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1. INTRODUCTION 

The equation Au(y) + @(u(y)) = 0 on the unit ball, with homogeneous 
linear boundary conditions has been much studied (cf. [ 1,2 and the 
references therein]). The change of variable x= ,l;i!: transforms this 
equation to 

Mx) +.A+)) = 0, 1x1 <R, (1.1) 

where R = fi. For radial solutions of this equation, lying in, say, the kth 
nodal class, R depends only on p = u(O), R = T(p). This function, which 
describes how the “size of the balls” on which radial solutions exist, vary 
with the quantity u(O), turns out to be an important function, determining 
much of the behavior of the solutions. 

Thus, if we consider (1.1) together with the boundary conditions 

cu(x) - /I du(x)/dn = 0, 1x1 = R (1.2) 

then radial solutions (lying in a prescribed nodal class) can be 
parametrized by u(0) =p; say u = u( 1x1,~). These solutions lie on balls 
whose radii R vary with p, R = T(p), and the function p H T(p) is called 
the “time-map.” Notice that if T is monotone near a point p, then for p 

near p, we have local uniqueness; i.e., if u = U(T) is any radial solution, and 
T(u(0)) = T(p), then u(0) =p, and u = u(., p). In this paper we shall show, 
in fact, that this is what happens if u(0) is near a hyperbolic zero off (i.e., 
f(r) = 0, and f’(r) < 0). 

But the monotonicity of T also plays an important role in symmetry- 
breaking; that is, in the bifurcation of radial solutions into asymmetric 
ones. Thus, if we know, say from a linear analysis, that u(. , p) is a bifurca- 
tion point, and that the kernel of the linearized operator contains asym- 
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metric elements, it does not follow that the symmetry breaks, unless we can 
rule out radial bifurcation. Indeed, the bifurcation might occur only in the 
space of radial functions. This occurrence can be ruled out if the kernel 
does not contain a purely radial element. Now as was shown in [4] under 
hypothesis (H)(v) below, for p near y there is a radial component in the 
kernel if and only if T’(p) =O. Thus we can be assured of symmetry- 
breaking at u( ., p) provided that T’(p) # 0. It is the purpose of this paper 
to show that for a wide class of functions f (see hypotheses (H)), T’(p) # 0 
for p near a hyperbolic zero of f: In particular, the result proved here 
implies that for this class of fs, the symmetry must break on infinitely 
many radial solutions. 

Our method of proof uses a technique we introduced in [2], whereby we 
construct a system of ordinary differential equations, the analysis of whose 
solutions yields the desired information on the derivative T’. We point out 
that for the special case of positive solutions of the Dirichlet problem, 
Clement and Sweers [ 1) have obtained a similar result by entirely different 
methods. 

2. THE GENERAL FRAMEWORK 

Radial solutions of (l.l), (1.2) satisfy the equation 

n-l 
d’(r)+ r - u’(r) +f(u(r)) =o, O<r<R 

together with the boundary conditions 

u’(O) = 0 = au(R) - /h’(R), 

where r = 1x1 and prime denotes differentiation with respect to 
convenient to rewrite (2.1) as the first-order system 

u’ = v, 
n-1 fJ’= -- r v-f(u), 

together with the boundary conditions 

u(0) = 0 = au(R) - /?v( R), 

I-. 

(2.1) 

(2.2) 

It is 

(2.3) 

(2.4) 

and to consider orbits of (2.3) which satisfy u’(0) = 0, u(0) =p > 0; such 
solutions will be denoted by U(T, p), and p will be considered as a 
parameter in this paper (cf. [2-53). 
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Let 

8, = tan-‘(a//I), - 7112 < 6, < 7112. 

If k is a given non-negative integer, and f(p) > 0, we define the function 
p H T,(p) (whenever it exists; see Theorem 2.1) by the following two 
conditions (cf. [ 51): 

(i) au(Tk(p), P)-Pu’(~‘~(PI, P)=% and 
(ii) if @(r,p)=tan-‘(u(r,p)/u(r,p)), then fl(T,(p), p)=&,-kn. 

