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ABSTRACT 

In the past two decades, several theories, all ultimately based upon the same power-law 

formalism, have been proposed to relate the behavior of intact biochemical systems to the 

properties of their underlying determinants. Confusion concerning the relatedness of these 

alternatives has become acute because the implications of these theories have never been 

compared. In the preceding paper we characterized a specific system involving enzyme- 

enzyme interactions for reference in comparing alternative theories. We also analyzed the 

reference system by using an explicit variant that involves the S-system representation 

within biochemical systems theory (BSTJ We now analyze the same reference system 

according to two other variants within BST. First, we carry out the analysis by using an 

explicit variant that involves the generalized mass action representation, which includes the 

flux-oriented theory of Crabtree and Newsholme as a special case. Second, we carry out the 

analysis by using an implicit variant that involves the generalized mass action representa- 

tion, which includes the metabolic control theory of Kacser and his colleagues as a special 

case. The explicit variants are found to provide a more complete characterization of the 

reference system than the implicit variants. Within each of these variant classes, the 

S-system representation is shown to be more mathematically tractable and accurate than 

the generalized mass action representation. The results allow one to make clear distinctions 

among the variant theories. 

1. INTRODUCTION 

It has become increasingly clear that a systematic methodology for 
dealing with complex biochemical systems must be developed if we are to 
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integrate the burgeoning results of studies at the molecular level with a 
mature, predictive understanding of the behavior of intact biochemical 
systems. For example, see [27] for discussion of the background and issues. 

This awareness has recently focused attention on various approaches to 
this problem. Unfortunately, the result has been a great deal of confusion as 
to what different approaches do exist and how effective they are in dealing 
with realistic biochemical systems [e.g., see the recent Discussion Forum in 
Tren& Biochem. Sci. 12:5-14 and 216-224 (1987)]. The confusion results 
from several factors. (1) A number of new approaches have been proposed 
during the past 20 years. (2) There has been a nearly total lack of systematic 
comparison of new approaches with existing approaches. (3) This has 
resulted in separate literatures with few cross-references between them. (4) 
There has been a proliferation of notation and terminology, even when 
standard notation and terminology already existed. (5) The specific implica- 
tions of the new approaches have not been deduced and tested against actual 
systems, except in the simplest cases. This confusion could be eliminated if 
the alternative approaches were applied to the same examples and a com- 
plete and rigorous analysis were performed in each instance. This is the 
approach that will be taken in this paper. 

The reference system in Figure 1 has been completely specified elsewhere 
(in particular, see Figures 2-4 and Tables 3-5 in Part I [39]) and provides an 
ideal reference for comparing alternative theories.’ This reference system 
includes many of the simple features previously assumed by other investiga- 
tors; it also includes enzyme-enzyme interactions, which are well docu- 
mented but have not been included explicitly or even implicitly in most 
theories of intact biochemical systems. For more detailed consideration of 
the reference system, see the preceding paper [39]. 

The newer theories that have been proposed for dealing with complex 
biochemical systems, and that are in need of comparison, are all based on 
the same underlying power-law formalism [36, 37, 391. Within this formalism 
there are a number of well-recognized variants that differ with regard to the 
degree of aggregation assumed when writing the kinetic equations for the 
system (reviewed in Voit and Savageau [46]). Biochemical systems theory 
(BST) has emphasized the S-system variant (named for its ability to capture 

‘The reference system was selected to operate far from thermodynamic equilibrium so 

that comparisons could be made among biochemical systems theory (BST), flux-oriented 

theory (FOT), and metabolic control theory (MCI). If the system is selected to operate 

around equilibrium, such comparisons cannot be made because FOT and MCT as 

presently formulated do not apply at equilibrium. A detailed treatment of alternative 

strategies within BST for representing system behavior around equilibrium can be found in 

Sorribas and Savageau [40]. 
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FIG. 1. Reference system that involves enzyme-enzyme interactions and channeling of 

metabolic flux. See Part I [39] for a detailed characterization. 

the essential synergistic and saturable properties of biological processes), in 
which aggregation is at the level of net synthesis and net degradation for 
each dependent concentration variable in the system [19-241. Numerous 
advantages have been documented for this variant within BST (see [36], 

[371, [461). 
Another common variant within BST involves the generalized mass action 

(GMA) representation, in which aggregation at the level of individual 
enzyme-catalyzed reactions is assumed [19, 36, 461. This variant lacks the 
many advantages associated with the S-system variant and therefore has not 
been as extensively developed within BST. 

Predictions based on the S-system variant within BST have been exhaus- 
tively compared with the empirically determined behavior of the reference 
system in Part I of this series [39]. We shall now analyze the same reference 
system in two different ways. First, we carry out the analysis using the 
explicit GMA variant of BST, which makes explicit use of the power-law 
formalism. Second, we present the implicit GMA variant of BST, which also 
is based on the power-law formalism but is perhaps less obvious. In each 
instance we demonstrate the range of predictions that are possible with the 
variant theories. 

The results of detailed comparisons in this and the previous paper, using 
the reference system in Figure 1 as the standard, show (1) that the MCT 
variant is a special case of the implicit generalized mass action variant of 
BST, (2) that the flux-oriented theory (FOT) variant, when suitably general- 
ized, is logically equivalent to the explicit generalized mass action variant 
within BST, and (3) that the explicit S-system variant is a more comprehen- 
sive and inclusive theory than the other variants, including the implicit 
S-system variant. 
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2. ANALYSIS USING AN EXPLICIT VARIANT OF BST: THE 
EXPLICIT GMA REPRESENTATION WITHIN THE 
POWER-LAW FORMALISM 

The approach we have referred to as FOT is based explicitly upon the 
power-law formalism, aggregation at the level of individual enzyme-cata- 
lyzed reactions, and the assumption of independence of enzyme levels and 
activities in the system [2-41. However, in contrast with the explicit S-system 
variant in BST [20, 391, there is no explicit steady-state solution in symbolic 
form that gives the systemic behavior directly in FOT. The answer to the 
question of how the systemic behavior of concentrations or fluxes is related 
to the properties of the components in the system (i.e., the parameters of the 
underlying representation) is obtained by differentiating the steady-state 
equations and solving the resulting set of linear algebraic equations (e.g., 

see [4]). 
As a prerequisite for quantitative analysis of the intact system, we first 

describe the mathematical representations used in FOT and in the explicit 
GMA variant of BST. The explicit GMA representation, which includes 
FOT as a special case, is then used for the subsequent analysis because it 
provides a more systematic representation, allows direct comparisons with 
other theories in the power-law formalism, and illustrates the full potential 
of this class of variants within BST. 

2.1. MATHEMATICAL REPRESENTATION 

Flux-Oriented Theory (FOT). Crabtree and Newsholme [2] started with 
the power-law formalism as their representation of the underlying kinetics of 
individual reactions. For example, they wrote equations of the form 

where s,:;, is called the “intrinsic sensitivity” of enzyme E, in response to 
small changes in the concentration of substrate S, while all other metabolite 
concentrations are held constant. These exponents are identical to the kinetic 
orders of conventional chemical and biochemical kinetics, as pointed out by 
Savageau [20]. Although these equations are formally equivalent to those 
derived in BST, the way in which they are obtained represents a different 
level of analysis. In the original development of the power-law formalism, 
such equations are the result of a Taylor series expansion in a logarithmic 
space. Thus, the development is set within a rigorously defined mathematical 
context in which necessary and sufficient conditions for the validity of the 
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representation exist, formulas for specifying the accuracy of the representa- 
tion are known, and all the resulting parameters have a well-defined mean- 
ing. In the case of FOT, the equations are obtained by assuming constant 
relative variation between metabolite concentration and enzymatic rate. 
Integration produces the power-law function in which the exponent is the 
constant relative variation and the multiplicative constant is simply identi- 
fied as an integration constant with no specific meaning; in fact, the same 
symbol X is used to represent two different quantities [2]. Given this 
difference in level of approach, it is not surprising that the accuracy of these 
equations is never addressed specifically in FOT. 

In recent papers (e.g., [4]), these authors have replaced this notation so 
that the above equation would now read 

J, = E,S”Pp, 

which they express in terms of the relative (or logarithmic) differentials as 

(1) 

where j, = ilJ,/J,, etc. 
The mathematical representation of the system is then built by means of r 

equations of this form,2 one for each reaction in the system, and b equations 
representing Kirchhoff’s flux law applied at each of the b branch points in 
the system. The latter are of the form 

J,+J,,+J,+...+J,=O, 

which Crabtree and Newsholme [4] write in terms of logarithmic differentials 
as 

*In the explicit GMA variant within BST, the symbol r represents a dummy index that 

ranges over the reactions in the system. Crabtree and Newsholme use the symbol r to 

represent both the relative (or logarithmic) differential and the number of reactions in the 

system, but the meaning is usually clear from the context. 
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where the algebraic sum is over all fluxes entering (J > 0) and leaving 
(J -C 0) the branch point in question at steady state. Equations (1) and (2) 
represent r + b linear equations in r -(m - b) independent fluxes plus m 
independent variables (J,, Jh,. . . , S, P, . . .), and these can be solved by any 
number of conventional methods, provided the equations are consistent and 
the determinant of the system in nonzero (e.g., see [27]). 

Although Crabtree and Newsholme now arrange their equations in ma- 
trix-like arrays [4], they have not adopted the conventional matrix notation 
involving a single symbol with double subscripts, and hence fail to realize 
many of the advantages that have led to the selection of this convention. 
Instead, they have introduced the following notational convention: fluxes are 

represented by J with a letter subscript in the sequence a, b, c.. . ; enzyme 
concentrations are represented by E with a numerical subscript in the 
sequence 1,2,3,. . . ; kinetic orders are represented by lowercase Greek letters 
in alphabetic sequence (Y, j3, y, . . . ; and metabolite concentrations are repre- 
sented in no particular sequence as capital Roman letters. This convention is 
not easy to use for large systems. Hence, for ease in making comparisons, we 
shall convert this to a more systematic notation in the following subsection. 

