
Journal of Neuroscience Methods, 28 (1989) 205-208 205
Elsevier

NSM 00952

Enhancing high-speed digitization of single-unit neuronal activity
on a microcomputer using a hybrid software-hardware technique

J. W a y n e Aldridge, J o n a t h a n L. Walden and Sid G i l ma n

Department of Neurology, University of Michigan, Ann Arbor, MI (U S.A.)

(Received 13 May 1988)
(Revised 8 December 1988)

(Accepted 10 December 1988)

Key words: Single-unit recording; Data acquisition; Digitization; Software algorithm; High-level language

A new data acquisition technique allows a microcomputer simultaneously to digitize spikes at high rates, analyze spike waveforms
for computer-based spike separation and manage other control tasks. The technique has two key features: a software scheduling
routine written in a high-level language and a hardware analog delay of neuronal signals using simple hardware external to the
computer. The technique provides an alternative for real-time data acquisition and can be used on microcomputers without requiring
interrupt processing and assembly language programming.

Introduction

The technique described in this paper enables a
microcomputer and external signal processing
hardware to digitize spike discharge activity at
high rates. This technique frees the computer from
continuously waiting for data and provides an
additional mechanism for simultaneously control-
ling other experimental tasks in real-time. An im-
portant aspect of the technique is the capability to
compute waveform parameters on-line for a com-
puter-based spike separation procedure (Schmidt,
1984, Vibert and Costa, 1979), a more precise and
flexible approach than external hardware spike
discrimination (Schmidt, 1984).

Interrupt processing is one common method for
data acquisition when an experimental control
task must be interleaved in real-time. Although
well-suited to this assignment, interrupt processing

Correspondence: J.W. Aldridge, Department of Neurology,
University of Michigan, Neuroscience Laboratory Building,
1103 East Huron, Ann Arbor, MI 48104, U.S.A.

can be complex to prepare and maintain and may
not be installed on all microcomputer systems.
Interrupt processing requires a detailed considera-
tion of all computing resources such as memory
and disk management and, generally, an assembly
language interface. Also, interrupt driven software
is often not easily portable to different computers.

The new hybrid polling technique described
here takes advantage of the normal properties of
neuronal discharge activity. Neurons exhibit a wide
range of firing rates, including rates as high as
1000 Hz, although sustained high firing rates are
rarely observed. Most neurons, including those
capable of reaching these high rates, exhibit bursts
of spikes interspersed with periods of relative si-
lence. In the globus pallidus, a structure known
for high rates of neuronal activity (DeLong, 1971;
Aldridge et al., 1980), 16% of units have a median
rate of 100 Hz or more, however, less than 1% of
the units reach a median rate of 200 Hz (Aldridge,
unpublished observations). Even at a sustained
rate of 200 Hz, a computer will be engaged by the
digitization process only 20% of the time, assum-
ing a spike duration of 1 millisecond. At low rates

0165-0270/89/$03.50 © 1989 Elsevier Science Publishers B.V. (Biomedical Division)

206

of firing the proportion of time needed to digitize
spikes is miniscule. The polling method we have
devised incorporates a new hybrid design that
permits the computer to utilize effectively and
easily the potentially large amount of processing
time between neuronal spikes.

Methods and Results

Unit activity for this study was recorded from
the striatum and pallidum of monkeys and cats
surgically prepared for chronic single unit record-
ing. The discharge of single units was recorded
with standard electrophysiological techniques.
Tungsten microelectrodes were manipulated to re-
cording sites with a hydraulic rnicrodrive attached
to a recording chamber. Electrode signals were
preamplified and monitored on an oscilloscope. A
schematized plan of the analog signal processing
steps is shown in Fig. 1.