(2.5) 

We see then that T,(p) plays the role of R, and R varies with p (see 
[2-51). (If k is fixed, then we write T(p) = T,(p).) A solution of (2.3), (2.4) 
which satisfies (2.5) will be said to belong to the “kth-nodal class” of the 
function f, relative to the given boundary conditions. 

We now list the hypotheses on f~ C’ which we shall need. Thus, we 
assume that there exist points b <O < y such that the following hold 
(cf. [S]): 

0) f(~)=o, f’(r)<O, 
(ii) F(y)>F(u) if b<u<y; here F’=f, and F(O)=O, 

(iii) F(b) = F(y), 

(iv) if f(b) = 0, then f’(b) < 0, 

(v) uf(u)+2(F(y)-F(u))>0 ifb<u<y. 

(HI 

We remark that (ii) is a necessary condition for the existence of solutions 
of (2.3), (2.4), as is (iii), if b is finite. Condition (i) allows us to prove the 
existence of radial solutions in the kth nodal class for p near the hyperbolic 
zero y of J: (iv) and (v) are mild technical assumptions, which perhaps may 
be unnecessary. 

Under these assumptions, one has the following theorem (see [S] for a 
proof). 

THEOREM 2.1. Suppose that f satisfies hypotheses (H)(i), (ii), (iii), and 
that keZ+. Then there exists an E > 0 (E < y) such that if y - E < p < y, then 
p E dom( Tk). Moreover, T,(p) + co as p + y. 

In other words, if y - E <p < y, then u( ., p) is a radial solution of (l.l), 
(1.2) lying in the kth nodal class. The main result in this paper is to prove 
that T’(p) > 0 if p is close enough to y; this will be demontrated in the 
following sections. 
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3. CONSTRUCTION OF THE COORDINATE SYSTEM 

In order to show that T is monotone near y we have to find an 
expression for T’(p). Thus, we denote by a,(q) the flow on R3 generated by 
the equations 

u’ = v, v’= - n-l 
-v-f(u), l-l= 1, 

r 

in r 20, with u(0) >O, and v(0) =O, where q= (u, v, r), r>O. Hence, if 
X= X, is the field 

x= v,-- 
( 

n-l 
v-f(u), 1 > r 1 

then 4(q) = ~ar~y)~ a,(q) = q, and o,(a,(q)) = o,+,(q), for all r, s > 0. Let z 
denote the projection defined by rc(u, v, r) = (u, v, 0). The next simple result 
gives conditions under which we have a good set of coordinates (the proof 
is straightforward; see [ 21). 

PROPO~ITI~N 3.1. Suppose that 

n-l 
v’(r)+ r - u(r) v(r) + u(r) f(u(r)) > 0 (3.1) 

along an orbit (o,(q): r>O) of X, where o,(q) = {u(r), v(r), r). Then the 
vectors xq, X and a/& E (0, 0, 1) f orm a basis at each point on the orbit. 

Now for y-~cp<y, let ij= (p, 0,O) and o,(p)=q= (u(r,p), r(r,p), r), 
r 2 0, where u and v are C*-functions of r and p (see [2]). Then assuming 
(3.1), we can write 

a 
ap a,(p) = u nq + b x+ c alar, 

where a = a(r, p), b = b(r, p), and c = c(r, p). Also, from the chain rule, 

a aa 
- f+,(P) = - 
ap ap 

+ am) 
ar T’(P) 

r= T(P) I= T(P) 

= mq + (b + T’(p))X+ c a/&, (3.3) 

where a, b, and c are all evaluated at r = T(p). The following lemma gives 
an expression for T’(p) which will be used throughout the paper. 
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LEMMA 3.2. Zf y - E <p < y, and (3.1) holds, then 

NT(P), P) = -T’(P). 

