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QUASI-PERIODIC DYNAMICS OF DESINGULARIZED VORTEX MODELS 

Chjan C. LIM* 
Department of Mathematics, Universi~. of Michigan, Ann A thor, MI 48109, USA 

Sufficient conditions for the existence of quasi-pe~odic solutions of two different desingularized vortex models for 
2-dimensional Euler flows are derived. One of these modds is the vortex blob model for the evolution of a periodic vortex 
sheet and the other is a second order elliptic moment model (DEMM) for the evolution of widely separated vortex regions. 
The method involves the identification of the well-known point vortex Hamiltonian term in both models. A transformation to 
new canonical variables (the JL-coordinates) and the deSnition of special open sets in phase space (the cone sets) puts the 
Hamiltonians considered into nearly integrable form. KAM-theory is used to prove the desired results for arbitrary~ degrees of 
freedom and almost arbitrary circulations in these modets. A rigorous validification of the DEMM assumption is obtained. In 
view of the lack of a rigorous theory for vortex sheet roll-up paat the critical time, the dynamical system approach presented 
here provides an alternative method for studying the macroscopic structures formed in the post-critical period. 

1. Introduction 

Recently, there is a lot of research activity on vortex methods for the two-dimensional Euler equation of 
ideal fluids. In particular, Krasny [1, 2] has computed the evolution of a periodic vortex sheet by two 
methods: a point vortex lattice method and a desingularized vortex blob method. The first method gives 
good results before singularity formation but the .:cond method can be used beyond t c to demonstrate 
vortex sheet roll-up. Convergence before t¢ of the.. ~ethods for vortex sheet has been shown by Caflisch 
and Lowengrub [3] in a recent paper. There is currently no rigorous proof that the vortex blob method 
converge beyond singularity formation at time to. However numerical evidence for its convergence is 
available and as conjectured by Pullin [4], the vortex sheet rolls up into a double branched spiral (cf. 
Saffman and Baker [5] for other references). In view of the absence of a complete theory, a dynamical 
system approach for studying the solutions of these vortex models is reasonable. A statistical mechanics 
for these models wiP. perhaps demonstrate (along the lines of Montgomery et al. [6, 7]) that "most 
probable states" are non-uniform distributions of vortex blobs. Here we give some rigorous results on the 
existence of quasi-periodic solutions for the vortex blob method. Complete proofs for a variety of point 
vortex models are reported in Lira [8, 9] and numerics in Lim and Sirovich [10]. It should be noted (for 
motivation of this approach), that the "large sets" of quasi-periodic solutions correspond to clustered 

states of vortex blobs. 
The second vortex model for two-dimensional Eutm flow that we discuss here is the Desinguiarized 

Elliptic Moment Model (DEMM) of Melander, Zabusky and Styczek [11]. They perform a perturbation 
analysis based on the assumption that the finite uniform-vorticity regions are remote from each other and 
nearly circular. A consistent truncation then yields an arbitrary Nth order model for the moments of the 
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vorticity regions. We focus on the second order model where, each region is assumed elliptical (DEMM). 
The DEMM ~an be used to follow the evolution of vorticity regions anywhere in an unbounded fluid. 
Furthermore this model conserves local area, global centroid, total angular impulse and global excess 
energy. Of special significance is the fact that the model can be written in canonical Hamiltonian form. In 
this note we prove the existence of a "large set" of quasi-periodic solutions for DEMM. As a corollary, we 
give a rigorous validification of the DEMM for a large set of initial data. Its validity has been confirmed 
numedcaUy [11]. 

2. The method 

We use a general method developed in Lira [9, 12]. It consists of the following steps: 
(i) Under additional assumptions, we first show that the Hamiltonians for the above vortex models can 

be written as a small perturbation of the N-point vortex Hamiltonian (plus a completely integrable term 
for DEMM), 

- 1  ~,FjFklOg _ Hp= ~ Izj zkl 2. (2.1) 
1 

(ii) Next, we define new canonical variables, the JL-coordinates for vortex dynamics (see fig. 1): 

Pl=  r1+/'2 P'~' 

[ (r~ + r~)r~ ] ~/~ 
p 2 -  r ~ + r ~ + r 3  P~' N-1 )1/2 
pN- 1 = E~ ~- 1~ ph-  1, 

p~ "- Z 2 -- ZI, 

Flz 1 + F2z z 
P 2 = z 3 -  /"1+/'2 ' (2.2) 

~)PN- I = ZN -- 

G 

/ 
Zl 

Fig. 1. The 3L-coordinates, The N = 4 case when all the circulations have the same sign is illustrated. 
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(iii) Based on an ordering of the JL-coordinates Pk by modulus I Pkl, we construct cone sets in phase 
space in which the N-point vortex Hamiltonian (2.1) can be written as a small perturbation of the 
Hamiltonian for ( N -  1) decoupled oscillators. 