The microcomputer (Compupro, C P / M 68K)
had an analog-to-digital converter and a real-time
clock. The external hardware consisted of an ana-
log delay line, a voltage comparator and a retri-

OSGILLOSGOP[

~ AiD
CONVERTER

LEVEL

GOMPAP~ATOF~

COMPUTER

SP(KE
INDICATO,q

Fig. 1. Analog signal processing. The neuronal signal from the
electrode was amplified and connected to the oscilloscope,
audio monitor, delay line input and voltage comparator. The
delayed analog signal was connected to the computer's analog-
to-digital converter and the oscilloscope. The computer had a
Motorola 68000 microprocessor running at a 10 MHz clock
rate and utilized the C P / M 68K operating system. One mega-
byte of memory was available for the program and data

storage.

ggerable pulse generator (Fig. 1). The analog delay
line (EG&G Reticon SC5106) coupled the neuro-
nal signal to the computer's analog-to-digital con-
verter with a delay of 5 ms. The voltage compara-
tor, connected to the undelayed signal, was set to
a level above the background noise and below the
level of acceptable spikes. Every spike exceeding
the comparator window triggered the pulse gener-
ator. The pulse duration was set to a length equiv-
alent to the analog delay. In operation, spikes
initiated a pulse at the same instant of time at
which they entered the delay line. The computer,
by polling the pulse generator, detected the pres-
ence of a spike in the delay line. When no spikes
were detected, the program could initiate and ex-
ecute other experimental control tasks.

The delay line served as a temporary storage
location for the spike, allowing the computer time
to interleave other experimental tasks: Whenever a
spike was detected, the program immediately ini-
tiated a routine that digitized the spike from the
delayed signal. The digitization routine read the
analog data at regular intervals (10/~s) and stored
the waveform in a memory buffer to be analyzed
by a separate routine. A voltage window set just
above the background noise and below the level of
acceptable spikes defined the onset of a spike.
Data collection continued until the level fell to
zero after the second, positive peak in the spike
waveform was passed or until a period 1 ms from
the onset of the spike elapsed. No spikes were
missed in high-frequency bursts as each spike re-
triggered the pulse generator and the digitization
routine remained in effect until at least 1 ms after
the pulse generator indicated that no spikes were
present. The computer calculated the actual time
of spike occurrence by subtracting the length of
the analog delay from the time read on the block
at the onset of the spike.

The critical software component was a schedul-
ing module that supervised digitization and all
control functions. The scheduling module (Fig. 2)
consisted of a program loop that performed one of
four prioritized operations on each iteration. First,
the module polled the spike indicator (pulse gener-
ator) and, if a spike was present, executed the
digitization routine. The second priority of the
scheduling module was to look for a keyboard

207

/* SCHEDULING MODULE PSEUDOCODE */

LOOP:

read the spike indicator;

if there is a spike indicated

execute spike digitization;

goto LOOP;

read the keyboard command port;

if there is a keyboard command

execute the keyboard command;

goto LOOP;

read the time;

if there is a scheduled task AND it is time to execute the task

execute the scheduled task;

remove the task from list;

goto LOOP;

if there is a queued task

execute the next queued task on the list;

remove executed task from list;

goto LOOP;

goto LOOP;

Fig. 2. Scheduling module pseudocode. The scheduling module consisted of an endless loop that could be broken only by a "'stop"
command from the keyboard or a scheduled "stop-task" at a particular time. The loop performed only one action each time it was
traversed. Precedence was given to spike digitization if the spike indicator signaled that a spike had entered the delay line. If there
was no spike, a keyboard command was executed if one was found. If there was neither a spike nor a keyboard command, the module
would execute a scheduled task if the time was appropriate or execute a queued task if one was on the list. Scheduled commands
included stopping data collection at prearranged times and regular terminal screen updates to inform the user of the number of spikes
collected and the elapsed time. Queued tasks were devoted to tasks such as measuring peaks of digitized spikes and managing buffers.

stop command and, if one was present, to execute
the command and leave the loop. The third prior-
ity was to control time-scheduled experimental
tasks. Scheduled tasks were maintained in a sorted
list and executed at specific times read on the
real-time clock. The 4th priority was to execute
queued tasks, which were processed in the order
they were placed on the fist. All commands or
control tasks were executed in less than 5 ms, the
length of the analog delay. Scheduled and queued
tasks were written as single functions and none
took longer than 3 ms.