ProoJ: For the case of Dirichlet boundary conditions (i.e., /I= 0 in 
(1.2)), this result was proved in [2]. We may thus assume that /I # 0. Then 
since 

GT(p) = CU(T(P), P), dT(P)Y P), T(P)1 

U(T(P), P), ; U(T(P), P), T(P) 1 > 

we have 

dT(P)Y P) T’(P) + $(T(P)Y P) ’ 
a 

ap Q(,)(P) = ; fJ(T(P), P) T’(P) +; $(T(b), . (3.4) 

T’(P) 

Also, at r = T(p), we have 

a(7cq) + (b + T’)X+ c 8/8r 

=a(,r]+(b+T!) (-qlv-f(u)]+c( ,). 

Thus from (3.3) and (3.4), we find, equating third components, T’(p) = 
(b + T’) + c, so at r = T(p), 

Equating first components gives, 

c= -b. 

at r = T(p), 

(3.5) 

ua + u(b + T’) = UT’ + up, 

and finally, from the second components, we have at r = T(p), 

va + 

(3.6) 

(3.7) 
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If we set J= uf(u) + ((n - 1)/T(p)) uv + v2, then J & 0, by hypothesis. Thus 
(3.6) and (3.7) give, at r = T(p), 

24 VT’ + up 

J(b+ T’)= 
v ; (vT’+u,) 

= 0, 

since v = au/p at r = T(p). Thus b( T(p), p) = -T’(p), and this completes 
the proof. 

With the aid of this lemma, we shall be able to prove the monotonicity 
of T for p near y. Thus, we shall find a pair of differential equations in 
the unknown functions a(., p) and b( ., p), and we shall prove that 
b( T(p), p) < 0 if p is near y. This will be done in the next section. Before 
doing this, however, we must prove that (3.1) holds, at least if p is near y. 

PROPOSITION 3.3. Let f satisfy hypotheses (H). Then (3.1) holds for p 
near y. 

The proof of this proposition will follow from a few lemmas. First, using 
hypothesis (H)(i), we choose A > 0 so close to y that 

f’wGf’(Ywt if A < u < y. (3.8) 

Then from Theorem 2.1, we may take E so small that A < y-s, and 
PE dam(T) if y - E <p < y. For such p we define T:(p) by u( T:(p),p) = A, 
where T:(p) is minimal with respect to this property. We may also assume 
that A has been taken so close to y that v(r,p) = u’(r,p) CO if 
O<r< T:(p). 

In the following lemmas in this section we assume that f satisfies 
hypotheses (H), and that p satisfies y -E < p < y. 

LEMMA 3.4. Let (u( ., p), v( *, p)) be an orbit of (2.3); then (3.1) is valid 
if 0 < r < T;(p). 

Proof Since u(r) 2 0 on 0 < r < T?(p), it suffices to show that 

n-l 
-v’(r)= r - v(r) + f(4r)) > 0 

on this interval. Now at r = 0, -v’(O) = f(p)/n > 0. Suppose there were a 
first point rl, O-C r, d T:(p), such that v’(r,)=O. Then if 

W) = rf(u(r)) + (n - 1) v(r), (3.10) 
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we have $(r,) = 0, and $(r) > 0 if 0 <r c rl. Also, $‘(r) = rf’(u(r)) v(r) + 
f(u(r)) + (n - 1) u’(r), so 

in view of (3.8). This shows that no such rl can exist and the proof of the 
lemma is complete. 

LEMMA 3.5. Suppose f(b) = 0, so f’(b) < 0 by (H)(iv). Choose B new b 
such that b < B < 0, and for b < u 6 B, 

f’(u)<O, andso f(u)<O. 

Then for p near y, (3.1) is valid on b < u < B. 

