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This paper deals with a variational model applicable to small-deformation structural 

analysis expressed for linearly elastic-perfectly plastic (von Mises-Hubcr-Hencky) material. 

The model comprises a unification of the minimum complementary energy principal, the 

Haar-von Karman principle for deformation elastoplasticity, and (in a sense) the lower 

bound theorem of Limit Analysis. Thus it corresponds directly in terms of meaning and 

significance to these classical forms for structural analysis [see e.g. 1-4]. The present 

purpose is mainly to point out the availability of such a unified model, as it appears for 

structural analysis expressed 'in terms of stresses alone.' 

While in terms of solid mechanics analysis the unified formulation comprises in 

effect just a restatement of the cited classical variational theories, it is distinctive by virtue of 

features identified with its mathematical modelling form. It is especially convenient that the 

entire evolution of structural response is monotone w.r.t, a single parameter, the 

'complementary strain energy bound' value, in the unified problem statement. With an eye 

toward treatment for numerical solution, this makes it possible to avoid many of the 

cumbersome features inherent in standard methods for solving problems in elastoplasticity. 

In fact, the unified model provides the basis for computational solution via a direct method. 

Also there is potential through the application of contemporary results from the field of 
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nonlinear, nonsmooth optimization to gain advantage both in analysis and for 

computational modelling. 

2. The Variational Model 

As a first step toward recognition of the unified model, the variational statement 

associated with the lower bound theorem of limit analysis [1,2] is recalled. In terms of 

scalar load factor ct, this statement is written as (the developments are expressed here for a 

general form of discrete structure): 

subject  to: 

(equilibrium eqn) 

(yield constraints) 

ma x  (I 

q e  Rn 

CTq + a f = 0 

si (D-lq) - gi < 0 

(1) 

Here f and q represent the load and element force vectors, C is the 'equilibrium matrix,' D 

transforms 'element stress' to 'element force', and the yield function si (*) is convex. 

Values of the yield limit gi and the load vector f are specified, i.e., they represent data. In 

the case of a structure made up of axially loaded structural elements all made of the same 

material (e.g., truss members), for example, the yield constraints have the specific form 

ID'lql - si < 0 (see e.g.J. Martin [2] on 'yield conditions'). 

In order to appreciate how !elasticity' might be introduced into the model, note that 

the complementary energy principal for elastic su'uctural response [3], expressed here for 

systems with stiff supports, can be represented in the following form that is compatible 

with (1): 

max c~ 

q e Rn 
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subject to: 

(complementary strain 

energy constraint) 

CTq÷ 0t f = 0  

qTQq-ENO 

(2) 

Q symbolizes the compliance matrix, so that ½ qT Qq is the usual measure of the 'total" 

complementary strain energy.' For this problem statement, load vector f and bound E on 

the complementary energy represent data. The equivalence between problem (2) and the 

conventional versions of statement for the complementary potential energy principal may be 

realized as follows. Considering the load vector f to be specified, there exists a value for 

data E in problem (2) such that the solution of (2) is identical to the solution obtained for 

the conventional statement, the latter expressed for the same structure subject to a load that 

is proportional to L Note as a property of the relationship that 'minimization of 

complementary potential energy' associated with the classical form corresponds to 

'maximization of the load factor' represented in problem (2). 

The two problem statements (1,2) are immediately suggestive Of the form for a 

variational statement of the unified problem. In fact, the statement covering in combined 

form the several principals named earlier is simply:t 

max 

q¢Rn 

subject to: 

CTq + 0t f = 0 

si(D'lq) - si < 0 

(3) 

½q T Q q - E ~ O  
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Here load f, yield limits si and the energy bound E represent data. Suppose that f and si are 

specified; then the nature of the structural analysis problem represented -- strictly elastic, 

partially plastic, or plastic limit -- depends on the value chosen for energy bound E (within 

E e R+). Expressed in another way, structural analysis is modelled via problem statement 

(3) in the form of an evolution from initially elastic through to the limit response, where the 

evolution is monotone w.r.t, total complementary slrain energy. 

