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A NEW LIMIT ON SCALAR AND VECTOR CONTRIBUTIONS TO GRAVITY 
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Macroscopic effects of theories of quantum gravity containing scalar, vector, and tensor component sin proportions Cs:Cv:CT 
are considered. Assuming zero mass fields, the classical tests of general relativity are found to imply, to 90% confidence, CT = 1 _+ 0.003 
and ICv - Cs I < 0.003. For the binary pulsar PSR 1913 + 16, the calculated gravitational radiation is compared with the measured 
emission and found to imply 0~< Cs < 0.12. These results, which are independent of any assumption about differences between 
matter-matter and matter-antimatter interactions, place meaningful constraints on local supersymmetric theories of gravity. 

There has been much recent interest in the possi- 
bility that quantum theories of gravity might imply 
the existence of scalar (S) and vector (V) compo- 
nents of the gravitational field in addition to a tensor 
(T) component corresponding to the familiar 
Einstein theory. These additional fields, which ap- 
pear in a natural way in local supersymmetric theo- 
ries of gravity [ 1 ], may be expected to have observa- 
ble consequences at the macroscopic level [2,3 ]. In 
particular, if these were zero mass fields then ordi- 
nary newtonian gravity would be the sum of scalar, 
vector and tensor contributions. For interactions be- 
tween ordinary matter, the vector component of the 
force in this version of newtonian gravity would be 
repulsive and tend to cancel the attractive scalar and 
tensor components. For gravitational interaction be- 
tween matter and antimatter the interesting sugges- 
tion has been made that the vector force would be 
attractive and so would not cancel and could lead to 
large observable effects. This is one of the motives for 
an experiment at the LEAR facility at CERN in which 
the acceleration due to gravity is to be measured for 
antiprotons [3,4]. Here we point out that meaning- 
ful limits on these scalar and vector components can 
be set using measurements of gravitational wave 
emission in the binary pulsar PSR 1913 + 16. An im- 
portant feature of these limits is that they are inde- 
pendent of any assumption about the nature of the 
matter-antimatter gravitational interaction. 

We begin by introducing a phenomenological field 
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theory of macroscopic gravitation in which a collec- 
tion of point-like particles of inertial mass mj interact 
through a gravitational field which is a mixture of 
scalar, vector and tensor fields in proportions 
Cs:Cv:Cx. In order to be specific and to quantify our 
remarks, we exhibit the lagrangian density for this 
theory, which is of the form 

5a= ~s + 5av -t- 5aT, (1) 

where (with the metric goo = - g l l  = -gz2 = -g33 = 1 ) 

1 gK~ O 0 0 ~  
5as- 8zrGcs Ox ~ Ox ~ 

- ~ mj 1 -  O(rj, t ) 5 ( r - r j ) ,  

1 ( O0 ~' 00~ O0 t' O0 ~ 
5av 87rGcv gK,~ Ox '¢ Ox "~ Ox" OxUJ 

1 dx~' 
-- Z mJO~(rJ, t) ~--~J S ( r - r j ) ,  

c j i l l  

5 a T = - -  g~ --2 
167rGcv \ Ox '~ Ox ~ Ox ~, Ox ~ 

O~ ~Ox ~ Oq)~Ox ~ _g~a O0~Ox ~ O0~ j ( v 2 +2 - ~ mjc 2 1 +--c2 

dxe)  1/2 2 dxJ' .~ 
+ ~O~. ( r j ,  t) dt -d-[ (~(r - -r j ) .  (2) 
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Here the tensor lagrangian density corresponds to a 
tensor field theory equivalent to the Einstein theory 
through the post-newtonian terms. We are aware of  
the difficulty in conceiving how such a macroscopic 
theory could arise from our current understanding of  
the fundamental interactions. We emphasize, how- 
ever, that this is the most general field theory consis- 
tent with (special) relativistic invariance and the 
newtonian form of non-relativistic gravitation, and, 
therefore, any macroscopic theory of  scalar-vector-  
tensor gravitation must have this form. Before dis- 
cussing gravitational radiation we consider the con- 
straints set upon the positive constants Cs, Cv and Cx 
by the definition of  the gravitational constant G and 
by the classical tests of  general relativity. For the the- 
ory described by the above lagrangian density the non- 
relativistic gravitational potential arising from a static 
central mass M is 