(iv) In the last step, an application of KAM-theory [13, 14] gives sujficie, t conditions on the circulations 
F k for the existence of quasi-periodic solutions. 

In the case of vortieity of one sign, the JL-coordinates reduces to the Jacobi coordinates often 
encountered in celestial mechanics papers. Referring to the N = 4 case depicted in fig. 1, one can easily 
conclude that the canonical transformation (2.2) gives a one-to-one mapping from the M = N ( N -  1)/2 
edges of the complete graph G for N vertices { zi}~., x onto the.paths of the corresponding directed tree 
graph G'. For two species of vorticity, the tree graphs G' are much more complicated and we refer the 
reader to Lira [9] for the complete picture. The above JL-coordinates belong to a large family of canonical 
transformations for N-body problems recently discovered by this author; their relation to a class of 
spanning tree graphs is discussed in Lim [17]. 

3. N-point vortex HamHtonian 

In this section, we briefly review steps (ii) and (iii) in the outline above. The details can be found in Lim 
[9]. This part of the method represents the common core of the analyses for the vortex blob model as well 
as the DEMM. Step (i) of the method (when completed in sections 4 and 5 for the two models 
respectively), provides rigorous justification that the N-point vortex Hamiltonians (2.1) is fundamental to 
the dynamics of a number of vortex models, both singular and desingularized ones. 

After transformation to the JL-coordinates, the Hamiltonian (2.1) is reduced to ( N - I )  degrees of 
freedom: 

1 M 
Hp= ~ ~ K~. iog !fj(px,... ,pj)[ 2, 

s--~ (3.1) 

Kj= FpI"q, M =  N ( N - 1 ) / 2 ,  

where .~ are linear functions in the complex variables p,, k <j.  A typical term is 

z3 - zl --f2i Pl, P2) 

I !l J2 I 1 ,j2 
= ( r ,  + c 2 ) ( ~ 5 )  .2 + (c , ) ( r~+  c~) ~'  

(3.2} 

In special open sets called cone sets given by 

Ms = { p = ( p ~ , . . . ,  p~_~) lO < lp~l < z~lp~l < "-" < z~N-2QpN-~I } ,  z~ << 1, (3.3) 
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the Hamiltonian (3.1) can be written as a small perturbation in the following way: 

Ho(O) + (3.4a) 

1 N-1  
H o ( O )  = - ~-~ E Tj log Iojl 2, (3.4b) 

j=l  

J 
T j = F i + ,  Elv'k, j = I , . . . , N - 1 ,  (3.4c) 

k = l  

1 M 
H,(p) = E Xj log I(1 + 0(a))l 

j = l  
(3.4d) 

The leading term H 0 is a decoupled Hamiltonian which implies that it is completely integrable. All 
solutions have the form of products 

T N-1  = S x X S 1 X . . .  S x ( N -  1) t imes .  (3.5) 

This simple Hamiltonian for decoupled oscillators represents the key to our analyses. In so far as the 
N-point vortex Hamiltonian (2.1)can be found in many vortex models, the identification of H 0 (3.4b)(via 
convergent expansions) is the motivation as well as the main tool for a dynamical study of a variety of 
problems. 