In the notation of FOT the reference system in Figure 1 might be written 

J,j, + Jhjh - J,j, = 0 

where substrate S = X,, intermediate I = Xi, branch-point metabolite 
B= X,, product P=X,, Et = X,, E, =X,, E, =X,, E, =X0, J, = udl 

( = J‘, = v,,>, Jt, = ~42, Jc = ~25, a = g,,, B = a,, Y = an, fi = a,,, E = a,,, 

l=gzm v=hm 8 = h,, (see Figure 1 and the following subsection for the 
corresponding notation in BST). These equations can be solved for J,, Jh, 

j,, i, and b in terms of the kinetic orders a,/,. . .,$ the fluxes J,, Jh, J,, 
and the relative differentials hi, h2, _l$, ,?&, S, and P. 

The ,k, are not independent, as required in FOT. However, one can make 
the appropriate generalization of FOT by introducing the constraint rela- 
tions in the power-law formalism for the total enzyme concentrations [3,20, 
27, 28, 361. When this procedure is followed, FOT becomes nearly identical 
to the explicit Gh4A variant within BST. To make this point clear, and to 
illustrate the full potential of this explicit variant, we shall present the 
analysis of the reference system according to the more general explicit Gh4A 
variant. 
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Generalized Mass Action (GMA). As is the case in BST, one begins with 

the equations for the conservation of mass and the constraints on total 
enzyme concentration.3 

5% 
dt - 041 - u12 9 

dx, 
-& = v12 + v42 - v25 3 

dx, -= 
dt vo3 - u309 

x, = x, - x3 ) (6) 
x0 = x, - x3 ) (7) 

where vlj is the rate of utilization of Xi for the synthesis of X, [20]. As a 
preliminary step to writing the power-law equations that constitute the 
explicit GMA representation, Eqs. (3)-(7) are written. 

where y and V_, represent the net rates of synthesis and degradation of X, , 
and V,, and V,, represent the two rates of synthesis of X2 that constitute VI, 
the net rate of synthesis of X2. Hence, in this case there is no aggregation 
into rates for net synthesis and net degradation. This difference between the 
GMA variant and the S-system variant used in the previous paper affects 
only the representations of the net rate of synthesis for X2; all other net 

rates for synthesis and degradation in the system are unchanged. Hence, the 
conventional notation for the S-system variant within BST is valid for the 
GMA variant with one difference; when there is more than one reaction 
contributing to the net synthesis (or net degradation) of a given metabolite 
Xi, an additional subscript is added to identify unambiguously the individ- 
ual reactions involved [35]. 

Each rate law and constraint relationship then is represented by an 
appropriate product of power-law functions, with one power law for each 
variable that directly influences the rate law or constraint in question [20,27, 
28, 441. Thus, for a system consisting of m independent and n dependent 

3These equations are simply the rate laws and Kirchhoffs flux equations written in one 

of the standard forms (the “node equations”) found in all areas of network analysis. See 

[41 (Chap. 3)] and references therein for abundant information on these topics. One should 

note that the equations in FOT contain the same information but in a more redundant 

form, as we shall see. 
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concentration variables, the rate laws and constraints are written 

and 

The multiplicative and exponential parameters are referred to as rate con- 
stants and kinetic orders, respectively. (For details see Sorribas and Sav- 
ageau [39].) It should be recalled that the final r subscript is dropped when 
there is only a single reaction contributing to the next flux for synthesis or 
degradation (see footnote 2). 

For the specific mechanism represented in Figure 1, these equations can 
be written by inspection as 

(8) 

dx, 
--& = a3 xpxp - & xp (10) 

x, = y9x@xb (11) 
x,=y,xpxp (12) 

There are two reactions producing X,, hence the additional subscript to 
distinguish between them. The net rate of utilization of Xi is identical to the 
net rate of production of X, by the first of these two reactions, so the 
symbols representing net degradation of Xi are replaced by the equivalent 
symbols in the first term of Eq. (9) for synthesis of X, [20, 271. 

The enzyme concentrations X, and X0 are not independent variables, so 
they are replaced by using the constraints on total enzyme concentration 
[Eqs. (11) and (12)]. The final equations can then be written. 
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where 
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OZi = (Y1yp9, 41= %lYP 7 a; = (Y3ypyp ) 

g13 = &,f93 9 iTI7 = g19f97 9 g231 = g201fo3 9 EC281 = g20, fO8 9 

g33 = g39f93 + g3ofo3 9 ET37 = g39f97 ? g3, = g3ofo*. 

The parameters in this explicit variant are determined by either of the two 
methods described in Part I [39] for determining the parameters in the 
explicit S-system variant. By using information obtained from the empirical 
characterization of the reference system (see Figure 2 in Part I) one can 
estimate the parameter values and write the corresponding equations in 
numerical form. 

*x, _ ~~44x~~-2~;0.533~;1.21~~.07~72.21 _~~~~5~~.57~;2.14~~271~~.71 

dt 

*x, _ = ~~3~5~~.57~~2.14~;2.71~83.71 +~,5~~;0.321~~.“~,0.4M) 

dt 

_ 0 722 x0.568x-0.0947~1.00 
2 5 6 

*x, - = 7.52~10-3~;3.92~~.21~~.71 _ x;.” 
dt 

It is instructive to compare the enumeration of equations for the explicit 
GMA variant within BST, which is the standard enumeration in well-devel- 
oped network theories, to that in FOT. In general, the combination of rate 
laws and Kirchhoff’s flux laws generates r + n equations in r + n variables, 
where r is the number of reactions and n is the number of dependent 
concentrations. Crabtree and Newsholme [4] define b as the number of 
branch points in the system and have reduced the above numbers to r + b 

equations in r + b unknowns by using Kirchhoff’s flux equations at the 
simpler, nonbranching, nodes of the system to eliminate one of a pair of 
equivalent flux variables. These numbers are reduced still further-to the 
minimum, n equations in n unknowns-in the explicit GMA variant within 
BST by substituting the appropriate rate laws into Kirchhoffs flux equations 
for each dependent concentration variable. This is a standard technique from 
network theory (see footnote 3). 

For the reference system in Figure 1, one may consider r = 6, n = 3, and 
b =l if the protein association and dissociation are treated as two irre- 
versible processes. The full collection of rate laws plus Kirchhoffs node 
equations then generates a ninth-order system of simultaneous equations. 
The partial reduction given by Crabtree and Newsholme [4] yields a 
seventh-order system, and the fully reduced formulation in the explicit GMA 
variant within BST involves only a third-order system. Alternatively, one can 
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assume equilibrium for the association/dissociation and eliminate these 
processes from consideration in steady state, and then the corresponding 
numbers become r = 4, n = 2, and b = 1. The full system is now sixth-order, 
the partially reduced system in FOT is now fifth-order, and the fully reduced 
system in the explicit GMA variant is second-order. Thus, the explicit GMA 
variant within BST, when compared with the special case of FOT, uses a 
more efficient reduction of the initial r + n equations and provides a more 
systematic representation for analysis of the system. 

2.2. BEHAVIOR OF THE CONCENTRATIONS IN STEADY STATE 

As discussed in Part I [39], the systemic behavior of a complex biochemi- 
cal system is completely characterized within the context of a given model 
when one can predict the response of any dependent variable to change in 
each of the independent variables and each of the parameters of the 
underlying component processes. The starting point for such an analysis in 
the explicit GMA variant within BST is the characterization of the steady 
state. In a steady state the time derivatives in Eqs. (13)-(U) are equal to 

zero, and we have 

In general, there is no explicit symbolic solution for this set of nonlinear 
algebraic equations [36], so the analysis cannot be as simple and direct as it 
was in the case of the explicit S-system variant. 

Logarithmic Gains. To determine the effect of a change in one indepen- 
dent concentration on the steady state of the system, one differentiates each 
of the steady-state equations above with respect to one of the independent 
variables, say X,, multiplies through by the same independent variable and 
divides through by the net flux, and evaluates at the steady state. In this way 
one obtains a set of simultaneous linear equations in the logarithmic gains 

L 163 L26, and k where Ljk = (8X, /a X,)( X, /X,).4 [Logarithmic gains 
and parameter sensitivities (see below) are both referred to as “net sensitivi- 
ties” in FOT and “control coefficients” in MCT.] For example, when this 

4For discussion of the rationale behind this convention and of the need to distinguish 

clearly the responses to change in independent variables from those in the parameters of 

the system, see [23], [36], [37], and [39]. 
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procedure is applied to Eq. (16), one obtains 

ax, 42 ax, x, --- 
~11v41~ x + g13v41 ax6 x3 ( 1 i 1 ax1 x6 - - 

g211v12 ax6 ~1 
( I 

ax2 x6 
i 1 ax, x, --- 

- g22iv12 ax6 x2 
-- 

g231vi2 8x6 x3 =O, 
i I 

By noting the definition of logarithmic gain given above, and the identity of 

041 and 012 in steady state (i.e., v,, = v12 # 0), one can write this equation as 

(&1- g211) Ll, - tT221L26 + (a3 - g231) L36 = 0. (19) 

The other two equations follow in a similar fashion: 

!GL 
g211 v25 16 + L,, = h,, , 

a33 L36 = 0. 

