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A new method is suggested to compute the intersection of a set of direction cones 
encountered in the problem of passing a convex polyhedron through a window. The time 
requirement of this method is 0( nm), where n is the number of vertices of the polyhedron and 
m is the number of vertices of the window. Besides this time improvement, the concept of 
parallel congruence, which the new method is crucially based on, is discussed. 6 1989 Academic 

Press, Inc. 

1. INTRODUCTION 

The problem of passing a convex polyhedron through a window is described as: 
Given a convex polyhedron P = (pr, p2,. . . , p,) and a convex polygon W = 
(WI, w,, *. ., w,) on a plane h not intersecting P, find all the directions for 
translating (single translation) P through W. 

Toussaint [l] proposed an O(nm log nm) algorithm to solve this problem. He first 
showed that P can pass W with a single translation in direction 8 if, and only if, 
each vertex of P can be passed through W with a single translation in direction 8. 
Based on this observation, he posed the algorithm as follows: Consider vertex pi of 
P. All directions for translating pi from its initial position through window W are 
defined by all the vectors emanating at pi and intersecting H in W. Therefore the 
cone determined by the half-lines from pi through wj, j = 1,2,. . . , m specifies all 
such directions for pi. This cone is named as direction cone of pi and is denoted as 
CONE(pi, W). Construct a 3D euclidean direction space D and translate all the 
cones CONE(pi, W), i = 1,2,. . . , n in D such that the pi all overlap with the 
origin of D. Then the intersection of all the cones in D gives another cone which is 
the set of directions for simultaneous translation of all the pi, and hence of P. Each 
cone can be computed in O(m) time and thus all the cones can be found in 0( nm) 
time. All the cones can be translated to D in O(nm) time. To compute the 
intersection of the cones, Toussaint views each cone as the intersection of M half 
spaces determined by the planes coplanar with the M faces of each cone. The 
interior half space contains the cone. Therefore the solution cone is the intersection 
of all the interior half spaces determined by all the cones in D. Since the 
intersection of k half spaces in 3D space can be computed in 0( k log k) time 
(Preparata and Muller [3]), the overall time requirement is O(mn log mn). 

The major computation in the algorithm cited above is to find the intersection of 
cones. As long as it is viewed as an intersection of mn half spaces, the time 
requirement cannot be improved since 0( k log k) is the optimal to compute the 
intersection of k half spaces. 

Finding the intersection of a set of half spaces is a general scheme allowing half 
spaces having arbitrary positions and orientations. In our case, however, those nm 
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FIG. 1. An open triangle 

half spaces all overlap with a single point (the origin of D). With this constraint, it 
is natural to ask if a faster computational approach, rather than simply intersecting 
half spaces, to finding the solution cone is possible. The author’s answer is yes. As 
we will see, by utilizing a concept called parallel congruence O(nm) time is enough 
to compute the intersection of those n cones and hence the whole problem can be 
solved in O(nm) time. 

2. PRELIMINARIES 

First let us define a geometric item called open triangle (or simply OT) as: an 
open triangle OT is an infinite planar region bounded by two rays emanating from a 
point p, called the origin of that OT, in 3D space. Figure 1 shows an example. 

Each direction cone is an open prism bounded by m such OTs. The intersection 
of those OTs of a cone with plane H constitutes convex m-gon W. If a direction 
cone is translated to a new position, the intersection between H and the cone’s m 
translated OTs is still a convex m-gon. The following theorem tells the relation 
between the two polygons. For the sake of discussion, suppose a convex k-gon is 
represented as (e,, e2,. . . , ek), where each e, is an edge of the polygon and a 
clockwisely sequential succeeding of e,, e2,. . . , ek constitutes the polygon. The 
direction of an edge e, is decided such that the polygon lies to its right. 

THEOREM 1. Given a direction cone bounded by m OTs, with the OTs ’ origin at a 
point p and their intersection with a plane H being a convex m-gon W = 
( Wl, wz,. *. , w,,,). If this cone is translated to a new position with the new origin at p’, 
the intersection between H and m translated OTs is still a convex m-gon W’ = 
( w;, w;, . . . ) wk), and each edge w;, i = 1,2,. . . , m is parallel to wi and has the same 
direction as wi. 

Proof; The convexity and having m edges of IV’ is conceivable. Consider an 
open triangle OTi. Its intersection with H is edge wi. The derivation of this edge can 
be thought of two steps: first the plane coplanar with OTi intersects H and 
generates an infinite line I; then the two rays emanating from point p intersect 1 
and delimits ei. Suppose the origin of OTi is moved to p’ and OTi becomes UT;, as 
shown in Fig. 2. Since the cone is under pure translation, the normal of the plans; of 
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FIG. 2. Parallelism between edges wi and wi’. 