4. The vortex Nob Ham~ltonian for periodk vortex sheet 

The desingularized Birkhoff equations for a periodic vortex sheet are [2] 

Ox f01 sinh 2,rr(y - y ' ) d F '  
--~ = - ½  cosh 2 v ( y _ y ,  ) _ cos 2,rr ( x _ x , ) + 3 2 , 

(4.1a) 

3y ,/01 sinh 2~r (x - x ' )  dF '  
- 3 7 -  ~ c o s h 2 ~ ( y _ y , ) _ c o s 2 ~ r ( x _ x , ) + 3 2 '  

(4.1b) 

where x = x(F, t), y = y(F, t) and x '  = x ( F ' ,  t) ,  y '  = y ( f " ,  t).  F is a Lagrangian parameter which mea- 
sures the total circulation between a fixed material point and an arbitrary material point along the curve 
(Birkhoff [15]); t is time and 3 > 0 is a measure of the desingularization or "size" of the vortex Nob in the 
fo!lowing spatial discretization. The usual discretization approximates the curve (x. (F: t), y; (F; t), 0 < F 
_< 1 by N points (x : ( t ) , ) ) ( t ) )  on a uniform F-mesh, yielding 

d x j _  1 ~ ,  sinh 2'rr(yj - yk) (4.2a) 
dr 2 N k =  1 c o s h 2 , r r ( y _ y k ) _ c o s 2 ~ r ( x j _ x k ) + 3 2 ,  

d.}) 1 ~ ,  sinh 2 ~ ( y j -  yk) 

dt = 2N cosh2~( ) - cos2~r (  - = 1 Y~ - Yt, xj X k ) + ~  2" 
(4.2b) 
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In terms of the canonical coordinates (2.2) and the analysis in section 3, we can write the Hamiltonian 
H a as follows: 

Hr~= Ho(P) + Hl(p ), (4.8a) 

1 u-1 
H ° ( P )  = - -  4"~ E Tk log IPkl 2, (4.8b) 

kml 
k 
E rj, (4.8c) 

k=,l 

1 M 12 
H I ( 0 ) =  -~ -~  ~ TklOgl(1 + 0 ( A ) )  + H~, (4.8d) 

k--1 

where 141(0) is the sum of two small terms (3.4d) and (4.7). The distances Rjk in H~ can be expressed in 
the JL-coordinates in terms of the functions defined in (3.1) and (3.2), i.e. 

Rj \  = o,)/,(01,..., o,) ,  (4.9) 

where each pair (j ,  k) is associated with an integer i < M = N(N - 1)/2. Combining lemma 1 and the 
analysis in section 3 for Hp, we obtain: 

Lemma 2. In the cone sets 

IPxl <alP21 < ""  <zxN-EIpN-,! <a c-2e} (4.10) 

for sufficiently small Z~ and e, the vortex blob Hamiltonian, HB(8 ) is a small perturbation of a completely 
integrable term given by (4.8b) provided the desingularization parameter 8 is sufficiently small compared 
with e. 

Proof. The additionai condition on the absolute size of the coordinates I Pkl given by z~ -- e << 1 ensures 
that Rjk - e satisfy the hypothesis in Lemma 1. 

Remark. The cone set (4.10) differs slightly from the cone set (3.3). In particular (4.10) is a proper subset 
of (3.3). Thus the analysis in section 3 can be used here. The additional condition in (4.10), Rjk << 1, 
imposes an admissible geometrical restriction on the vortex sheet discretization. It amounts to a non-uni- 
form mesh as described in the numerical experiment proposed below. 

Remark. The vortex Nob model (4.3) does not require the vortex blobs to be widely separated either in the 
initial data or the subsequent evolution. Thus there is no contradiction between the restriction mentioned 
in the previous remark and the requirements of the model. On the other hand, the DEMM model requires 
the vortex patches to be widely separated, but in that case we fortunately do not have the above restriction. 

The main result on the vortex blob model is: 

Theorem 3. If the circulations Fj satisfy 

k 

T k = F k + I E F j 4 : 0 ,  k =  1 , . . . , N -  1, 
j = l  

(4.11) 
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then the Harniltonian HB(8), (4.3), supports a positive measure set of quasi-periodic solutions in the cone 

set M2, (4.10), for sufficiently small/J << e << 1. 

Proof.  In the cone set, Hamiltonian HB(8) is real analytic in the actions IPk] and 2~r-periodic in the 
conjugate angle variables given by Ok = IPkl el°k- The leading term Ho(P) has solutions T N-x parametrLzed 
continuously by { IOkl N-x }k-X. It remains to verify that H o satisfies the KAM nondegeneracy condition, i.e. 
nonvanishing Hessian [i~2tto/alOjll)lOkll when conditions (4.11) hold, which is an easy calculation. 