These linear equations can be solved for L,,, L,,, and L,, provided the 
determinant of the coefficients on the left-hand side is nonzero. Note that 
this determinant is identical to the n X n system determinant in the explicit 
S-system variant (Eq. (23) in Sorribas and Savageau [39]) because in the 
power-law formalism the kinetic orders for the net rate law are simply the 
average of the corresponding kinetic orders for the individual rate laws, 
weighted according to the fraction of net flux contributed by the individual 
fluxes. That is, 

u12 u12 v42 
g22 = ET221 G + g222qjg 3 

u12 
&3 = g231- + g232 

u42 
g21 = g2llG 3 

- 

025 v25 
? 

by the definition of kinetic order [20, 361. 
There are 12 more logarithmic gains for the reference system-three for 

each of the four remaining independent variables. The above procedure must 
therefore be repeated for each of these four independent variables. We shall 
not go through the details. One obtains the same results as given earlier for 
the explicit S-system variant within BST. Thus, the five solutions for the 
third-order sets of linear algebraic equations involve inversion of the same 
system matrix of kinetic orders. Given that the vector of constants changes in 
association with the choice of independent variable, it follows that the 
explicit S-system variant, which involves inversion of the same system 
matrix, must provide the same information, but we believe it is provided in a 
more systematically organized form [39]. 
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In either case, the difficult part of the solution, namely inversion of the 
system matrix, is considerably simplified by using the fully reduced form of 
the system equations found in the GMA variant rather than the partially 
reduced form found in FOT, as was pointed out in Section 2.1. 

It is also important to emphasize here that the identity of results with 
these alternative representations holds only at a single point-the steady 
state. The alternative representations differ elsewhere, in general, and the 
relative accuracy with which they represent the reference system will differ. 

Rate-Constant Sensitivities. To determine the response of a dependent 
variable to change in one of the rate constants of the system, one can 
differentiate the steady-state equations [e.g., Eqs. (16)-(18)] with respect to a 
rate-constant parameter (e.g., &), multiply through by that parameter and 
divide through by the net flux, and evaluate the results at the steady-state 
operating point. The result is a set of linear algebraic equations in the 
sensitivities S( Xi, &), S( X,, &), and S( X3, &), where S( X,, p,) = 
(~94 /ap,)( j$ /Xi) (see footnote 4). 

(gll-g*ll)~(x,~83)-g221~(x2~P3)+(g13-g231)~(x3~P3) =o (22) 

g211 v25 
u12solJ$)+( g,,l$ +g2,,+,2)w2J3) 

+ Et231 G + g232yg ( VI2 
v42 s( X3,&) =o 

1 
(23) 

(24) 

Note that this system of equations has the same determinant as Eqs. 
(19)-(21), only the right-hand sides differ. 

To obtain the 15 additional sensitivities with respect to the five remaining 
rate constants of our reference system, the above procedure must be repeated 
for each of these five rate constants. In each case, one obtains the same 
matrix of coefficients on the left-hand side, but different right-hand sides of 
these equations. This procedure yields the same results that were obtained 
directly using the explicit S-system variant within BST. 

There are no comparable results in FOT because rate-constant parame- 
ters have not been clearly distinguished in FOT; it is clear that this could be 
done by generalizing FOT and one would obtain results identical to those 
presented above. 

Kinetic-Order Sensitivities. In a similar fashion, one can determine the 

systemic responses to change in the kinetic orders of the system by differen- 
tiating the steady-state equations with respect to a kinetic-order parameter 
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(e.g., g,,,), multiplying through by this parameter and dividing by the net 

flux, and evaluating the results at the steady-state operating point. The result 
is a set of linear algebraic equations in the sensitivities S( Xi, g,,,), 

St X2, EC,,,), and S(X,, g,r,), where S(Xi, gpks) = (aX/agPk,)(gpks/X). 

g,ll~~( Xl, g232) + g,,l$ + g2222 - h22 a x2, g232) 
i 

1 

v42 - 
SC x, 7 g232) = - Y3tT232 u25 

a33S( x,9 g232) = 0. (27) 

Note that this system of equations also has the same determinant as Eqs. 
(19)-(21), only the right-hand sides differ. For this class of parameters the 
solution must be repeated another 17 times in order to obtain the complete 
set of parameter sensitivities. 

Again, there are no comparable results in FOT; it is clear that such 
predictions could be made and that one would obtain results identical to 
those presented above using the explicit GMA variant within BST. 

In all, a similar set of equations must be formulated and solved 29 times. 
These equations can be organized into a single matrix equation, which 
exhibits the relationship to the equations of the explicit S-system variant. In 
any case, one obtains the same results that were obtained directly using the 
explicit S-system variant within BST. 

2.3. BEHAVIOR OF THE FLUXES IN STEADY STATE 

In the power-law formalism the flux through any given process is ob- 
tained by a secondary calculation once the values of the dependent concen- 
trations have been determined, i.e., 

i=1,2,3; r=1,2. 
j=l 

From this equation, one also can predict the behavior of the fluxes at steady 
state in response to changes in the independent variables and parameters of 
the system. 
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Logarithmic Gains. The logarithmic derivative of such a function with 
respect to an independent variable gives 

a@%Yr) L(Yr, &> = qlogxk) 

=g;kr+ C gipL(X,~X,)~ i=1,2,3; k=4 ,..., 8; r=1,2. 
j=l 

(28) 

Rate-Constant Sensitivities. The logarithmic derivative with respect to a 
rate-constant parameter yields 

or 

j=l 

i, k =1,2,3; r,s =1,2, (30) 

where S,, is the Kronecker delta symbol, which is equal to 1 when i = k and 
0 otherwise. 

Kinetic-Order Sensitivities. Similarly, the logarithmic derivative with re- 
spect to a kinetic-order parameter yields 

(31) 

or 

S(Yr,hpks) = i gijrS(X,vhpks), i,p=1,2,3; r,s=1,2; k=l ,‘.., 8. 
j=l 

(32) 

Equations (30) and (32) have no Kronecker deltas because the /3 and h 
parameters do not appear in the v:, terms. 

A set of similar relationships can be written for the degradative rate laws 
as well. However, in steady state, 

v_, = r( = c r$, i =1,2,3, 
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which shows that only three of the four fluxes represented in Figure 1 are 
independent of each other. Hence, we need only determine three fluxes in 
order to characterize the systemic behavior. We choose Vi, V2, and V3 as we 
did in Part I for the explicit S-system variant within BST [39]. The remaining 
flux V,, is given by the difference V, - Vi. 

Thus, once the concentration behavior has been determined, the flux 
behavior follows by multiplication and addition. 

2.4. BEHAVIOR ABOUT THE NOMINAL STEADY STATE 

A critical step in establishing the validity of any model is to demonstrate 
that it possesses a steady state corresponding to that exhibited by the actual 
system. The explicit GMA variant does not permit an explicit solution for 
the steady-state equations, and one cannot derive an existence theorem for 
the steady state in the way it was done for the explicit S-system variant 
within BST [20, 361. This is a limitation of the Gh4A variant, but it can be 
overcome to some extent, because one can study the behavior within a local 
neighborhood of the steady state by means of a numerical solution to Eqs. 
(13)-(15). For this purpose we have employed ESSYNS, the program 
described in Part I. These solutions also give the local dynamic behavior of 
the system. As yet, there are no comparable results in FOT, although it is 
clear that ESSYNS can be applied in FOT and one would obtain identical 
results. 

Another important test for any model that is to represent a real system 
with a stable steady state is the existence of stability in the model. The 
necessary conditions for local stability play an important role in evaluating 
alternative biochemical designs that have evolved (e.g., see Savageau [26, 27, 
301). One can determine the local stability properties of models in the 
explicit GMA variant by using standard techniques from linear analysis. The 
linearized equivalent of Eqs. (13)-(15) in the local neighborhood of the 
steady state can be written 

(33) 

where u, = (X, - X,,)/&, and the additional zero subscript signifies 
steady-state values. With this linear representation one can explore the 
conditions for stability of the steady state, e.g., by using the Routh criteria 
(e.g., see [27]). When one takes into account the meaning of the kinetic 
orders in the GMA and S-system variants, then one sees that 

xgij,-!$ - Chij,* = a,, 
r r 10 
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and therefore that Eq. (33) can be written as 

This equation is identical to the one previously obtained for the S-system 
variant within BST [26], and hence the resulting conditions for stability are 
identical to those obtained for the S-system variant [26, 271. 

2.5. RESULTS 

Logarithmic Gains. The responses of the dependent variables Xi, X,, 
and X, to changes in the independent variables X,, X5, X,, X,, and Xs are 
obtained by solving sets of equations such as Eqs. (19)-(21). The responses 
of the flux variables Vi, V,, and Vs follow from Eq. (28). The results are 
summarized in Table 1. It can be seen that these results are identical to those 
obtained previously with the explicit S-system variant within BST (see Table 
3 in Part I) and that they are in good agreement with the empirical data 
obtained directly from the reference system. 

Parameter Sensitivities. The responses of the dependent variables to 
changes in the rate-constant parameters are obtained by first solving sets of 
equations such as Eqs. (22)-(24). The complete set of these parameter 
sensitivities is given in Table 2. For all the rate constants, except 0~;~ and 
(Yap, the results are identical to those obtained previously with the explicit 
S-system variant (see Table 4 in Part I). The sensitivities with respect to 

TABLE 1 

Logarithmic Gains: Percentage Change in the Dependent Variables 

of the System in Response to a 1% Change in an Independent Variable” 

Independent 

variable 

x4 

x, 

x, 

X, 

x, 

x, 

0.126 

0.0727 

- 0.768 

1.39 

- 0.440 

Dependent variable 

x2 x, VI 

0.553 0.00 0.683 

0.105 0.00 - 0.0387 

- 1.11 0.00 0.410 

0.661 0.449 0.928 

0.561 0.754 - 0.678 

v2 4 

0.314 0.00 

- 0.0348 0.00 

0.368 0.00 

0.375 0.449 

0.322 0.754 

aDetermined for the reference system, the explicit GMA variant within BST, or the 

implicit GMA variant within BST. 
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TABLE 2 

Rate-Constant Sensitivities: Percentage Change in the Dependent Variables 

of the System in Response to a 1% Change in a Rate Constant” 

Rate 

constant x, x, 

Dependent variable 

x3 b 

I al 0.450 0.184 0.00 0.760 0.105 0.00 

41 b - 0.296 0.0386 0.00 0.158 0.0214 0.00 
b 

a22 0.614 0.890 0.00 - 0.328 0.506 0.00 

82 - 0.768 -1.11 0.00 0.410 0.367 0.00 

a; 0.177 0.115 0.203 - 0.340 0.0651 0.203 

P3 -0.177 -0.115 - 0.203 0.340 - 0.0651 0.797 

“Determined for the explicit GMA variant within BST. 

bThe sensitivities with respect to these rate constants in the explicit GMA variant are 

directly related to the sensitivities with respect to /3[ and a$ in the explicit S-system 

variant (see text). 

change in ai, and a22 in the GMA variant are directly related to those with 
respect to /I{ and a; in the S-system variant by noting the following 
relationships that are a consequence of the definitions in the power-law 
formalism: 

i =1,2,3. 