MG 
0NR = (Cs --Cv +CT) - -  (3) f 

The definition of  G or, if one prefers, the E6tvos ex- 
periments require that this must be of  the form of  the 
newtonian potential. Therefore we must have the 
constraint 

Cs -Cv  +CT = 1. (4) 

The bending of  light calculated in this theory is given 
by 

4MG 
A 0 = C T  , ( 5 )  C2F 

the scalar and vector fields making no contribution. 
The most recent experimental results on light bend- 
ing [ 5 ], and on the equivalent radar ranging time de- 
lay [ 6,7 ], are consistent with 

CT = 1 +0.002. (6) 

The precession of  the perihelion calculated in this 
theory is 

3(MG) 3/2 
d)= ( - l c s  +~Cv +CT) c2a512 ( l _ e  2) " (7) 

The observations of  Mercury are consistent with 
[8,9] 

I + l c v + c  T 1+0.01.  (8) - -  ~ C  s = _ 

Combining (4), (6) and ( 8 ) we see that the classical 
tests are consistent with CT= 1 and Cs=Cv at the level 
of  0.2%, but there is no constraint on the common 
value of  Cs and Cv. This is the interesting possibility 
suggested by Macrae and Riegert [ 2 ]. 

We consider now gravitational radiation by a bi- 
nary system in the theory described by the lagrangian 
density ( 1 ). The field equation for the scalar field is 
[ I 0 ]  

E20=4~Gcsp( r, t ), (9) 

where the source density is 

p(r, t)= ~ mj 1 c2 ) ~(r-rj( t)) .  (10) 

Here the sum is over the two stars in the binary which, 
on account of  (4),  are in a Kepler orbit. Far from the 
source the solution of  the field equation has the form 

O(r,t),~ Gc~s f dr' (11) 

where t~ = r/r. As usually stated, the condition for the 
validity of  the multipole expansion is that the wave- 
length of  the emitted radiation is long compared with 
the size of  the source. For a Kepler orbit with semi- 
major axis a and period T, this becomes 

a/cT<< 1. (12) 

For the binary pulsar PSR 1913+16,  a/cT=2.33 
× 10 4, so this is comfortably satisfied [ 11 ]. Also, 
this is the condition that typical velocities in the 
source are small compared with the velocity of  light, 
so the Kepler orbit is non-relativistic. The result is 
that we may expand the integrand in ( 11 ) in powers 
of  the small time Ji.r'/c, and within the expression 
(10) we may expand in powers of  v~/c 2 to get 

m s 1 -  - • t -  - -  c ~ t n  rj 

+ 2c-- 5 ~ 5 ~ . r j  t -  - v j  t -  . (13) 

But the total mass, 

M= ~, mj=ml +m2, (14) 
1 

as well as the coordinate of  the center of  mass, 
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R= 1__ ~ m/rj(t), (15) 
M /  

are constants of  the non-relativistic Kepler motion of  
the binary. There are relativistic corrections of  order 
1/c 2 to the center-of-mass motion, but these are of  
higher order and may be neglected. Therefore, to the 
accuracy we need, the first two terms within the 
square bracket in (13) make no contribution at fi- 
nite frequency. In the remaining terms we introduce 
relative coordinates, writing 

/T / l  
r , = R + ~ ¢ ,  r2=R---~¢,  (16) 

to get 
"~ 2 #GcsEd2 " ( ;)- ( ; )  ] 

O(r,t)=~rc2 ~ s n ' ~  t -  - v  t -  , 

(17) 

where #=m~m2/M is the reduced mass and e is the 
relative velocity. 