Proof Let T;(p) and T;(p) is defined by u(Tf(p), p) = B, 
T;(p) < T!(p), T;(p), T;(p) being minimal with respect to these two 
conditions (cf. Fig. 1). Let Tr(p) be defined by T:(p) 6 T:(p)< T;(p), 
and v(Ty(p),p)=O. Now if Tf(p)br<T;Y(p), then u(r,p)<O, and 
f(u(r,p))<O. Hence u’= -((n- l)/r)u-f(u)>0 on this range. Suppose 
there was a (smallest) rz, T?(p) < r2 6 T;(p) with u’(r,) = 0 and u’(r) > 0 
for Tf(p)<r<r,; then ru’(r,p) >O on this range. But as ru’ = 
-(n - 1)~ - rf(u), 

(W’ (r2)= -(n- 1) v’(r,)-r,f’(u(r,)) 4r2)-f(u(r2)) 

= -r2f’(4r2)) 4r2)-f(u(r2)) 

> 0, 

since u(r,)>O. This is impossible and so (n- 1) o/r + f(u)<0 on this 
range. But since u < 0 here, it follows that (3.1) holds in this range, and the 
proof of the lemma is complete. 

FIGURE 1 
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Now define T<(p) by ~(Tf(p), p)=A, T:(p) > T:(p), and T:(p) is 
minimal with respect to these properties; i.e., T:(p) is the “second time” 
the orbit (u( s, p), u( ., p)) meets the line u = A (see Fig. 2). Similarly, let 
T;(P) be defined by 47’?(p), P) = u’(T?(p), P) = 0, C’(P) > Tg’(p), 
T;(p) being minimal with respect to these properties (see Fig. 2). Then as 
both U(T, p) > 0 and f(u(r, p)) > 0 if T:(p) < Y 6 T;(p), we see that (3.1) 
holds in this region. 

Let us remark that we have proved that (3.1) holds in the two wedges 
W, and W, defined by (u2/2)+F(u)=F(y), u=A, (u2/2)+F(u)=F(b), 
u = B. 

We can now complete the proof of Proposition 3.3. Thus, for p near y, 
it was shown in [S, Proposition 2.2(iii)], that the orbit segment 
(u(I, p), u(r, p)), 0 < r < T(p), stays near the corresponding level curve 
F(u) + (u2/2) = F(p). That is, given any 6 > 0, we can take p so near to y 
that all along the orbit segment, u2 = 2(F(y) -F(U)) + 6. Hence 

v2 + 
n-l 

~uu+uf(u)=2(F(y)-F(u))+- r uv+uf(u)*S. (3.11) 

Now by hypothesis (H)(v), 2(47)-F(u)) + uf(u) is positive along the 
orbit segments, so that on B < u < A, it is uniformly bounded away from 
zero. Since the term (n- 1) uujr can be made arbitrarily small on 
B 6 u < A, by taking p near y (as u and u are uniformly bounded in p; see 
[S, Proposition 2.1]), and since 6 -0 as p-y, we see from (3.11) that 
(3.1) holds outside the wedges. Hence, in view of what we already know, 
we conclude that (3.1) holds now for 0 < r 6 r;(p); (cf. Fig. 2). The proof 
of the theorem is completed by repeating this argument a finite number of 
times, depending on k, the given nodal class. m 

u=A 

FIGURE 2 
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4. THE MAIN THEOREM 

In this section we shall prove the following theorem. 

THEOREM 4.1. Suppose that f satisfies hypotheses (H). Then for p near 
Y, (P<Y), T’(p)‘O. 

As explained in Section 3, we shall show that b( T(p), p)) < 0, and the 
result will follow from Lemma 3.2, together with Proposition 3.3. 

In order to study b(r, p), we shall derive a system of ordinary differential 
equations satisfied by a(r, p) and b(r, p) (cf. [2]). Thus, if we differentiate 
the left-hand side of (3.2) with respect to r, we get 

a*a,(P) d2%(P) a x aa) =-=- 
ar ap ap ar ap Odp) = dxO,cp, - ap ’ 

while differentiating the right-hand side gives 

a’( zq) + a( zq)’ + b’X + bX’ + C' alar 

= a’( 7cq) + a(X - alar) + b’X + b dX( X) - 6’ a/&. 