By substituting the appropriate numerical values, one sees that these two sets 
of parameter sensitivities are also in agreement. 

The responses of the dependent variables to changes in the kinetic-order 
parameters are obtained by solving equations such as Eqs. (25)-(27). The 
complete set of these parameter sensitivities is given in Table 3. For all the 

kinetic orders, except g211, g221, g2,,, g,st, g222, g232, and g242, the results 
are identical to those obtained previously with the explicit S-system variant 
(see Table 5 of Part I). The sensitivities with respect to the kinetic orders g,, 
(j = 1,2,3,8) and g,,, (k = 2,3,4) in the generalized mass action variant are 
directly related to those with respect to h,, and g,, in the S-system variant, 
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TABLE 3 

Kinetic-Order Sensitivities: Percentage Change in the Dependent Variables 

of the System in Response to a 1% Change in a Kinetic Order” 

Kinetic 

order x, x2 

Dependent variable 

x, v, vz 4 

&l -0.386 -0.158 

a3 - 1.30 - 0.534 

a4 1.11 0.454 

ET17 2.98 1.22 

tT211b - 1.22 0.159 

h21b 1.45 -0.185 

g231b 1.92 - 0.243 

g2nb -2.98 0.390 

g222b - 0.454 - 0.656 

g232b 1.47 2.13 

g242b 0.566 0.821 

h 22 -1.00 - 1.46 

h 25 0.0504 0.0731 

h 26 - 1.77 - 2.57 

g33 - 1.66 - 1.08 

g37 1.17 0.758 

g3s 1.78 1.15 

h 33 - 0.424 - 0.274 

0.00 - 0.653 

0.00 - 2.20 

0.00 1.87 

0.00 5.03 

0.00 0.652 

0.00 - 0.777 

0.00 - 1.02 

0.00 1.59 

0.00 0.242 

0.00 - 0.784 

0.00 - 0.301 

0.00 0.535 

0.00 - 0.0269 

0.00 0.942 

- 1.91 3.19 

1.35 - 2.25 

2.04 -3.42 

- 0.487 0.815 

- 0.0899 0.00 

- 0.303 0.00 

0.258 0.00 

0.694 0.00 

0.0900 0.00 

- 0.107 0.00 

-0.139 0.00 

0.220 0.00 

- 0.374 0.00 

1.21 0.00 

0.466 0.00 

0.479 0.00 

- 0.0241 0.00 

0.845 0.00 

-0.611 - 1.91 

0.431 1.35 

0.654 2.04 

- 0.156 1.91 

aDetermined for the explicit GMA variant within BST. 

bThe sensitivities with respect to these kinetic orders in the explicit GMA variant are 

directly related to the sensitivities with respect to h,,, h,,, h13, h,,, g,,, g,,, gi3, g,,, 
and g,, in the explicit S-system variant (see text). 

again as a consequence of the definitions in the power-law formalism: 

s(x,,g2,1) = S(X,Thlk) 
g2kl h lk 

+hZ( ‘%%;%‘k’) 

s(v,g2kl) = s(y- hlk) 
g2kl h lk 

+z( “‘vb;p*‘), 
i =1,2,3; k =1,2,3,8; 

S(v,g2k2) g2k2 =z( “vb;~“), i=1,2,3; k=2,3,4 
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This is the result of partitioning the effects of change in an aggregated 
parameter into the effects of change in the corresponding parameters for 
each of the converging processes, weighted according to the fraction of flux 
generated by each process [37]. 

Thus, in all cases the steady-state results from the generalized mass action 
variant are equivalent to those from the S-system variant when one takes 
into account the above identities that are a consequence of the definitions in 
the power-law formalism and restricts the comparisons to the steady-state 
operating point. Results involv?g parameters that are common to both 
variants are identical. Results involving parameters that are unique to each 
of the variants are interconvertible between the variants; i.e., one can obtain 
these results either directly from one variant or indirectly from the other (via 
the above identities), and the answer will be the same. 

Behavior about the Nominal Steady State. The predicted steady-state 
responses in the local neighborhood of the nominal operating point have 
been determined numerically by using ESSYNS. For relatively wide varia- 
tions about the steady state, these results agree with the empirical data 
obtained directly from the reference system. Representative results exhibit- 
ing narrow and wide ranges of agreement are shown graphically in Figure 2. 
The ranges over which the predicted and actual responses agree to within 
10% are summarized in Table 4 for all responses to all independent vari- 
ables. The ranges for the generalized mass action variant are quite large, 
from a minimum of twofold to a maximum of 63-fold with an average of 
15-fold, which is considerably greater than the < 10% range quoted by 
others [2, 481. These ranges are usually smaller than the corresponding 
ranges for the S-system variant (average range 20-fold), in agreement with 
the general conclusions obtained by an alternative procedure in Voit and 
Savageau [46]. As indicated in that paper, there can be a small minority of 
concentrations or fluxes within a system for which the generalized mass 
action variant will be more accurate, but even in these cases the addi- 
tional accuracy is never greater than about 15% for the reference systems in 
Figure 1. 

A typical dynamic response to a change within the local neighborhood of 
the steady state is shown in Figure 3. The results predicted by the GMA 
variant within BST (G) are in reasonable agreement with the corresponding 
empirical data obtained directly from the reference system (R). The average 
error between these responses is about 7%. By comparison, the average error 
is about 5% when the response is predicted by the S-system variant of BST 
(S). Similar results have been obtained for other responses (see Part I [39] 
for details). 
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TABLE 4 

Range of Concentrations Over Which the Explicit GMA Variant 

within BST Is Accuratea 

Independent 

variable 

X, 

x, 

> 62.1 

Dependent variable 

x, x, VI vz v3 

21.8 WC 

( > 97.5)b (55.6) 

X5 48.5 21.1 

(48.5) (27.1) 

x6 7.06 8.88 

(7.44) (10.1) 

Xl 4.44 2.59 

(4.37) (2.76) 

x, 3.02 2.65 

(2.58) (3.38) 

w 

cc 

00 

00 

m 

3.34 

(3.34) 

4.11 

(4.11) 

6.63 10.9 

(6.27) (13.6) 

58.2 61.3 

(58.2) (61.3) 

4.22 4.09 

(4.22) (4.06) 

2.11 3.06 

(1.98) (3.21) 

2.01 3.28 

(1.96) (4.10) 

30 

cc 

B-2 

w 

(xl 

cc 

3.34 

(3.34) 

4.11 

(4.11) 

“The range is measured by the ratio of the largest to the smallest values of the 

independent variable that leave the dependent variable within 10% of its actual value. 

The larger this range, the greater the accuracy of the representation. 

bThe range for the explicit S-system variant is given in parentheses for comparison (see 

text for discussion). 

‘The dependent variables X3 and & are not influenced by changes in the independent 

variables X, , X5, X6. 

Summary of Results. From the results in this section it can be concluded 
that FOT is a special case of the explicit GMA variant within BST. By 
generalizing FOT to include (1) treatment of enzyme-enzyme interactions, 

(2) formulation as conventional mass balance equations, (3) explicit repre- 
sentation of the rate-constant parameters, (4) dynamics, and (5) parameter 
sensitivities, we have demonstrated that it becomes logically equivalent to 
the explicit GMA variant within BST. Even when the full potential of this 
class of explicit variants is realized, as we have seen with the GMA variant, 
the results are typically less accurate than those obtained with the S-system 
variant. The analysis also is less tractable mathematically. The results in this 
section show that neither FOT nor the more general explicit GMA variant 
within BST yields any information that is not provided by the explicit 
S-system variant within BST. 

3. ANALYSIS USING AN IMPLICIT VARIANT OF BST: THE 
IMPLICIT GMA REPRESENTATION WITHIN THE 
POWER-LAW FORMALISM 

In the approach referred to as metabolic control theory (MCI) there is no 
explicit representation of the underlying kinetic equations, and hence there is 
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0 5 IO 

time (set) 

15 

FIG. 3. Dynamic response to a change within the local neighborhood of the steady 

state. Before time equals 5 s the system is in steady state. At time equals 5 s the 

independent concentration Xs is increased from 15 to 25 gM by the addition of free 

enzyme X,. At time equals 10 s the concentration X. is decreased from 25 to 15 PM. The 

response predicted by the explicit S-system (S) and the explicit GMA (G) variants within 

BST are contrasted with the empirical data obtained directly from the reference system (R) 

in Figure 1. 

no explicit steady-state solution that gives the systemic behavior directly [36]. 
The answer to the question of how the systemic behavior of concentrations 
or fluxes is related to the component properties (the parameters of the 
underlying representation) is solved indirectly from a set of constraint 
relationships [6, 7, 13, 471 called summation and connectivity relationships 
or “ theorems.” 

As a preliminary step to the analysis using implicit methods, we summa- 
rize the mathematical representation used in MCT and in the implicit GMA 
variant within BST. The implicit GMA variant, which includes MCT as a 
special case, is then used for subsequent analysis because it provides a valid 
representation of the reference system, allows direct comparisons with other 
theories in the power-law formalism, and illustrates the full potential of this 
class of implicit variants within BST. 
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3.1. MATHEMATICAL REPRESENTATION 

Metabolic Control Theory (MCT). The summation and comrectivity rela- 
tionships involve two types of coefficients. Those that involve changes of 
enzyme rate in response to independent changes in metabolite concentra- 
tions are called “elasticities” (for a review, see [15]); they are identical to the 
kinetic orders in chemical and biochemical kinetics [20, 361. 

i = 3,6,9,0; j=1,2. 

