {X ZqT,  S ) (13) 
as' -2~r s' -m2ax TP(z)J--7-6tD[z 'pT- " 

The D(x, Px, s) represents the probability to find inside the parent e - (e  +) an 
e - ( e  +) with a fraction x of a longitudinal variable and a 2-vector transverse 
variable PT with respect to the parent direction. We define, for now, the p~- as 

p ~  = E 2 k 2 sin 20, (14) 

so that the variables x and PT are independent components of a 3-vector. The 8k* 
function guarantees a correct kinematic splitting at the vertex. In the space-like 
(initial state) case [16], the argument of 6ff at the ith step of the evolution is 

( 1 - z ) M i +  ,2 _ z ( l _ z ) M i  2-q%, (15) 

where Mi2+ 1 < 0 is the virtualness of the inner leg, Mi 2 < 0 is the virtualness of the 
outer leg, and M12 = - m  2 (fig. 2). We repeat the steps of sect. 2. To O(a) we find 

[161: 

D(x, PT, S) = B(0) 8(1 - x)  82(pT)  

+B(1) P ( x ) [ p 2 - ( 1  - x ) 2 M  2] +O(p2y/E2) ,  (16) 

and for the total cross section we have 

o(s) = fdxldX2 d2 PT1 d2 PT2 O0(S') D(xl ,  PTI ,  S) D(x2, PT2, S ) ,  (17)  

) 

< = 

Fig. 2. Four-momentum conservation at the elementary vertex. The quantities are defined in the text. 
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where 

S ' = 2 ( ~ x ? E 2 j v p 2 T I ~ X 2 E 2 " ~ -  PT22 .j_ XIX2 E 2 -- PT1 "PT2) • (18) 

In sect. 2 we discussed how to generate the photon multiplicity and longitudinal 
variables, and according to eqs. (15) and (16) the following complete set of formulae 
hold at the ith step of the iteration [see also Alg. (11)]: 

i i 1 

xi= I-Izj, kL,=  I q z j ( 1 - z i ) ,  
d = l  ,1=1 

PTi=qTi-l-xiPYi_l, kT i  = - - q T i + ( l - - x i ) P T i _ l .  (19) 

The k L, k T are the x, PT variables for the photon. Fig. 3 shows that in eq. (19) the 
evolution variable qT is the photon transverse momentum with respect to the 
instantaneous direction of the leg and that eq. (19) simply conserves the 3-momen- 
tum at each step of the evolution. The evolution of the energy of the leg is trivially 
derived from the zero mass of the photon. At the end of the evolution of the initial 
state, the electrons and positrons which are off mass shell are used to calculate the 
value of the annihilation cross section by evaluating the Born term at the reduced 
center-of-mass energy [eq. (18)]. This completes the description of the basic algo- 
rithm for the QED evolution. 

The basic structure-function approach was designed to carry up to leading 
logarithmic factorization of the evolution. Without losing any of the advantages of 
the main algorithm described above, we have introduced two modifications to 
achieve the second-order next-to-leading result and agreement with a first-order 
calculation in the very hard region (p~r=s) ,  as needed for a powerful and high 
precision (less than 1%) prediction. 

(1,5) 

(l-z,,-qT,) 

C 

Fig. 3. Evolution of the leg. The quantities are defined in the text. 
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We compare with an exact first-order calculation [17] (which we have calculated 
using REDUCE [18]) and include further less dominant terms to achieve the O(a) 
matrix element up to O(m2/E2). This procedure absorbs in the iteration many 
non-dominant terms in the double emission exact matrix element (which we also 
calculated with REDUCE). The result is 

1 
P(z, qv, s) 1 - z  q~ 1 + z 2 - 2  1 - Z - - - s  - z ( 1 - z ) ~ - - x  ' (20) 

where new definitions are used (fl is the velocity of the electron or positron) 

z = l - k ,  q2=  iMi~l_Mi2l ,  IMp-M21 =E2k(1-,ScosO). (21) 

The effect of eq. (20) is to modify the probability density in phase space. However, 
the final algorithm retains the physical property of evolution of the mass, as 
described in eq. (15). Eqs. (18) and (19) describe 3-momentum conservation but now 
must be used with (PL, PT) as they can be extracted from (z, qT) generated by eq. 
(20). Finally, the first-order K-factor [1]: 

K= 1 + (a/~r)(~r 2- I) (22) 

is added as an overall normalization constant. This simple modification reproduces 
the exact next-to-leading result [1-3]. To summarize: This algorithm 

(1) uses special kernels, which are equivalent to the exact first-order matrix 
element [eq. (20)]; 

(2) evolves independently the two legs and, on each leg, conserves 4-momentum 
[eq. (19)], evolves the mass [eq. (16)] and the cutoff [eq. (10)] in order to achieve 
factorization of the non-leading terms. 