The radiated power per unit solid angle is 

dP 
- lim r2~.S, (18) 

where S is the energy flux density and is given by [ 10 ] 

1 
S= 4nGcs ~t vO~ 1 { 30"~2, 4 n G c ~  ~ - )  n. (19) 

Using the expression ( 17 ) for 0(r,  t) we find 

d) 
- -  7 ~ 3  ~ ' ~  2 -  v 2 (20) 

d£2 16nc s dt ~ " 

We can work out the time derivatives in this expres- 
sion using the equations of  Kepler motion: 

de d e = - M G  ¢ 
d t - e '  dt ~ '  (21) 

where, again, we can use the constraint (4) for the 
non-relativistic Kepler motion. The result is 

dP ( #MG ) 2 Gcs 
m 

d£2 4gc 5 

[ ~-¢~-e  (~.¢)2¢.e ¢-e~ ~- 
X ~4 ~Y 3 Cs ¢3 j" 

Integrating over directions offi, using 

(22) 

!6 

h+fij hk fit = ~5 ( (~,)Sk, + 5ikSjt + 5,(~jk ), (23) 

we find for the total instantaneous power radiated 

P= 8(#MG)ZGcs 2 ¢4 
15c 5 

To find the time-average power we average over a pe- 
riod of  the Kepler motion, using the Kepler orbital 
equations: 

27rt 
¢=a(1-ecosu) ,  ~ - = u - e c o s u ,  

T 1 - e cos u 

27ra 2 
¢ . e=  ~ - -  e sin u. (25) 

The final result is the following expression for the 
time-average power radiated in the form of scalar 
fields: 

2 5 p 2~# Gl'2~a~ 1 6 + 5 2 e 2 + 7 e  4 (26) 

The derivation of  the corresponding results for 
time-average power radiated in the form of vector and 
tensor fields is entirely similar. The two differ by only 
a constant factor, 

C v  
Pv = ~CT PT, (27) 

and the result for Pv is in the literature [ 12 ] 

2/r#2G (2~a~ s 9 6 + 2 9 2 e 2 + 3 7 e  4 
Pv=CVl~T-aT\cTJ (1_£2)7/2 (28) 

The total radiated power is the sum 

P=Ps + P v  +PT- (29) 

We have given the derivation of  this result, with 
some detail in the scalar case, because we wish to em- 
phasize several important  features. The first of  these 
is that the power radiated in the form of  scalar, vec- 
tor and tensor fields is proportional, respectively, to 
the positive constants Cs, Cv and cx (not their squares, 
as one might naively think). Another feature is that 
there is no dipolar radiation of  either scalar or vector 
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fields. As we have seen, this is a consequence o f  the 
fact that the source is a pair o f  masses in a non-rela- 
tivistic Kepler orbit, for which the total mass and the 
coordinate of  the center of  mass are constant. The last 
term in ( 13 ), the term containing a factor v~, may be 
considered as a relativistic monopole term, but it is 
of  the same order as the quadrupole terms. 

The observations on the binary pulsar PSR 
1913 + 16 are consistent with [ 13 ] 

0.173Cs +0.250Cv +cv  = 1.00_+0.04. (30) 

If  we use the constraint (4) to eliminate Cv and use 
the value (6) of  cv set by the classical tests, this 
becomes 

Cs =0.00_+0.09, (31) 

where, as in all the above, the quoted uncertainty 
represents one standard deviation. To transform this 
into an upper limit, we use the important  constraint 
that Cs and Cv must be positive. The conclusion is that 
at the level o f  90% confidence, 

0~<Cs <0.12,  ICs-Cv [ <0.003. (32) 

Before closing, we should remark upon the severe 
constraint placed upon the vector coupling for the Ko- 
I ~  system [ 14 ]. It has been argued that, since the K 
meson consists of  a bound quark-ant iquark pair, the 
vector coupling might be zero for this system, though 
not for ordinary matter [2 ]. An important  feature of  
the constraints we have obtained is that they are in- 
dependent of  any assumption about the difference 
between mat ter-mat ter  and mat ter-ant imat ter  grav- 
itational interaction. 

In summary, we have placed a new constraint on 

the possible contribution of  scalar and vector com- 
ponents of  gravity using the measurements of  the 
power radiated by the binary pulsar PSR 1913 + 16 
combined with the constraints imposed by the clas- 
sical tests of  general relativity. This constraint is 
meaningful for theories of  quantum gravity as well as 
for proposed experiments to measure these compo- 
nents by other means. 

We thank M. Veltman for helpful discussions. 
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