Those coefficients that involve systemic changes of metabolite concentra- 
tions in response to independent changes5 in enzyme levels or activities are 
called “control coefficients” [15]; these are special cases of sensitivity coeffi- 
cients [22, 231 when reactions are linear in enzyme concentration or activity 
[36, 371. 

j=1,2; k = 3,6,9,0. 

Four types of constraints involving only the above two types of coeffi- 
cients have been described: (1) flux summation [6, 131, (2) flux connectivity 
[13], (3) concentration summation [6], and (4) concentration comrectivity 
[47]. [For example, see Eqs. (34) and (35).] These relationships have been 
derived by various arguments and it has been claimed that they are entirely 
general (most recently by Kacser and Porteous [15]). It is shown elsewhere 
by Savageau et al. [37] that these are special cases of more general relation- 
ships that are mathematically identical to the well-known orthogonal@ 
properties of linear systems. 

Although these relationships apply to branched pathways under appropri- 
ate restrictions, they are not sufficient to solve for the control coefficients in 
terms of the elasticities. To relate these two types of coefficients one must 

‘It is fundamental to any analysis of biochemical systems that independent and 

dependenr variables be clearly distinguished. According to MCT, each enzyme level in the 

system is considered to be an independent variable, and hence one can determine control 

coefficients for each enzyme by varying its level experimentally [15]. This is not possible in 

systems for which there are enzyme-proenzyme cascades or enzyme-enzyme complexes, as 

has been pointed out [31, 371. In these types of systems, enzyme levels are dependent 

variables and cannot be directly manipulated. 
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utilize another set of relationships in MCT that involve the steady-state 
fluxes at branch points [5, 7, 121. [For example, see Eqs. (36) and (37).] 

Focusing on these summation, connectivity, and auxiliary relationships 
leads to a special mathematical representation of the system. In the case of 
the reference system in Figure 1, an enumeration of these relationships leads 
to the following equations. 

where b,, = b,, = bz9 = 0, b,, = - VEg, bl, = VEo, b,, = - VE,, b26 = VE,, bzo 

= - ‘/E,, and 

Es + Ej = E7 (38) 

E, + E3 = E8 (39) 

Es = K,, E&a (40) 

There is another set of equations that relates to the fluxes, as we saw in 
Section 2.3, but for simplicity we need only consider the concentration 
variables at this point. 

Before applying these equations in an analysis of the reference system, 
one must first verify that the assumptions used in their derivation hold for 
the system being analyzed. For example, the summation relationships were 
derived in MCT by assuming that all enzyme levels and activities can be 
changed independently [6, 7, 13, 141. In the reference system of Figure 1 this 
is impossible to realize. A doubling of Es and E, implies a quadrupling of 
Es, and Eqs. (34)-(37) are invalid. 

Since the enzyme levels are not all independent of each other, one might 
try to introduce the dependencies, as is done in the explicit variants of BST 
[39]. In order to account for dependencies among the metabolite concentra- 
tions, the early MCT was generalized by the implicit procedure [5] corre- 
sponding to the explicit procedure in BST [20, 27, 281. By a similar implicit 
procedure, one can relate changes in the three enzyme levels E,, E,, and E, 
to changes in the two independent variables E, and E,: 

k=3,9,0. 
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Thus, one obtains the relationships 

219 

c$; = 
CE”; cE”d 

c,“;c;; + cE”cg ’ 
i =1,2; k = 3,9,0, (41) 

where C% and C$ are new types of “control coefficients” that relate 
relative change of dependent enzyme levels to relative change in independent 

enzyme levels. These types of coefficients, treated as logarithmic gains in 
BST (e.g., Savageau [23]), previously have not been treated in MCT. They 
can be calculated directly from the constraints in Eqs. (38)-(40) e.g., by 
taking the relevant partial derivatives, inserting the steady-state values for 
the enzyme species, and solving the resulting set of linear equations. 

The new relationships in Eq. (41) then can be used to rewrite Eqs. 
(34)-(37). For example, Eq. (34) becomes 

Gt;+C 
CE”; CE”,’ 

k c,“;c$ + c$c,E: = 0, i=1,2; k=3,9,0. (42) 

The use of such equations for predicting values of the “control coefficients” 
in the system is complicated by the nonlinear relationships that have been 
introduced. 

Before proceeding with a detailed analysis, one should test the empirical 
data from the reference system against one of these equations, for instance 
the concentration summation relationship for Xi. Inserting the appropriate 
values for the new control coefficients (C$ = 0.449, CE; = 1.68, C,?; = - 1.23, 
CE; = 0.754, C,!; = -0.922, CE; = 1.68) and taking the empirical values of 

C& C:,‘, and CEx,1 (L,,, L,,, and L,,) from Table 1, one finds for Eq. (42) 

that 

- 0.768 - 0.719 + 0.303 - 0.213 = - 1.40 # 0 

This type of test shows that MCT cannot be generalized by introducing the 
dependencies. The reason is that the original “summation theorems,” which 
were the starting point in this development, are invalid, even if the newly 
defined “control coefficients” are valid. 

Another approach to generalization would be to abandon the original 
“summation theorems” and ask if one can find some other summation 
among the control coefficients involving only changes in independent en- 
zyme levels. In the simplest case, 

c,xQ+c,x;+cc,xd=o, i =1,2. 

The answer is again no, as can be seen by inserting the empirical values 
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taken from Table 1. The reason is that, although the enzyme levels E6, E,, 
and E8 are now independent variables, the reactions are not linear in these 
independent variables. 

There seems to be no straightforward way to modify the MCT approach 
by generalizations of the type that have been used in the past. The funda- 
mental “theorems” are invalid for biochemical systems in which reaction 
rates are not linear in enzyme levels and the enzyme levels are not indepen- 
dent. If one wants to pursue the development of a general implicit represen- 
tation that would be valid for realistic systems, then one must start from first 
principles and derive a different set of relationships, without making the 
restrictive assumptions found in MCT. 

The Implicit GMA Variant. As is always the case within BST, one starts 
the development with the equations for the conservation of mass and the 
constraints on system constituents, in this case the total enzyme concentra- 
tions [Eqs. (3)-(7)]. However, in the implicit variants the rate laws and 
constraints are not written explicitly as power-law functions, and so the 
analysis proceeds by implicit differentiation of these functions. 

As with the explicit variants within BST (see Part I [39] and Section 2), 
the development of the implicit variants can follow two different routes 
depending on the level of aggregation used to represent the different pro- 
cesses. Aggregation at the level of individual enzyme-catalyzed reactions will 
produce an implicit GMA representation, while aggregation at the level of 
net synthesis/net degradation for each system constituent will produce an 
implicit S-system representation. Since aggregation at the level of individual 
enzyme-catalyzed reactions is assumed in MCT, the appropriate generaliza- 
tion is the implicit GMA variant within BST (see Section 4 for additional 
commentary on the implicit S-system variant). 

To understand the relation between MCT and its generalization by means 
of the implicit GMA variant, it is of value to contrast the enumeration of 
equations in the implicit GMA variant [Eqs. (3)-(7)] with that in MCT. 
Since the implicit GMA variant is closely related to the explicit GMA 
variant, the implicit representation also involves n equations in n unknowns 
(see Section 2). On the other hand, any solution in MCT involves the 
fundamental summation and connectivity relationships, which implies r 
equations in r unknowns (not the r(r + b) stated by Crabtree and New- 
sholme [4], because one does not have to solve the control coefficients for 
r + b system variables simultaneously; e.g., see [S]). In any case, the size of 
the system that must be solved simultaneously is larger than the minimum n 
determined by standard criteria from network topology. The difference is 
r = 4 versus n = 2 in the case of the reference system in Figure 1 with the 
enzyme association/dissociation at steady state, which is the case considered 
in MCT. 
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Just as the explicit GMA variant within BST provides the most efficient 
representation for the class of theories that includes FOT, so the implicit 
GMA variant within BST provides the most efficient representation for the 
class of theories that includes MCT. 

3.2. BEHAVIOR OF THE CONCENTRATIONS IN STEADY STATE 

As in the case of the explicit variants, the starting point for this analysis is 
the steady-state equations corresponding to Eqs. (3)-(7). 

“41 - “12 - -0 (43) 

“12 + “42 - “25 - -0 (44 

“03 - “30 - -0 (45) 

X, = x, - x, (46) 

x0 = xs - x, (47) 

One cannot obtain an analytical solution for the X, in these equations, which 
eliminates the possibility of a direct method for characterizing the steady-state 
behavior. To characterize the response of the system in the absence of 
explicit functional forms for the rate laws, one must proceed by implicit 
differentiation of the steady-state equations. 

Logarithmic Gains. To characterize the steady-state response to change 
in an independent variable (say X,), one takes the logarithmic derivative of 
the steady-state equations with respect to the independent variable, i.e., one 
differentiates the steady-state equations with respect to the independent 
variable, multiplies through by the independent variable and divides through 
by the value of the function itself, and evaluates the expressions at the 
steady-state operating point. Following this procedure, one obtains, for the 
last two constraint equations [Eqs. (46) and (47)] 

(49) 

By the conventions in the power-law formalism (see Part I [39] and Section 
2), these equations can be recognized as 

L,, = f93L.3, and Lo6 = fO3L36 3 
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where by definition L is the relative change in a dependent concentration 
variable with respect to the relative change in an independent variable, and f 
is the relative change in one constraint variable with respect to the relative 
change in another [see Eqs. (18) and (19) in Part I]. 