Remark .  By theorem 3, the Hamiltonian (4.3) supports quasi-periodic solutions if condition (4.11) is 
satisfied. At this point it is unclear whether the quasi-periodic solutions in the cone set (4.10) are related to 
the double spirals observed in the vortex sheet roll-up [2]. 

Remark .  These quasi-periodic solutions lie on KAM tort within the cone set. This means that the cone 
condition (4.10) is preserved by the dynamics of (4.3) for a positive measure subset of all initial data 
satisfying the condition. 

The above analysis suggests the following numerical experiment for a periodic vortex sheet: 

On a non-uniform /'-mesh where the discretization points are separated by a monotonically 
increasing sequence of intervals consistent with the ordering prescribed by the cone condition (4.10), 
carry out numerical computations for the desingularized vortex sheet (4.1). The circulations F k for 
this non-uniform mesh will be ordered to compensate for the clustering of the mesh points. For 
initial data on a slightly perturbed periodic vortex sheet, it shall be interesting to observe whether 
roll-up occurs in a manner consistent with the quasi-periodic behaviour predicted by theorem 3. 

5. The desingularLxe~t eRipfie moment model 

The Hamiltonian for the DEMM [11] is given by 

HD = n s  + H~, + He, 

HS - - "  
1 N ( 2~ )) 

E r:log 1 + i k ( 8 ~ + ~ ' :  , 
k = l  

(5.1a) 

(5.1b) 

1 E'  r,r log ' (sAc) Hp = 8 ~r R Jk ' 
j , k= l  

F i 

He= 8---~j.k=~ R2 k ~ 1 + Aj (Sjcos28kj+,/,sin20~,} 

 /Ak( + ~-~1+ Ak 
(5.1d) 
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t -  

I 
Fig. 2. Parameters for DEMM. The internal and external degrees of freedom for the DEMM are shown in the case of two vortex 
patches. Z~, i = 1, 2, denotes the locations of the centroids and the aspect ratios are given by ai/b i, i = 1, 2. 

where the conjugate variables are 

V/ Ak (Sk, 7k)=  ~ (Xk-- 1)(COS2q)k,sin2q'k)" (5.2) 

The following notation is used (see fig. 2): 

A k is the area of the kth vortex patch, 
~k is the orientation of the patch, 
X k is the aspect ratio of the patch, 
Rjk is the inter-centroid distance and 
ejk is the centroid-centroid angle between the j th  and k th patches. 

A basic assumption in the derivation of (5.1) is that [11] 

A k 
rl = --5-. << 1 for all j 4= k, Rjk (5.3) 

which states that the vortex patches are widely separated compared to their sizes. 
The DEMM Hamiltonian H D has N external degrees of freedom 

z k = x  k + i y  k, k - 1 , . . . , N ,  (5.3a) 

and N internal degrees of freedom 

v k=8~+i~ ,  k, k = l , . . . , N .  (5.3b) 
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We are ready to put H D in the complex formulation (from which the original Hamiltonian is recovered by 
taking the real part): 

/-/t, =/4s + Hp + Hc, 

1 N  ( OkOk ) 
Er log l+2~r  W , 

k = l  

(5.4a) 

(5.4b) 

1 N 
Hv = 8,c E'  FyFk log ( zj - zt, ), (5.4c) 

j , k = l  

Hc=~'--~j.k= 1 (z j_zk)2  A~k l+'~-~'kVk6t, Vk+ fA'fj l +"~'fjV, Vj Vj . (5.4d) 

H s is the self-interaction term which is cyclic in the angle variables 2q, k (5.2). H e is the usual N-point 
vortex Hamiltonian and H c is the term that couples the external and internal degrees of freedom. 

The second step is a transformation given by 

N 
{ ~ Z k  }, "~ { Ok } ~, { Vk } L , - "  { Ok } L ,  unchanged, (5.5) 

where the external variables are transformed to the JL-coordinates (2.2) and the internal variables are 
unchanged. 