Scheduled and queued tasks were used for ex-
perimental control and on-line analysis of spike
waveform parameters. Scheduled tasks including
stopping at a preset time and regularly outputting
to the terminal information on elapsed time and
the number of spikes collected. Scheduled tasks
could also include timed delivery of sensory stimuli
and monitoring of behavioral events. The most
important queued task was to compute descriptive
waveform parameters from spikes buffered in
memory. In our study, a point by point analysis
was made to compute the amplitudes of the nega-

208

tive and positive peaks and the peak to peak
durations (Vibert and Costa, 1979). Other parame-
ters, such as risetime, could be determined as well.

Using the method described above, we have
studied several hundred neurons in the basal
ganglia of both monkeys and cats. Firing rates are
high in the globus pallidus and in some cases the
electrode records activity from two units simulta-
neously. Even in this situation the computer was
capable of collecting and analyzing data. The
comparator setting was not critical providing it
was below the peak amplitude level of all spikes.
If the comparator level was set 1oo low, spurious
electrode noise could initiate spike digitization. If
this occurred, noise would be collected as spikes,
and this could overload the memory buffers and
disable data collection. Overloading was easily
avoided by correctly setting the comparator levels
outside the noise boundaries. We have never en-
countered units that were discharging too fast to
be collected using this technique.

Discussion

Using a new combination of hardware and
software, we have developed an alternative method
for digitizing spike discharge activity and, simulta-
neously, managing other experimental control
tasks with a microcomputer. The technique relies
on the fact that most neuronal activity occurs
sporadically in time. The time between spikes is
used to execute other experimental tasks by delay-
ing the arrival of the spike to the computer with
hardware. The hardware is readily available, sim-
ple to use and requires no internal modifications
of the computer. The scheduling algorithm is flexi-
ble and can be used to provide a general purpose
software interface for timing and administering
experiments in real-time.

An advantage of our method is the ability to
implement it on a microcomputer that does not
have interrupt processing. We used only a stan-
dard 'C' compiler for development and did not
have to contend with the intricacies of the assem-
bly language interface to the operating system.

Another important advantage is the liberty to
write control programs in a high-level language,
and thereby avoid the tedium and complications
of assembly language programming. The ad-
vantages of using a high level language in well
defined, limited applications have been demon-
strated in other settings (Simmons, 1985). Assem-
bly language subroutines, although difficult to
write, can greatly increase data acquisition speed
(Kegel et al., 1985). There are some disadvantages
to this technique. It relies on the time between
spikes to execute control tasks. When neurons fire
in sustained, extremely high rates, this technique is
not applicable, however, most neuronal activity
does not have this property. Another disadvantage
is that control functions must be short enough to
be completed within the delay time. A delay of 5
milliseconds is long enough to permit a microcom-
puter to complete even very complex control tasks,
but it may not be sufficient for all applications.

Acknowledgements

This work was supported in part by NIH Grants
NS 19613 and NS 07222 and by a grant from the
United Cerebral Palsy Research and Education
Foundation, Inc.

References

Aldridge, J.W., Anderson, R.J. and Murphy, J.T. (1980)
Sensory-motor processing in the caudate nucleus and globus
pallidus: A single unit study in behaving primates, Can. J.
Physiol. Pharmacol., 58: 1192-1201.

DeLong, M.R. (1971) Activity of paUidal neurons during
movement, J. Neurophysiol., 34: 414-427.

Kegel, D.R., Wolf, B.D., Sheridan, R.E. and Lester, H.A.
(1985) Software for electrophysiological experiments with a
personal computer, J. Neurosci. Methods 12: 317-330.

Simmons, P.J. (1985) Signal averaging by microcomputer using
a program written in a high level language, J. Neurosci.
Methods, 12: 235-240.

Schmidt, E.M. (1984) Instruments for sorting neuroeleetric
data: a review, J. Neurosci. Methods, 12: 1-24.

Schmidt, E.M. (1984) Computer separation of multi-unit neu-
roelectric data: a review, J. Neurosci. Methods, t2: 95-111.