Similarly, one obtains for the first equation [Eq. (43)16 

If one inserts Eqs. (48) and (49) into this expression and again uses the 
conventions in the power-law formalism, then it can be recognized as 

&9f93 L36 + &I L16 - g211 L,6 - g22, L26 - hJlfO3 L36 = ’ 

or 

( &I - g2ld L,6 - g22, LZ6 + ( &3 - g23,) L36 = ’ (50) 

since g,, = g,,f,, and g,,, = g2,,fo, [see Eqs. (13)-(15)]. The remaining 
equations [Eqs. (44) and (45)] in the set follow in a similar fashion: 

g2112 L16 -+- g221$ + g222 2 

(51) 

a33 L36 = ’ (52) 

Although no explicit use of the power-law formalism has been made, the 
above procedure leads to a set of equations that are identical to Eqs. 
(19)-(21), which were obtained by the explicit method. This equivalence 
follows from the origins of the power-law formalism and the meaning of 
kinetic order as the ratio of differential change in a logarithmic coordinate 
system. 

61n the indirect approach one is rederiving the power-law formalism implicitly in the 

process and one must be careful to distinguish the first partial derivative in each term from 

the second. The first involves differentiation with respect to one variable while al/ other 

variables are held constant; in the second, one differentiates with respect to one indepen- 

dent variable while all other independent variables are held constant. 
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Parameter Sensitivities. In the implicit GMA variant, one cannot de- 
velop a set of equations similar to Eqs. (22)-(24) and (25)-(27) for the 
parameter sensitivities. For this one must know what the parameters are and 
how they enter into the rate laws in order to calculate the required deriva- 
tives, This means knowledge of the underlying formalism, which is not 
available unless the power-law formalism is made explicit. This loss of 
information limits the characterization of the steady state that one can 
obtain by using implicit variants. 

3.3. BEHA VIOR OF THE FLUXES IN STEADY STATE 

For any given flux, one can differentiate the expression with respect to an 
independent concentration variable and implicitly determine the relation- 
ships between logarithmic gains for fluxes and those for concentrations. 

i=1,2,3; k=4 ,..., 8; r=1,2. 
J’l 

(53) 

Thus, once the concentration behavior has been determined, the flux behav- 
ior, at least in response to changes in the independent concentrations, 
follows directly. As in the case of concentrations, one cannot obtain the 
parameter sensitivities in the implicit variants. 

3.4. BEHAVIOR ABOUT THE NOMINAL STEADY STATE 

The summation and connectivity relationships, which are the primary 
equations in MCT, contain only one of the two fundamental types of 
parameters, kinetic orders but not rate constants, in the underlying power-law 
formalism. Hence, the mathematical representation used in MCT allows 
neither an explicit symbolic solution nor a numerical solution of the global 
behavior in terms of the underlying parameters and independent variables. 
This is also true for the more general equations of the implicit GMA variant 
within BST, in contrast to the situation with the explicit variants. Sorribas 
and Bartrons [38], however, have shown that one can assume a steady state, 
derive a linear representation of the system, and relate its stability properties 
to the kinetic orders and steady-state fluxes of the system expressed in the 
nomenclature of MCT. One starts with the differential equations that 
correspond to the dynamics of the system [Eqs. (3)-(5)], instead of using the 



224 ALBERT SORRIBAS AND MICHAEL A. SAVAGFAU 

fundamental theorems of MCT. The dynamic equations can be written 

where pjk = 1 if vk produces Xi, pik = - 1 if vk consumes X,, and pjk = 0 

otherwise. (For simplicity we are assuming that the stoichiometric values are 
unity; if this is not the case, then one replaces the integer 1 by the 
appropriate stoichiometric values.) Although this representation has no 
fundamental advantage over that in Eqs. (3)-(9, it is useful for expressing 
results in the nomenclature of MCT. By using standard procedures, one can 
write the linearized version of the above equation as 

(54) 

where U, = (Xi - XiO)/XjO, c% represents the elasticity of vk with respect to 
X,, and the additional zero subscript signifies steady-state values. 

As in the case of the explicit GMA variant, this equation allows one to 
discuss the necessary conditions for local stability by applying the Routh 
criteria. When one takes into account the identical meaning of the kinetic 
orders in all three variants, one sees that 

P 

where the left-hand side refers to the implicit GMA variant (expressed in the 
notation of MCI), the sum over k includes all reactions in the system and 
the sum over p includes all reactions that contribute to the synthesis of X,, 
the middle terms refer to the explicit GMA variant and the sum over r 
includes all reactions that contribute to the synthesis and degradation of X,, 
and the right-hand side refers to the S-system variant and a;, = gi, - h,,. 

Thus, Eq. (54) can be written as 

which is identical to that obtained for the explicit S-system variant within 
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BST [26], and thus the conditions for local stability also are identical to 
those for the S-system variant [26, 271. 

3.5. RESULTS 

Logarithmic Gains. The responses of the dependent variables Xi, X,, 
X,, Vi, V,, and V, to changes in the independent variables X,, X,, X,, X,, 
and Xs, are obtained by solving sets of equations such as Eqs. (50)-(53). The 
results are identical to those obtained previously with the explicit S-system 
and generalized mass action variants (see Table 1). It is important to point 
out that the analysis of the reference system using the implicit GMA variant 
has been performed without reference to the “control theorems” of MCT. In 
fact, relationships with the meaning of these “theorems” in MCT cannot be 
defined for systems that include enzyme-enzyme interactions, because such 
mechanisms generate nonindependent rate laws that are nonlinear functions 
of enzyme concentration or activity. The general set of constraint relation- 
ships that are valid in the power-law formalism already are implicit in the 
steady-state solution [33, 371. These relationships are a property of the 
mathematical representation, rather than a property uniquely associated with 
the biochemical systems being studied. 

Parameter Sensitivities. As indicated in Sections 3.2 and 3.3, there are no 
results with the implicit approach that correspond to those given in Tables 2 
and 3 for the steady state; these types for results can be obtained only with 
the explicit approaches. 

Behavior about the Nominal Steady State. There also are no results for 
the local behavior in the neighborhood of the steady state that are compara- 
ble to those given in Table 4 and Figures 2 and 3, which again were obtained 
with the explicit approaches. 

Summary of Results. The results in this section show that the summation 
and connectivity theorems, the fundamental principles that characterize 
MCT, are invalid for biochemical systems that include enzyme-enzyme 
interactions. These theorems have no inherent relation to the biochemical 
system; rather, they reflect a particular mathematical description that does 
not hold for the reference system in Figure 1 or for biochemical systems in 
general. There is no possibility of making minor adjustments in this theory; 
a radical change is required that involves rejection of its fundamental 
principles-the summation and comiectivity theorems. As shown above, an 
appropriate generalization that does not involve the fundamental principles 
of MCT or its limiting assumptions is provided by the implicit GMA variant 
within BST. 

The results obtained by analysis using the implicit GMA variant are 
included as a subset of those obtained by analysis using the explicit GMA 
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variant within BST. That is, one obtains the same results in situations where 

comparable analyses can be carried out [compare Eqs. (19)-(Z) and (28) 
with (50)-(52) and (53)]. The principal operational difference is that in the 
implicit variant one is rederiving the power-law formalism each time one 
carries out an analysis.’ In the explicit use of the power-law formalism, 
the derivation of the formalism has been given once and for all. One writes 
the equations in the power-law formalism by inspection of the mechanism 
and, when necessary, substitutes the appropriate constraint expressions. 

There are other differences as well. For example, there are no expressions 
in the implicit variant that correspond to Eqs. (22)-(24), (29), and (30) in the 
explicit variant. This is because there are no rate-constant parameters 
identified in the implicit variant. Similarly, there are no expressions in the 
implicit variant that correspond to Eqs. (25)-(27), (31), and (32). In this case 
one has difficulty carrying out the required operations without knowing the 
functional form, as is the case in the implicit variant. Only in the explicit 
variants can one solve the equations numerically to obtain the system 
behavior in a local region about the nominal steady state. This is because 
one has a full representation in terms of all the component parameters, 
including the rate constants as well as the kinetic orders. 

4. DISCUSSION 

We have analyzed the reference system in Figure 1 using three variant 
theories based upon the same underlying power-law formalism: (1) the 
explicit S-system variant presented in Part I [39], (2) the explicit GMA 
variant, which includes FOT as a special case, and (3) the implicit GMA 
variant, which is seen to be a subset of the second approach and also to 
include MCT as a special case. All these theories may be considered variants 
of a single theory, BST. The logical relationships among the variant theories 
are summarized in Figure 4. BST is based on the power-law formalism and 
can be manifested in two forms. In one the kinetic descriptions of the 
underlying components are explicit, while in the other these descriptions are 
implicit. In all cases, the first step in applying BST is 

(1) Formulation of the basic network equations, which involve Kirchhoff’s 
flux laws, rate laws for the component processes, and constraints among the 
constituents of the system. 

‘This is true for all implicit variants. For example, Kacser [12] rederives the power-law 

representation for the component reactions in his example analyzing a simple branch point. 

It should be noted that this procedure is identical to that presented by Heinrich and 

Rapoport [7] and gives results that are equivalent to those in FOT (compare Eq. (4) in 

Kacser [12] with the equation at the middle of page 20 in Crabtree and Newsholme [2]). 

The general significance of this procedure has not been recognized in MCT, which 

continues to treat the relationships derived by this procedure as auxiliary while maintaining 

the centrality of the “control theorems” (e.g., see [15]). 
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FIG. 4. Logical relationships among the variants within biochemical systems theory 

(BST). The first major distinction among variants is whether the underlying power-law 

formalism is explicit or implicit. The second is whether aggregation is at the level of net 

flux through each constituent pool or at the level of net flux through each enzyme-cata- 

lyzed reaction. The third is whether the mathematical equations that characterize the 

system are combined in a fully reduced form to give the minimum number known from 

standard network theory [S-system (S-SYS) variant, generalized mass action (GMA) 

variant] or in a partially reduced form that gives a larger number than necessary [flux-ori- 

ented theory (FOT) variant, metabolic control theory (MCT) variant]. The number of 

dependent metabolities is n, which is also the minimum number of equations necessary to 

characterize the system. The number of reactions is r, and the number of branch points is 

b, where n i r < r + b. The numbers l-10 refer to the principal steps in the application of 

BST that are outlined in Section 4. 