Then equating both these expressions, we find 

a dX( nq) - b dX( ajar) = a’( zq) + a(X - alar) + b’( X - a/&). (4.1) 

Taking inner products of (4.1) with the quantities (-0, u, 0), and 
(((n - 1 )/r) u + f (u), v, 0) gives successively the equations 

n-l 
Ja’ = vba - ye v2b, 

n-i 
Jb’ = -u#a + ye uvb, 

(4.2) 

together with the initial conditions 

40) = l/P, b(0) = 0. (4.3) 

Here as before, J = uf (u) + (n - 1) uv/r + v*, 4 = f - uf ‘. In view of 
Proposition 3.3, we know that J> 0 along an orbit if p is near y. 
Furthermore, (3.8) implies that 4(u) > 0 if u is near y. In the remainder of 
this section, we assume that p is so close to y that (3.1) is valid. 

Using (4.3), and the second equation in (4.2), we see that b’(0) < 0; thus 
b(r) < 0 on some interval 0 < r < 6. Since a(0) = l/p, we may assume that 
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u(r) > 0 on this interval. Note that since (0,O) is a rest point of (4.2), there 
is no F > 0 such that a(r) = 0 = b(F). Now we define 

z(r) = -b(r)Mr), r BO, 

where we have suppressed the dependence on p. In view of our above 
remarks, we see that 

z(r) > 0, O<r<a. (4.4) 

Next, we shall show that a cannot go through zero unless b has previously 
gone through zero. Indeed, if b(r) ~0 on 0 <r < ?, and a(?) =0 (P being 
minimal), then from (4.2), (M)(F) = -(n - 1) u2(Y) b(r”)/r”l> 0 if u(F) #O, 
which is impossible. If u(7) = 0, then a’(?) =0 = a”(F), and (M”)(7) = 
-2(n - 1) v’(i)’ b(“)lw2 r r > 0 since u’(F) = -f(u(v”)) # 0, because u(Y) E 
(b, B) u (A, y). Thus u”‘(F) > 0, which is again impossible. It follows from 
this that z is differentiable as long as b stays negative. We have thus proved 
the following lemma. 

LEMMA 4.2. If z(r) > 0, on 0 < r 6 T(p), then b(r) < 0 on 0 -c r < T(p), 
and z is differentiable on this interval. 

With the aid of this lemma we have a strategy for proving Theorem 4.1; 
namely, we shall show that z(r) > 0 on 0 < r < T(p). In order to carry out 
this program, we shall use Eqs. (4.2) in order to derive the differential 
equation satisfied by the function z. Thus, from the definition of z, we have 

zr = 
ab’ - ba’ 

-a2 ’ 

so from (3.1), 

1 -&=- n-l 
-uq5a2+- 1 [ n-l 

J r2 
uvab -: v$ab+y, v2b2 1 

It follows that z satisfies the equation 

n-l u2 -_ z’= - J r2z2+ (4.5) 

Our goal is to prove that for p near y, z(r) > 0 on 0 < r < T(p). Recall 
that (4.4) shows that z is positive near r = 0. Our method of proof will be 
to compare solutions of (4.5) with an equation of the form z’= 
-k, z2 + k2z + k3, for various choices of the constants k, , k,, k3. 