To elaborate on the latter point, note that the separation between the intervals of 

purely elastic problems and of response covered under the Haar-von Karman model [ 1,2] 

is identified with a value, say El, of the energy bound E. Specifically, for given load f and 

yield limits ~i there exists a value E1 such that for all values E within 0 ~ E < E1 the yield 

constraint is inactive, i.e., si(*) < si for all elements of the structure. Furthermore, the 

value ¢Xl corresponding to the specification E = E1 is the load associated with the inception 

of yielding, i.e., a t  equals the value, within monotone increasing solution values of u for 

problem (3), at which 

max si(*) = ii 
i 

first occurs. (Clearly, solution values (say a*) vary monotonically with E within the 

range, 0 < E < El; this follows from the equilibrium and energy constraints of (3)). 

A second characteristic value of E serves to bound from above the interval of 

clastoplastic solutions to problem (3). The solution associated with this value is of course 

the limit load, say UL, and the value itself is symbolized EL. As E is increased 

monotonically in the elastoplastic range El < E ~ EL, a non-decreasing (generally 

increasing) set of structural elements will have stress at the yield limit ~i. The limit value 

t The author has become aware during the preparation of this material that a unified model 
expressed in substantially different form was presented earlier by Cyras [5]. 
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EL of the energy bound is finite for systems of  finite extent. A typical form for ct* vs. E in 

the finite case is shown in the figure. Note that it is possible in general to identify comers 

between the 'f'LrSt yield' and 'limit' points as well. 

Properties of  the solution to problem (3) are observed for the most part directly in 

the form of  the Kurash-Kuhn-Tucker conditions for the problem. Only certain of  the 

features are discussed in what follows. Considering the second and third constraints of (3) 

in particular, the solution q* must satisfy 

~'i [si(q*) - si ] = 0 k i > 0 

~-E q*TQq*. E) = 0 XE > 0 

si(qi) - si < 0 (4) 

V i e I  

q*TQq* _ E ~ 0 (5) 

where I stands for the set of  all elements of  the structure. Stationary of  the solution w.r.t. 

ct and q requires additionally that 

1 -~,*Tf=0 (6) 

and 
* Qq, - C~.~ + RE + .~ Xi07 si = 0 (7) 

1 

Vectors ~,;, ~.i and scalar ~.~ appearing in equations (4 - 7) represent solution values of 

multipliers on the equilibrium, yield, and complementary energy constraints. 0y 

symbolizes the partial derivative w.r.t, element q7 of  the 'member force' vector. 

Equations (6) and (7) exclude the (trivial) solution (q*, u*,...) = 0, and assure 

~'E 6 0 -~ ( q,TQq* = E from equation (5)). In the particular case where in addition 

equation (4) is met via ~'i = 0; s i < gi V i e I, these general results together with the 
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original equilibrium constraint serve to identify strictly elastic solutions. Of course the 

remaining possibilities where ~'i > 0 -~ s i = si ; i e Ip ~ ~ are associated with 

'elastoplastic' solutions (Ip represents the set of members that are stressed to the plastic 

timi0. 

Problem (3) lies essentially within the framework of established results in the field 

of analysis for nonlinear, nonsmooth optimization problems. Thus both the analysis and 

the treatment for solution associated with the problem are in general terms well understood. 

However, it is possible to develop useful special results associated with the particular 

problem of mechanics. For example, a more convenient version for computational 

treatment is obtained in the form of a particular dual of problem (3). Also, it is possible for 

a variety of specific yield laws to produce solutions for the elasto-plasticity problem entirely 

by analysis. As indicated in the intxoduction, these details and additional developments are 

reported elsewhere (Ben-Tal and Taylor [6]). 

Along a different line, availability of the unified problem statement characterized in 

(3) has interesting implications for structural optimization. Specifically, where those 

constraints in a design problem that reflect the mechanics are expressed via the unified 

model, the prediction of design may be performed free of narrow restriction on the 

character of structural response. In other words, one is not necessarily limited to the 

consideration of optimal elastic design separately from design for which inelastic 

deformation might occur. Thus the unified model might be used to advantage in 

developments of the kind reported in [7], as an example. 
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