The next step in the explicit forms of the theory is 

(2) Explicit representation of the component processes and constraints in 
the power-law formalism under in situ conditions. 

Then, depending on how one chooses to aggregate the fluxes in the 
system, one obtains a number of different representations [20, 27, 461. The 
two most important representations used for biochemical systems involve 
aggregation at the level of net flux through each constituent pool of the 
system or aggregation at the level of net flux through each enzyme-catalyzed 
reaction in the system. 

Steady-state analysis using the explicit S-system variant, which involves 
aggregation of flux through each pool, proceeds by the following steps. 

(3) Expression of the system equations in the optimal or fully reduced 
form that is known from network theory to minimize the effort of solution, 
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(4) Explicit solution of the steady-state equations in the power-law for- 
malism, and 

(5) Partial differentiation of the solution with respect to independent 
concentrations and system parameters in order to highlight particular sys- 
temic responses. 

This five-step procedure exhibits many advantages of the explicit S-system 
variant. 

Step 3 gives the explicit GMA variant when aggregation is at the level of 
net flux through each enzyme-catalyzed reaction. In this explicit variant of 
BST, one cannot obtain an explicit steady-state solution, and so the steady- 

state analysis proceeds by the following steps: 

(6) Partial differentiation with respect to independent concentrations and 
system parameters of the explicit steady-state equations in the power-law 
formalism. 

(7) Solution of the resulting linear algebraic equations for the logarithmic 
gains and parameter sensitivities of interest in characterizing systemic re- 
sponses. 

One loses some advantages of the explicit S-system variant by this proce- 
dure; nevertheless, one can obtain fairly complete numerical results for 
specific cases. 

The FOT variant is generated by the following step: 

(8) Nonoptimal or partial reduction of equations and introduction of 
restrictive assumptions produce a special case of the explicit GMA variant. 

Thus, subsequent steps in the analysis follow the same sequence indicated 
above for the explicit GMA variant (steps 6 and 7). 

In the implicit forms of the theory, one deals only with steady-state 
issues. In most other respects the development is logically similar to that of 
the explicit GMA variant, although steps 2 and 6 are not clearly separated as 
they are in the explicit GMA variant. Instead, one aggregates according to 
fluxes through pools (S-system variant) or fluxes through enzyme-catalyzed 
reactions (GMA variant), expresses the equations in the optimal fully 
reduced form (step 3), and then carries out step 9: 

(9) Differentiation of the steady-state equations in their implicit form, 
which involves a mixture of types of partial differentiation, and simultane- 
ous derivation of the power-law representation for the component processes 
and generation of a set of linear equations in either logarithmic gains or 
parameter sensitivities. 

Solution of the resulting equations is then accomplished in the conventional 

manner (step 7). 
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The MCT variant is generated by step 10: 

(10) Use of restrictive assumptions leading to summation and connectiv- 
ity relationships that correspond to special cases of the orthogonality proper- 
ties inherent within the GMA variant. These relationships yield a larger set 
of equations than the minimum necessary for efficient solution. 

Thus, the MCT variant is a special case of the implicit GMA variant, and 
the solution of the resulting equations is accomplished in the conventional 
manner (step 7). 

Although the resulting implicit variants are logically related to the corre- 
sponding explicit variants, they are operationally distinct. Because informa- 
tion contained in the rate constants is lost and one does not have an explicit 
representation of the underlying kinetic equations in the implicit variants, 
the results that can be obtained by these variants represent a restricted 
subset of those available with the explicit variants. 

In summary, the logical framework within BST (Figure 4) provides a 
context for rigorous comparisons of variant theories that are based upon the 
underlying power-law formalism. 

Integrated biochemical systems are inherently complex. Hence it is desir- 
able, indeed inevitable, that simplifications be introduced for their study. 
This also implies that compromises must be made and that these must be 
evaluated to ensure that the simplifications introduced are judicious ones. 
Each of the approaches considered in these papers involves such compro- 
mises, and thus each has its advantages and disadvantages. 

4.1. METABOLIC CONTROL THEORY 

Metabolic control theory (MCT) was introduced four or five years after 
the introduction of BST and is based on the same power-law formalism [36]. 
MCT was the first of these approaches to emphasize constraint relationships, 
which are now known to be the familiar orthogonality properties of linear 
systems, and show that these provide another perspective on the interrelated- 
ness of component processes in intact biochemical systems [37]. This per- 
spective has made available another route for characterizing the distribution 
of influences in a complex system of biochemical reactions [14]. This 
approach has focused on certain simple classes of biochemical systems, and 
thus the analysis in these cases is correspondingly simple and attractive. In 
this way MCT probably has helped to popularize the study of integrated 
biochemical systems. 

In several respects MCT appears to be different from other approaches, 
and so their relatedness generally has not been recognized [42]. This un- 
doubtedly is the result of several factors, the most prominent being the 
implicit rather than explicit use of the power-law formalism and the nearly 
exclusive focus on specific constraint relationships called control theorems. 
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These factors have made it more difficult to evaluate the inherent strengths 
and limitations of MCT vis-&is other approaches and have led to a certain 
amount of confusion in the field. 

First, there has been confusion concerning the implications of implicit 
versus explicit use of the power-law formalism. The implicit approach of 
MCT has been interpreted [8, 141 as being more general than the approach 
of BST, which involves the power-law representation explicitly. Making the 
kinetic description explicit appears to involve a restrictive assumption, while 
leaving the kinetic description implicit suggests that one is not making any 
assumptions about the underlying kinetic description. The results in Section 
3 demonstrate just the reverse. Leaving the representation implicit does not 
yield greater generality; it reduces generality and restricts application to a 
single steady-state point. Furthermore, one cannot completely characterize 
the system’s behavior at this point. For example, one cannot examine how 
the steady-state behavior will change as a consequence of variation in the 
system’s parameter values (Tables 2 and 3). One also cannot predict the 
steady-state (Figure 2) or dynamic (Figure 3) behavior of a system in a local 
neighborhood about the nominal steady state. These conclusions are true not 
only for MCT, but for all implicit approaches, including the more general 
implicit S-system and implicit GMA variants within BST. 

Second, there has been some confusion as to the appropriate role of the 
summation and connectivity theorems. In the absence of an explicit repre- 
sentation for the underlying kinetics, MCT has focused on a special mathe- 
matical representation based on constraint relationships called control 
theorems, which are a special case of the orthogonality properties of linear 
systems [33, 371. These theorems were derived from a set of specific defini- 
tions and simplifying assumptions. The most critical were the assumption 
that enzyme concentrations and molecular activities can be considered 
independent variables identified with a single associated reaction in the 
system, and the assumption that the individual reactions in the system are 
linear in the enzyme concentrations and molecular activities [13, 141. Despite 
these restrictive assumptions, the “control theorems” are considered incor- 

rectly to be generally applicable: “Rigorous and logical analysis of the 
behaviour of metabolic systems demonstrated that this summation equals 
unity, whatever the complexity of the system.. . . The sum of all concentra- 
tion control coefficients for any one metabolite is always zero, no matter 
how complex the metabolic system may be” [15]. 

To cover new aspects not considered in earlier versions, MCT has been 
extended over the years. In the process, the simplicity of the original 
summation and connectivity relationships has been lost as new parameters 
and interpretations have had to be introduced (e.g., see [8], [IS]). Neverthe- 
less, the summation and connectivity relationships have remained fundamen- 
tal to the MCT approach throughout its development [5-8, 13-15, 18, 47, 
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481. Indeed they are considered to be essential for understanding biochemi- 
cal systems: “The various summation and connectivity properties.. . are.. 
fundamental to any discussion of metabolic control.. . . Discussion and 
experiment in the absence of an understanding of these summation and 
connectivity properties can only proceed in a kind of intellectual vacuum” 
[15]. Similarly, Westerhoff and Kell [48] have emphasized these theorems as 
the “principles of Metabolic Control Theory.” This nearly exclusive focus on 
the control theorems in MCT is, however, self-limiting. The results in this 
paper show that the control theorems of MCT are not valid for at least one 
of the more important classes of biochemical systems (see also [33], [37]). 
Hence, MCT is not appropriate as a foundation on which to build a theory 
of biochemical systems. 

In order to provide the most favorable evaluation of its scope and the 
clearest demonstration of its relatedness to other approaches, we have had to 
generalize MCT. Minor changes that preserve a role for the fundamental 
theorems of MCT were shown to be inadequate for biochemical systems 
involving enzyme-enzyme interactions. A more appropriate generalization 
was provided by the implicit GMA variant within BST, which was shown to 
include MCT as a special case. This generalization of MCT removes a 
number of restrictive assumptions and makes the resulting theory applicable 
to the same class of biochemical systems as BST. Nevertheless, it remains an 
implicit approach, and, as indicated above, this limits one’s ability to 
characterize the integrated behavior of the biochemical system. 

4.2. FLUX-ORIENTED THEORY 

The flux-oriented theory of Crabtree and Newsholme was introduced four 
or five years after the introduction of MCT and is based more directly on the 
power-law formalism. This approach was the first to emphasize explicit 
power-law kinetics in a GMA-like representation. The fact that it is an 
explicit approach accounts for most of its advantages. Nevertheless, the 
relatedness of FOT to MCT and BST generally has not been appreciated. In 
part this is because FOT is the most recently developed of these approaches, 
and its relative strengths and weaknesses are only now being determined 
through appropriate comparisons with the other theories. 