Now the proof of the theorem will follow from some lemmas. The basic 
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idea is to show that for p near y, z can be made large near the rest point 
y (and b if f(b) = 0), and since z spends a finite “time” outside of any 
(fixed) neighborhood of the rest points, we can maintain control over the 
size of z all along the orbit. First we define 

H(~,r)=+[-(~lf~~ z’+(y uu-uc#~)L+.m], (4.6) 

where (u, u) = (u(r, p), u(r, p)), and the p-dependence in H is being 
suppressed. Note that u/r is continuous at r = 0, so u/r is bounded (cf. 
[S, Proposition 2.11). Next, we define the quantities Co(p) and C2(p) by 

Co(p) = min 4 1 7: j T<(p) < r 6 T!(p) , 

c2(p) = 0 - l) max{2(F(y)-F(u)): b<u<y} 
T;4(p)2 min(J: +T:(p) < r 6 T<(p)} ’ 

Now if iT:(p) d r < T;‘(p), and p is near y, 

J= 2((u) + 
n-1 
Iuu+u2<M+~<M+ Ml -----GM,, 

r T;(P) 

where M, M,, and M, are independent of p. Hence on this interval 
(3.8)) 

4 uf(+~2f’w>F (p)> -fA2f’(Y)fco -= 
J J 00 / 

M2 ’ 

co being independent of p. Also, on this same interval 

J> (A/2)f(-4/2) +- n - l uu 2 (A/2) f(A/2) + 
(n-1)uu 

r @f(p) ’ 

where M, is independent of p. Now define 

1 4(n- l)max{2(F(y)-F(u): bdu<y} c” 
c2=T:(p)z 

=-. 
M3 - T:(P)” 

then c2 2 C2(p), and E is independent of p. Finally, we set 

H,(z) = co - c*z2. 

(cf. 

505:77/2-7 
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Now T:(p) + cc as p + y, so if p is near y, T:(p) % 1. Thus for p near y, 
if T;(p) 2 r 2 iTf(p), we have 

1 n-l 
J r2 [- 

uv- v# >o. 1 
Moreover, we assert that z(r) > 0 if 0 < r < T:(p). Indeed, suppose b(F) = 0, 
0 < r’< T:(p), r” being minimal. As we have noted earlier, u(r) > 0, 0 6 r < ?. 
So from (4.2) (W)(F) = -(u&r)(r”)<O, and this is impossible. It follows 
that b(r) < 0, so a(r) > 0 on 0 < r < T:(p), and thus z(r) > 0 on this inter- 
val. Now as the function F(U) + (v2/2) decreases on orbits of (2.3), we have 
F(u) + (v2/2) <F(p) c F(y). So v2 < 2(F(y) -F(u)). Thus if fTf(p) < 
r< T:(p), then -(n- 1) v2/Jr2 2 -c2, These remarks imply that for p 
near y, 

Wz, r) > HI(z), if T:(p) 2 r > tTf(p). (4.7) 

Now we denote by T:(p) < T;(p) < ... (resp. T:(p) < T;(p) < ...) those 
r-values for which the orbit (u( ., p), v( ., p)) meets the line u = A 
(resp. u = B) (see Fig. 3). In these terms, we have the following result. 

LEMMA 4.3. (a) z(Tf(p)) + co asp + y. 

(b) If z(r)>0 on TE+l(p)GrGTE+2(~), then ~(%+AP))+ ~0 
as p + y. 

(cl If z(r)>0 on T%+,(p)GrG T$+dp), then zC~~s+~(~)l-+ 00 
as p + y. 

Proof. Since p will be fixed throughout the argument, we shall suppress 
this p-dependence. 

4V 

hJ(*,p), V(’ VP)) 

u=B u=A 

FIGURE 3 
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We begin by proving (a). Define z~(Y) by 

z; = H,(z,), Z&G(P)) = &WP)). (4.8) 

Note that (z-z,)(:) T:(p)) =O, and 

tz -z,)’ (iT;4(P)) = fw:~:tP))~ iC(P)) - KMw(P))) 

= wzt+)GtP))? tc(P)) - fb(z(t~:(PN) 

> 0, 

in view of (4.7), since we have already noted that Z(T) > 0 if 0 < I < T<(p). 
Suppose next that for some ?, $Tt(p) < 7~ T:(p), that (z - zi)(T) = 0, F 
being minimal. Then as above 