Lemma 4. The real and imaginary parts of {pl,}N=I and {vt,}~=l are canonically conjugate. The 
transformed Hamiltonian in ( 2 N -  1) degrees of freedom is 

HD(P; ") = + rip(0) + HC(P; "), 

where Hs(v ) is given by (5.4b), He(p) is given by (3.1) and 

1 ~ ,  FjFk _~r _ 2~ _ (5.6b) 

Sketch of proof. Since the self-interaction term H s involves only internal degrees of freedom { v k } ~' 
which are unchanged under (5.5), this term is transformed without change. Next the point-vortex term 
Hp(z) depends only on the external degrees of freedom and it has been shown to transform into (3.1) [9]. ~t 
remains to verify ~.hat the coupled parts of the vector field can be written in Hamiltonian form in terms of 
the variables (5.5). This is where the complex formulation for the coupling term Hc(Z; v), (5.4d), facilitates 
the otherwise tedious but straightforwa,d calculations. Note that in terms of { z k } and { v k }, Hc is a sum 
of quotients, the numerator involving only the internal degrees of freedom and the denominator has the 
simple quadratic form (z j - zk )2=f ,2 (p l , . . . ,  pk)where f~ are linear in the JL-coordinates. The lengthy 

details are omitted. 
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In the third step, we construct special open sets in phase space that are products of cone sets (3.3) for 
the external variables and a polydisk for the internal variables, 

= x J' , ,  
(5.7) 

Remark. The cone set (3.3) in the product (5.7) does not have the additional restriction of (4.10). Thus, it 
is compatible with the DEMM requirement that the vortex patches are widely separated (5.3). 

The aim here is to write H D as a small perturbation of a decoupled term H~(p) plus the self-interaction 
term Hs(Ivkl2). 

Lemma 5. If the basic assumption in DEMM, Ak//Rj2k = ~  << 1 (5.3), holds for "all j =~ k, then for 
sufficiently small Zi and e, the Hamiltonian HD(p; v), (5.6a), can be written as a small perturbation of a 
completely integrable term in the open set M~ defined in (5.7): 

Ht,-- Ho(10kl2; IOkl z) + Hi(P; v), 

1 N-1 
H° = 4qr E T2 log (10kl)', 

k = l  

= n ; ( p )  + n (p; v), 

1 M 
H : ( p ) =  - ~  E Kj l o g l ( 1 . 0 ( a ) ) l : ,  

j--1 

(5.8a) 

(5.8b) 

(5.8¢) 

(5.8d) 

(5.8e) 

where H s is given by (5.1b), H c is given by (5.1d) and H d, H{, are given by (3.4). 

Proof. Under the assumption (5.3) and for sufficiently small e in (5.7) the nonlinear coupling H c is of 
order (era) by inspection. In the cone set M a for A sufficiently small /-/1' is of order A. Therefore the 
perturbation/-/1 in (5.8a) is small under the above assumptions. The leading term Ho is clearly completely 

. ,2 integrable because H~ is decoupled and H s depends only on the actions i k = ~k + ~'~. 

The main result for the DEMM follows from tC4,M-theory. 

Theorem 6. If e, A and rt are aU sufficiently small, then the DEMM Hamiltonian (5.1) supports a positive 
measure ~ ua qua~a-penoulc somuons in me open set ~:~7, (5.7), provided the following conditions hold: 

k 

Tk=Fk+, E Fj~O f o r k = l , . . . , N - 1 .  (5.9) 
j = l  

Proof. In the cone set M~, the DEMM Hamiltonimn, H D is real analytic in the actions, I~)kl 2, I k -- i~ 2 q- ~2 

and 2"rr-periodic in the conjugate angles 8 k and @k where Pk = nOk] e i°k and @k are defined in (5.2). The 
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unperturbed term Ho, (5.8b), has solutions 

parametrized continuously by {[pk[2}~cZ~ and (Ik}~¢=1. The KAM-nondegeneracy condition is easily 
verified because H o (5.8b) is decoupled in all the actions, i.e. the Hessian is diagonal. OaH0/O(ipk[)2 ~ 0 
when (5.9) holds and a  co/aZ, 0 provided F 2 #~ 0 wbAch is implied by (5.9). 

An important corollary of this result is the rigorous validification of the DEMM in the following sense: 

Corollary. The basic assumption (5.3) in the derivation of the DEMM is consistent for a positive measure 
set of solutions, i.e. quasi-periodic solutions on the KAM-tori satisfy (5.3) for all time. 
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