4. Results and conclusions 

The comparison between an analytic calculation for the Z ° shape [19] and the 
Monte Carlo is shown in fig. 4, with the real-virtual pairs terms removed [10]. The 
agreement between the two predictions is completely consistent with the statistical 
error* of the Monte Carlo. Fig. 5 shows the radiative corrections to the process 
e+e ---, uv~,. The solid line is from an analytic calculation [16] and the data points 
are from our Monte Carlo. Events are counted if they have only one photon with 

* To our surprise, the disagreement between the fitting function and the Monte Carlo was nowhere 
worse than 0.30, where o -- 0.3% near the peak and a -- 1% on the tail. The difference arises from 
using the Monte Carlo in a weighted mode for this particular set of runs. Weighted and unweighted 
mode have been checked to be equivalent. 
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Fig. 4. Radiative corrections to the Z ° line shape in the /~/~ channel as predicted by the Monte Carlo 
(data points), and by an analytic exact O(a 2) exponentiated calculation from ref. [19]. According to ref. 
[10], the predictions of refs. [1,2,19] are indistinguishable. The Z ° resonance parameters are: M = 93 
GeV, F(M)= 2.5 GeV, and sin20w = 0.223. The Monte Carlo was run with 105 events per point, a 

cutoff x 0 of 10 5 and s '  > 0.1s: (a) 87 >_ ~- _< 99 GeV; (b) 92.3 >_ ~/~ >_ 93.7 GeV. 
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Fig. 5. Radiative corrections to y~,u photon energy spectrum as predicted by the Monte Carlo (data 
points), and by an analytic exponentiated calculation from ref. [16]. The relevant parameters are: 
M =  93.2 GeV, F(M)= 2.6 GeV, sinZ0w = 0.223, V~-= 98 GeV, x 0 = 10 -5 and 3 species of neutrino. 
Photons are required to have an energy E v > 1 GeV, zenith 0 v > 20 ° and are vetoed if another photon of 

energy greater than 1 GeV has 0 > 3 °. 
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energy Ev > 1 GeV, zenith 0v > 20 ° and no other photons above a 1 GeV threshold 
and outside a 3 ° cone around the beam pipe. Two comments are in order. 

First, the slight disagreement in the 1-4  GeV region (-- 5%) is due to the lack of 
logarithmic terms [see eq. (12)] in ref. [16], and to the independent emission 
modeling that does not reproduce the evolution of the mass and PT [see eqs. (15) 
and (21)]. Both effects decrease the peak in fig. 5 less than 1%, but are more 
significant in the broad valley on the left. The first effect is estimated to be -- - 2 %  
at 2 GeV. The second has been estimated by writing an independent emission (IE) 
Monte Carlo and by comparing it with the one described in the previous sections. 
The effect is = -2%.  Our MC and the IE one differ significantly in the configura- 
tion described above only in what follows. Because our MC evolves PT and mass, 
the unvetoed rate at large angle is 15% higher than in the IE case. However, the 
same effect increases the veto-ing probability of about the same amount, leaving 
approximately the same total rate but different veto-ing rates. On the peak no 
further hard photons are emitted and ref. [16] compares well with our algorithm. A 
comparison with O(a) calculations would not be significant because the peak/valley 
ratio, which dominates the corrections to the shape of the spectrum, has RC of 
order 50%. It is obvious that, near the Z-peak, the neutrino counting experiment 
cannot be corrected properly with a first-order calculation or an independent 
emission model. 

Second, in ref. [16] the O(ot 2) calculation is a one-photon [O(a)] cross section, 
radiatively corrected. On the contrary, in our Monte Carlo the evolution starts from 
the pure annihilation Born term. The agreement (with the limitations discussed 
above) between the two predictions is a direct consequence of the capability of the 
algorithm to achieve the next-to-leading result, and its capability to predict RC both 
inclusively and exclusively. 

In fig. 6, we show the detailed shape of the initial state radiator [16] in the large 
energy loss region as compared again with an analytic calculation. In fig. 7, the 
photon multiplicity for the initial state radiator is finally shown. When the radiator 
is effectively damped by the resonance, both the hard part of the photon spectrum 
and the high multiplicity tail are suppressed. 

We conclude by discussing the physical content of our method. The methods 
generally used to calculate RC to the data [9], which are truncated expansions, 
always put a lower limit on the cutoff [~ < 1, eq. (9)]. The optimum cutoff is then 
unrelated to the physical parameters of the experiment, and is neither the energy 
resolution, nor a bookkeeping parameter. Rather, the cutoff is an arbitrary external 
parameter which is tuned to optimize the approximation of the calculation and the 
results of the Monte Carlo are cutoff-dependent [9]. 