(z-z,)’ (Y) = H(z(F), f) - H,(z(F)) > 0, 

so that no such F can exist. It follows that Z(T) >z,(r) if T:(p)/2 <r < 
T:(p). Next, if z,(T:(p)) > a = T?(p), we see that z,(T:(p)) tends 
to infinity as p -+ y. If z,(T:(p)) <a, then we must have 

z,(7%~)/2) < ,/‘& I-I ence since z’, > 0 on [0, a*), we have 

zt~:)>zlt~:)~z,t~;‘)-z,o= w2ffm 

where z,(T:) > i: > z,(T</2). Now suppose that H,(t) > c,/2; then 

as p + y. If on the other hand H,(t) < c,/2, then co/2 > co-c112 so 
4 > (l/d) G= T!(p). But as z( Tt) az,(T;‘) > <, we see that we 
again have z( T:(p)) -+ co as p + y. This proves (a). 

To prove (b), we define, for p near y, the quantities Z,(p) and F*(p) by 

Eo( p) = min 
i 
4 1 
7: Tj am+* 1 <r6 7X+2t~)}y 

and 

4(n- 1) 
c’z(P) = - 

max{2(F(y)-F(u):b<u<y) 
T:(P)’ min{J: t TE+AP) G rG C+,(P))’ 

As before, we can show that E,(p) > F, > 0, and E*(p) > E2 > 0, where Co and 
Z2 are constants independent of p. Define z2(y) by 

4 = fJ,(z, h z2W~+2(P)) = 4t7%+2(P)), 
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where H*(Z) =c”,--t,z2. As in part (a), z(r) az,(r) if iT&+2(p)<r< 
TE+2(~)y and z(%+~(P)) +co as p + y. Since the proof of (c) is similar, 
it will be omitted, and the proof of the lemma is considered complete. 

Now Lemma 4.3 will be used to show that z(r) > 0 if the orbit (u(r, p), 
u(r, p)) lies in the wedge WA or W, (cf. Fig. 3). In order to control z 
outside of these wedges, we need the following lemma. 

LEMMA 4.4. Given A4 > 0, there exists a o > 0, 0 < 0 < y, and there exists 
an N > 0, such that for any p E [y - 0, y), and any T > T?(p), if z(T) > N, 
then z(T+r)>O for all r, O<r<M. 

Thus this lemma shows that if z is sufliciently large at r = T, then z will 
remain positive in the interval T< r 6 T+ M. In applying this lemma, M 
will successively play the role of T?(p) - T<(p), T:(p) - T;(p), . . . . etc., all 
of which are uniformly bounded in p (see [ 5, Lemma 3.121). 

Proof of Lemma 4.4. For y-~<p<y, fix cr>sup{(n-l)u2:O<r< 
T(p)}, and define kl and k, by 

k,= -cr+min{uq5/J:r>T$(p)J 

and 

We consider three cases: (i) k2 # 0; (ii) k, = 0, k, < 0; (iii) k2 = 0, k, > 0. 

Case (i). k, # 0. Let 

N>max 2 (ekzM-l), +, 0 , 
2 1 1 (4.9) 

and choose a>0 so small that Tf(p)>N if y-a<p<y. We will prove 
that this N “works.” Thus let T> T:(p), and z(T) > N. Suppose Elf, 
T < r< T + M such that z(J) = 0; we shall obtain a contradiction. Choose 
rl, T<r, <r such that z(rl) = N and z(r) < N, rl <r <J. Define w by 
w’(r)=kl +k,w, w(r,)= N. Then (z-w)(r,)=O and since z(r,)>O, 

(z-w)’ (rl)= -2 u2z(r,)2 
1 

z(rl)+u&/J-k,-k2w(rl), 
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n-l 
>-2 

rl 
u2z(r1)2+k:+cx-kl, 

n-l 
=a---- v2N2 3 

rl 

n-l 
>-(~:)2 u2N2, 

>tx-(n-l)tP>O. 