OT,’ should be the same as that of OTi and correspondingly the intersecting line 1’ 
of OT,’ plane with H must be parallel to I, only the length of edge w; may be 
different to that of wj. The equality of the directions is obvious. Q.E.D. 

Polygons W and IV’ actually bear an important characterization; parallel congru- 
ence, as we defined below. 

DEFINITION. Two convex polygons P = (pi, pz, . . . , p,) and Q = 
(419 (12, * * * 9 qk), m I k, are said parallel congruent to each other if and only if for 
each edge pi there is an edge qi such that pi and qj are parallel and have the same 
direction. 

Figure 3 demonstrates two examples of parallel congruent convex polygons. 
If two convex polygons are parallel congruent to each other, it is interesting to ask 

what would their intersection look like. Generally, the intersection of an arbitrary 
convex I-gon and an arbitrary m-gon is a convex polygon having up to 1 + m 
vertices. 

THEOREM 2. If a convex l-gun P and a convex m-gun Q are parallel congruent to 
each other, their intersection is a convex polygon with at most Max{ 1, m } vertices and 
it is parallel congruent to P and Q too. 

ProojI Without loss of generality, assume I = m. P = (pl, p2,. . . , p,), Q = 
(41,42, * * * 7 4,). Let the intersection of P and Q be C = (ci, c2,. . . , cI). First we 
note since each ci is either an edge of P (or Q) or a part of an edge of P (or Q), the 

FIG. 3. A and B, C and D are parallel congruent to each other respectively. 
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FIG. 4. Mutual exclusion property. 

direction of ci must be the same as that of the constituting edge of P (or Q). 
Second, due to the convexity each edge of P and Q can constitute at most one edge 
of C. Now consider Fig. 4. Suppose ci is constituted by edge pj and edge qk is 
parallel congruent to pj. The extension ray line 1 of ci partitions the plane into two 
half planes. If qk is to the left of I, as in (a), it will never intersect any edges of P 
due to convexity, neither can it be an edge of C. Conversely, if qk is to the right of 1, 
as in (b), either P and Q do not intersect at all, or the whole polygon C is to the 
right of qk because of convexity. In both cases ci and hence pi cannot be an edge of 
C, contradicting our assumption. (In the degenerate case when qk colides with 1, at 
most one edge of C can be constituted by P and Q.) This mutual exclusion between 
pi and qk implies that each pair of parallel congruent edges of P and Q can 
constitute at most one edge of C. Therefore r I Max{ 1, m }. The proof of the 
parallel congruence between C and P, Q is trivial. Q.E.D. 

3. THE ALGORITHM 

With all the preliminaries discussed above, we are now ready to present the 
algorithm. The main idea is, instead of intersecting the defining half spaces of those 
cones, the m parallel congruent polygons that are generated by the intersections 
between plane H and the cones are intersected first and then the resultant convex 
polygon is mapped back to the origin of D. Suppose polyhedron P has n vertices, 
window W has m vertices and lies on plane H. 

PROCEDURE Find AU (P, Q, W). 
% find the solution cone of a polyhedron P and a window WI% 
Step 1. For each vertex pi of P constitute its direction cone CONE(pi, W); 
Step 2. Translate all the n direction cones to a particular vertex point, say pl; 
Step 3. Intersect each translated cone with plane H and let array HP[l : n] store those resultant convex 

m-gons; 
Step 4. IW + HP[l] 

For i = 2 to n do 
ZW + ZW intersecting HP[i]; 

Step 5. Draw rays emanating from p1 and going through each vertex of ZW, constitute the solution 
cone from these rays, 

Step 6. return the solution cone 
end Find All. 

Complexity Analysis. Step 1 runs O(nm) time. Step 2 also runs 0( mm) time, 
since for each direction cone we have to translate its m OTs. Step 3 is Q(nm). In 
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step 4, n - 1 intersections of two parallel congruent convex polygons IW and 
HP[i], i = 2,3,. . . , n are performed. The intermediate intersection polygon IW 
has at most m edges. Each of these intersection takes at most O(2m) = U(m) time 
(refer to Preparata and Shamos [2]), resulting in an O(nm) time upper bound for 
step 4. Step 5 runs at most O(m) time. Overall the algorithm Find All takes O(nm) 
time. 

4. CONCLUSION 

In this paper, a new approach for finding the intersection of direction cones 
encountered in the problem of passing a convex polyhedron through a convex 
window is proposed. Besides the time improvement from O(nm log nm), as origi- 
nally given by Toussaint [l], to O(nm), the concept of parallel congruence intro- 
duces a new subset of convex polygons. The mutual exclusion property among 
parallel congruent polygons is not only useful in finding intersection of convex 
polygons, but might also helpful, as the author expects, in solving some other 
computational geometry problems. 
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