In the algorithm presented here, the cutoff can be set arbitrarily low [as intro- 
duced in eq. (8)]. The lower the cutoff, the more steps there will be in the evolution 
of the system. Results are independent of large variations of the cutoff (we have 
tried up to a minimum, computer-limited cutoff of 10-7), as long as the cutoff is 



0.04 

z" 0.02 

G. Bonvicini, L. Trentadue / QED euolution 

' I I i l  
100000events ,~/' I 

- -  2E=93 GeV 
__  - - o c 2 + e x p .  Ref. 19 ~ J 

I I II 0 
0 0.2 0.4 0.6 

S'/S 

263 

Fig. 6. The s '  spectrum in the large energy loss region, as calculated by the Monte Carlo. The relevant 
parameters are the same as in fig. 4 and the spectrum is not weighted for the Born term. 
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Fig. 7. Photon multiplicity as calculated by the Monte Carlo with the same parameters as in fig. 4. Solid 
line: the multiplicity unweighted by the Born term. Dashed line: the multiplicity weighted by the Born 

term. 

kept much less than all the experimental scales. Operatively this means that the 
cutoff, to be physical, should be always much less than the minimum of the beam 
energy spread, acollinearity and one photon resolution of the experiment. In sects. 2 
and 3 we have shown that the c~2L 2, o~2Ll and a z / 2  terms are correctly included in 
our recipe, as well as more dominant logarithms. Fig. 4 in the soft region and fig. 6 
in the hard region empirically support our statement. 

Re-absorption of non-leading terms in the evolution of a few quantities (in our 
case the cutoff and the masses) has long been known to be a standard procedure in 
QCD [20]. In our case this is particularly simple due to the much simpler branchings 
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and quantum numbers in QED. Further reasons for the success of this approach are 
the following advantages over QCD: 

(1) The initial state [the Dirac 8 in eq. (1)] is known exactly. 
(2) The evolution is chain-like as opposed to tree-like (that is, one or two of the 

three particles at the elementary vertex are on mass-shell). This also has the 
advantage of eliminating sea electrons from the picture. Four-fermions amplitudes 
are small (--- 1%) and can be dealt with in other ways. 

(3) The integral on ds '  [eq. (1)] is solvable exactly, with or without virtual pairs, 
therefore generating an exact statistics without loss of next-to-leading terms as in 
QCD. 

As a last remark, chain-like evolution allows a predetermination of the number of 
steps of the evolution, and the evolution can start from the external relativistic 
invariant down to the inner line. Since it is the external relativistic invariant which 
enters in the exact matrix element [in the case of the initial state, see eqs. (20) and 
(8)], we have seen that one obtains a very natural inclusion of non-leading pieces in 
the evolution. Not  surprisingly, this Monte Carlo evolves oppositely to well-known 
QCD examples [21] and, in the soft limit, explicitly calculates the Sudakov form 
factor [22]. 

We would like to thank M. Greco for constant encouragement and R. Frey for a 
careful reading of the manuscript. G.B. thanks S.J. Brodsky for many interesting 
discussions and L.T. thanks Stefano Catani and Oreste Nicrosini for many useful 
comments and discussions. 

Appendix 

We start from the following calculus theorem [23]: 

dg  dh 

Let us now consider the a 2 term of the expansion [eq. (6)], which describes the 
emission of two real photons 

fl-~o P(z) P - - .  

" x / 1  - x o 7. 

The upper limit is the separation between the no-emission region and the real 
emission region (i.e. the quantity called B(0) in the text is the sum of all pieces of 
the expansion integrated between 1 - x 0 and 1). The lower limit corresponds, in the 
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F e y n m a n  d i a g r a m  model ing,  to the separa t ion  be tween two real pho tons  and one 

real  p h o t o n  p lus  one vir tual  photon .  The integral  funct ion Q ( y )  is def ined  as 

fol lows 

W e  have 

Q ( y ) =  ~ '  X ° p ( z ' ) d z ' ,  Q(1 - X o )  = 0 .  

f l - x °  p(z)p(51 dz = f  1 Xo p ( Z ) ~ x Q ( X ) d z  
x/(1 Xo) Z ] Z .,x/(1-Xo) 

f l  x o O X 
J 

a n d  

S'  O.z.,U f l  Xo 0 _ d z  = 

Jx/(1 Xo ) Ox z Jx/z 

P ( z ) Q ( 1 - X o ) .  
distil d(1 Xo) P ( z )  Q + 

d x  d x  

The  second  te rm in the f ight -hand side is zero because  of  the der ivat ive of a 

cons tan t ,  a n d  the third term is zero because  of Q(1 - x 0 ) .  The fol lowing ident i ty  

ho lds  

d f l - x o  f l - X o p ( z ) p ( z , ) d z d z , ,  
d x  "x/(1 Xo)'x/z 

l 1- 0 
x/(1 - x o) z 

and  the in teg ra t ion  area in the (z,  z ' )  space can be rewri t ten as 

z,  z '  < 1 - x o, zz '  > x .  
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