Hence (z-w)’ (rl) >O. Now suppose that for some ?, (z-w)(?) =O, 
rl < ?< T+ M, r being minimal with respect to these properties (see Fig. 4). 

We consider two cases: r 6 ? and ? > J. Thus suppose r” 6 r; then z(7) > 0 
and as before (z - w)’ > 0, which is impossible. If now ? s ?, then 

O=z(~)>w(~)=Ne-*2(~l-i)+~(e-~21r,i)-~). (4.10) 
2 

Again we consider several cases. Thus, suppose first that k, < 0. Then since 

w(f)=e- k2(rl-i) (4.11) 

we see that w(T) > N > 0 in view of (4.9); this is a contradiction. If k, > 0, 
then if k, < 0, then w(T) > ePk2@-‘) (N+ (kl)/(k2)) > 0, again a contradic- 
tion. If k, > 0, then (4.11) and (4.9) imply 

again a contradiction. 

FIGURE 4 
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This argument shows that no such r” can exist. Hence z(r) > w(r) if 
r, < r 6 7’+ M. Now again we get the contradiction 0 = z(F) > w(T) > 0; this 
completes the proof in Case (i). 

Case (ii). k, =O, k, ~0. Here we choose N> -k,M, and let 0 be 
chosen as in Case (i). Then define w to be the solution of w’(r) = k, , 
w(r,)=N. Now as in Case (i), (z-w)’ (r,)>O, and if (z-w)(F) =O, 
r1 < F < T+ M, r” being minimal, r” Q ? leads to a contradiction as before, so 
r”> F and 

O=z(f)>w(f)=k,f--k,r,+N 

=N+k,(f-r,) 

>N+k,M 

> 0. 

This contradiction completes the proof in this case. 

Case (iii). kz = 0, k, > 0. Here we choose N = 1, and as in the other 
case, if w’(r) = k,, w(rl) = 1, then 

0 = z(7) > w(T) = 1 + k,(f- rl) > 0, 

which is a contradiction. Since we have exhausted all cases, we see that the 
proof of Lemma 4.4 is complete. 

We can now complete the proof of Theorem 4.1. We recall from Lemma 
4.2 that it suffices to show z(r) > 0 on 0 < r < T(p). Now for p near y, 

z(r) > 0 if 0 <r < T!(p); 

(cf. the discussion preceding Eq. (4.7)). 
Next from Lemma 4.3(a), we have z(Tf(p)) -+ co as p + y. Also, the 

quantity T;(p)- T:(p) is bounded independently of p (see [S, Lemma 
3.121; the reader should consult Fig. 3 at this point). Hence, using Lemma 
4.4, 3N, > 0 such that if p is near y and z(Tf(p)) > N,, then z(r) >O if 
T:(p) 6 r 6 T:(p). Since z(Tf’(p)) > 0, we see that b(Tf(p)) < 0; (cf. the 
proof of Lemma 4.2). Now suppose b(f) = 0 for some F, T?(p) < r < T!(p). 
Then from (4.2), (k!+)(f) < 0 since 4 < 0, and a > 0 at F. It follows that no 
such F exists, and so b(r) <O if T:(p) <r < T;(p). This implies that 
z(r) >O, on this interval. We can now apply Lemma 4.3(b) to conclude 
that z(Tf(p))+ co as p+y. Since T:(p) - T;(p) is bounded indepen- 
dently of p, we conclude, as before, from Lemma 3.4, that z(r) > 0 if 
T;(p) < r < T:(p). Again, b(r) > 0 on this interval, and by using Lemma 
4.3(c) and repeating this argument finitely many times, we conclude that 
z(r) > 0 if 0 < r < T(p), and this completes the proof of the theorem. 
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