The fact that MCT is an implicit approach perhaps makes it more 
difficult to recognize that FOT and MCT are closely related. The areas of 
overlap between implicit approaches, of which MCT is a special case, and 
explicit approaches, of which FOT is a special case, can be seen by 
comparing the results of specific application to the reference system in 
Figure 1. Both approaches yield exactly the same predictions for logarithmic 
gains (Table 1). In this area, even the more general implicit GMA variant 
within BST produces nothing fundamentally new that is not provided by the 
explicit variants within BST. 
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This is not to say that the FOT and MCT approaches are identical. 
Making the power-law formalism explicit allows one to perform a deeper 
analysis and make additional predictions not possible when the power-law 
formalism is only implicit (see comments under Section 4.1). For example, 
the explicit approach is capable of making predictions about the parameter 
sensitivities of the system (Tables 2 and 3) and predicting the local behavior 
of the system in the neighborhood of the nominal steady state (Figures 2 and 
3), although these types of predictions have not been made in FOT. Thus, 
from the results in this paper one can conclude that MCT is more limited 
than FOT. By using MCT one obtains only a subset of the results that can 
be obtained by using FOT. This central fact has not been noted in previous 
comparisons of these two approaches [Trends Biochem. Sci. 12:5-14,216224 
(1987)]. 

The relatedness of FOT and BST may have been overlooked because of 

differences in representation within the power-law formalism. FOT is based 
on an explicit representation in which flux is considered in terms of each 
enzyme-catalyzed reaction, whereas in BST the emphasis has been on the 
S-system representation in which flux is considered in terms of each metabolic 
pool. Nevertheless, the two approaches are very similar. The approach that 
Crabtree and Newshohne [2-41 have described draws heavily on power-law 
functions, and many of their theoretical developments have confirmed those 
presented in BST. For example, in cases where there are dependencies 
among the metabolic concentrations due to functional algebraic constraints 
(e.g., among ATP, ADP, and AMP when the total adenylate pool is con- 
stant), one must include these in an appropriate fashion within the system’s 
equations. Their method of representing such a sum in the power-law 
formalism [3] is identical to that given by Savageau [27 (Chap. 5), 281. 

The parallelism runs much deeper. If one avoids restrictive assumptions 
concerning the linearity and independence of enzyme activities, saturation of 
specific reactions, operation near equilibrium, etc. (while these may apply in 
specific cases, they are not generally valid), and if one adopts the nomencla- 
ture that is conventionally used in network theories, then one can see that 
FOT readily generalizes to the explicit GMA variant within BST. The 
fundamental difference between the explicit GMA variant and the explicit 
S-system variant within BST is the following: steady-state behavior in the 
GMA variant is governed by nonlinear relationships that cannot be simpli- 
fied, whereas in the S-system variant it is governed by nonlinear relation- 
ships that can be readily transformed into simpler linear relationships in the 
logarithms of the variables. This fundamental difference has a host of 
implications. Most of these have been discussed at length elsewhere (see Voit 
and Savageau [46] and Savageau et al. [36, 37]), so we shall review only the 
most important. 
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In the GMA variant one cannot make well-controlled comparisons in- 
volving explicit symbolic constraints on global behaviors. By contrast, one 
can easily generate such constraints in the S-system variant by simply 
equating the explicit steady-state solution that corresponds to the global 
property in question for each system. In this way one can draw very general 
conclusions, independent of specific parameter values, from comparisons that 
correspond to a “well-controlled” experiment (e.g., see Savageau [24, 25, 271 
and Savageau and Jacknow [32]). Such well-controlled comparisons have 
been used in BST to deduce very general conclusions regarding the evolution 
of alternative designs for regulatory mechanisms in genetic circuits [27] and 
immune networks [9, lo], as well as biochemical pathways (for a brief review 

see Savageau [30]). 
Even if one focuses only on specific numerical cases, as opposed to 

general class-specific properties, the GMA variant has limitations when 
compared to the S-system variant. In the GMA variant there is no proof that 
a steady-state solution can be obtained by numerical methods [16, 17, 491. 
Furthermore, numerical solutions, when they exist, are not obtained as 
efficiently as they are in the S-system variant, which is supported by the 
specific calculations required for the comparisons in Figures 2 and 3 (data 
not shown). For a more general analysis of this subject see [ll] and Irvine 

and Savageau [in preparation]. 
Finally, although the range of accurate representation by the GMA 

variant has been demonstrated to be considerably greater than the 10% limit 
mentioned by Crabtree and Newsholme [2], this range is less than that by the 
S-system variant (e.g., see Voit and Savageau [46] and the results in Figure 2 
and Table 4 for the specific reference system in Figure 1). 

4.3. BIOCHEMICAL SYSTEMS THEORY 

Biochemical systems theory (BST) has been compared to older ap- 
proaches involving the linear formalism and the Michaeli-Menten formal- 
ism [24, 271. The theoretical development of BST and its application to a 
variety of biological systems have been reviewed (e.g., see Savageau [24, 27, 
29, 301 and Savageau and Voit [34]), and the more important advances have 
been summarized in Part I [39]. In this section we shall comment on three 
limitations of BST and on new opportunities for development within the 
power-law formalism that address these limitations. 

The first and most characteristic limitation of BST, like that of all local 
representations, is the range of variation in concentrations over which the 
representation is valid. Although this range is far broader for the S-system 
variant within BST than for other well-known local representations, and 
although it is comparable to the ranges that are exhibited experimentally in 
biochemical systems, it nonetheless is a potential problem for some systems. 
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A related issue that is evident from the comparisons in this paper is the 
monotonic nature of the responses in steady state. One can accurately 
represent the behavior of a system with nonmonotonic behavior for small 
variations about a steady state on the rising portion or the falling portion of 
its characteristic, but the representation cannot be expected to cover a range 
of variation that encompasses both the rising and falling phases of a 
response. 

What are the alternatives when one encounters situations such as these? 
One obvious choice is to fall back on a more complex nonlinear strategy, 
such as representation by rational functions. This will provide acceptable 
numerical descriptions for specific systems, but its limitations for revealing 
more general class-specific properties of biochemical systems are well known 
(e.g., see Savageau [24, 271). Another choice, for which there is ample 
precedent, is “piecewise representation.” One can subdivide the actual range 
of operation into smaller ranges within which the behavior is monotonic and 
accurately represented by separate power-law functions. This is a straightfor- 
ward extension of the well-known methods for piecewise linear representa- 
tion [lb]. Again, this will lead to acceptable numerical descriptions for 
specific systems, but by introducing an ad hoc subdivision into the theory 
one loses its coherent and general characteristics. An alternative to these 
ad hoc approaches has recently become available as a result of developments 
within the power-law formalism itself [28, 35, 43, 451. It is now possible to 
remain within the power-law formalism and, by introducing additional 
variables, improve the range of representation or in fact achieve an exact 
representation for the nonlinear functions likely to be encountered in any 
biochemical system. This approach has the advantage of staying within a 
unified theoretical framework. It also means that many of the powerful 
methods already developed for efficient solution of the equations in the 
power-law formalism can be applied here as well. 

The second major limitation, following these problems of accurate repre- 
sentation, is in the methods for solving the full dynamic problem in BST. 
Unlike the steady-state solution, which is straightforward because it repre- 
sents a linear problem when transformed into logarithmic coordinates, the 
dynamic solution involves nonlinear differential equations. This is a funda- 
mental problem for any realistic formalism. In general, one cannot obtain 
such solutions except for specific numerical cases, and even for these the 
available methods are often unsatisfactory in terms of reliability, accuracy, 
and efficiency. Recent developments within the power-law formalism have 
led to significant advances in the solution of this problem as well [ll; Irvine 
and Savageau, in preparation]. As a result one can now obtain dynamic 
solutions with far greater reliability and accuracy one to two orders of 
magnitude faster than possible with other methods (see also [35]). 
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The third limitation common in this field, and applicable to BST as well, 
is the difficulty in estimating values of component parameters from measure- 
ments on the intact biochemical system. A systematic approach to this 
problem has been developed recently within BST [Sorribas and Savageau, in 
preparation] and was used to generate (in reconstruction experiments) the 
component parameter values used in these papers. Although this approach is 
not a complete solution to the parameter estimation problem, it represents 
an advance over existing methods and points to new avenues for future 
exploration. 

4.4. CONCLUSIONS 

The evidence presented in these two papers, which results from theoreti- 
cal considerations as well as from the analysis of a specific system, indicates 
that the explicit S-system variant provides a systematically structured for- 
malism that brings clarity, simplicity, and directness to the analysis of 
complex biochemical systems. The approaches called FOT and MCT are 
particular cases of the GMA variant within BST. The hierarchy of inclusive- 
ness and utility is as follows: 

explicit S-system > explicit GMA > FOT > implicit S-system 

= implicit GMA > MCT 

Neither FOT nor MCT, even in their generalized versions represented by the 
explicit and implicit GMA variants, provides the range of results that is 
provided by the explicit S-system variant within BST. Hence, the explicit 
S-system variant within BST represents the most general framework among 
the several possibilities that can be derived by the use, implicitly or explic- 
itly, of the power-law formalism. Finally, the recent development of entirely 
new methodologies for the study of complex nonlinear biochemical systems 
demonstrates the continued fertility of biochemical systems theory and the 
underlying power-law formalism on which it is based. 
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developed essentially the same generalization of the MCT approach as that 
involving the implicit GMA representation in this paper. Because these 
authors emphasize the role of sensitivity theory in their work, it might help 
to understand better the relatedness of their work to our own if we briefly 
recount the influence of sensitivity theory on the development of BST. Bode 
is generally considered the father of sensitivity theory, which is a part of the 
network theory he also was instrumental in advancing [la]. Network theory 

later became a part of systems theory [l]. BST was formed in this tradition, 
and the terminology of gains and sensitivities [23] comes from this source. 
The textbook by Savageau [27] comments specifically on BST’s relationship 
to sensitivity theory and gives reference to the collection of key papers in the 
development of sensitivity theory [4a]. Additional references to the related- 
ness of BST to sensitivity theory can be found in a recent review [30] and in 
recent papers comparing BST and MCT [36, 371. 
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