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Abstract-The classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation [F = 1 - exp( - kt)“] for 
nucleation and growth transformations works very well for most solid state transformations but fails 
regularly when applied to recrystallization of plastically deformed metals. Under conditions of near 
constant growth rate, a high exponent (n 2 3) is predicted but low exponents (n < 2) are typically 
measured. Another common observation is that the slope of a JMAK plot, from which the exponent is 
inferred, decreases as recrystalli~tion proceeds. Analysis of the published data suggested the h~thesis 
that the failure of the JMAK theory as applied to recrystallization is because of the lack of uniformity 
of the stored energy of plastic deformation on the grain size scale. This hypothesis was tested by use of 
Monte Carlo simulations of the type previously used successfully to model grain growth and re- 
crystallization. The earlier simulations of recrystallization used uniform stored energies whereas the 
simulations presented here varied the stored energy from grain to grain. The kinetics were plotted on 
JMAK plots which exhibited low and varying exponents closely resembling experimental data. Specific 
simulations were performed to test the basic JMAK assumption that makes a correction for the effect 
of impingement under conditions of random nucleation, namely dF/dF, = (1 - F), where F is the actual 
volume fraction and F, is the extended volume fraction-that which would obtain in the absence of 
impingement and overlap between new grains. It was found the assumption is accurate under conditions 
of uniform stored energy. With non-uniform stored energy, however, the correction underestimated the 
effect of impingement by a factor that rapidly increased (to over two orders of magnitude) during 
recrystallization. 

R~um~~~quation classique de Johnson, Mehl, Avrami et Kolmogorov (JMAK), [F = 1 - exp( -kt )“], 
pour les transformations par germination et croissance conveient tres bien pour la plupart des 
transformations de l’btat solide, mais elle ichoue regulierement quand on l’applique a la recristallisation 
des mitaux deform&s plastiquement. Dans des conditions de vitesse de croissance a peu pris constante, 
elle predit un exposant Clevt (n > 3) alors que l’on observe typiquement des valeurs basses (n < 2). On 
observe aussi couramment que la pente dune courbe JMAK, a partir de laquelle on determine l’exposant, 
decroit au course de la recristallisation. Une analyse des rbultats publib laisse penser que la raison de 
l’&chec de la th6orie JMAK, lorsqu’on l’applique a la recristallisation, est le manque d’uniformitt, a 
l’khelle du grain, de l’inergie de deformation plastique emmagasin~e, Nous avons test& cette hypoth~~ 
a l’aide de simulations de Monte Carlo du mdme type que celles qui avaient eti utilisces precedemment 
avec succ& pour modeliser la croissance des grains et la recristallisation. Les premieres simulations de 
recristallisation utilisaient des energies emmagasinees uniformes, alors que les simulations que nous 
presentons dans cet article font varier l’energie emmagasinee d’un grain a l’autre. La cinetique tvolue selon 
des courbes JMAK dont les exposants, peu eleves et variables, correspondent bien aux resultats 
exptrimentaux. Nous avons r&alist des simulations specifiques pour verifier si l’hypothese JMAK de base 
corrige l’effet de rencontre des grains dans des conditions de germination aleatoire, c’est-a-dire si 
dF/dF, = (1 - F), oti F est la fraction volumique reelle et F, la fraction volumique au scns large, 
c’est-a-dire celle que l’on obtiendrait en l’absence de rencontre et de chevauchement de nouveaux grains. 
L’hypothbe est exacte dam des conditions d’energie emmagasinee uniforme. Cependant, pour une energie 
emmagasinee non uniforme, la correction sous-estime l’effet de la rencontre des grains d’un facteur qui 
augmente rapidement (jusqu’a plus de deux ordres de grandeur) pendant la recristallisalion. 

Zusamm~fa~ng-Die klassische Johnson-Mehl-Avr~i-Kolgomorov-Gleichung (JMAK) [F = 1 - 
exp( -kt)“] fur Keimbildungs- und Wachstumsumwandlungen beschreibt die me&en Festk~r~rumwand- 
lung sehr gut, ist aber regelmlgig fehlerhaft, wenn sie auf die Rekristallisation von plastisch verformten 
Metallen angewendet werden ~011. Unter Bedingungen nahezu konstanter Wachstumsraten wird ein hoher 
Exponent (n > 3) vorausgesagt, aber kleine (n < 2) werden immer gemessen. Eine andere allgemeine 
Beobachtung betrifft die Steigung in der JMAK-Auftragung, aus der der Exponent folgt: diese Steigung 
nimmt mit vorwartsschreitender Rekristallisation ab. Eine Analyse der veriiffentlichten Daten legt nahe, 
da8 diese Fehlerhaftigkeit der JMAK-Theorie aus der ungleichen Verteilung der gespeicherten Energie in 
den Kornern folgt. Diese Hypothese wurde mit Monte-Carlo-Simulationen der Art, wie friiher erfolgreich 
fiir das Model1 des Ko~wachstums und der Rekristallisation benutzt, gepriift. Die fruheren Simulationen 
der Rekristallisation benutzten gleichmLl3ig gespeicherte Energien, wohingegen die hier vorgelegten 
unterscbiedliche gespeicherte Energien in den einzelnen Kiirnern berticksichtigen. Die in den JMAK- 
Diagrammen sichtbare Kinetik zeigte niedrige und unterschiedliche Exponenten, welche den experi- 
mentellen Ergebnissen Ihnelten. Spezielle Simulationen wurden durchgefiihrt, urn die Grundannahme der 
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JMAK-Gleichung zu priifen, mit der eine Korrektur des Einflusses durch aufeinanderstoBende Kiirner 
bei statistischer Keimbildung durchgefiihrt wird, nlmlich dF/dF, = (1 -F); hier ist F der aktuelle 
Volumanteil, Fe der erweiterte Volumanteil, also derjenige, der sich bei Abwesenheit des 
AufeinanderstoBens und des Uberlappens von Kiirnern erglbe. Es ergibt sich, da13 diese Annahme bei 
gleichmlgig gespeicherter Energie richtig idst. 1st diese jedoch ungleichmlllig, dann unterschltzt die 
Korrektur den Einflul3 des Aufeinanderstogen urn einen Faktor, der rasch wahrend der Rekristallisation 
auf iiber zwei GrdDenorndungen ansteight. 

1. INTRODUCTION 

Recrystallization is a process of fundamental im- 
portance in the thermomechanical processing of 
metals since, in general, it restores a worked metal to 
an unworked and formable state. Primary recrystal- 
lization usually occurs by a discontinuous reaction 
where high angle grain boundaries sweep through a 
highly dislocated matrix, leaving behind material 
with a low dislocation density. It has frequently been 
observed that this reaction commences from a limited 
number of points or nuclei whose density is a strong 
function of the amount of strain accumulated in the 
material. 

Several theories have been proposed to describe 
recrystallization kinetics. The most widely used the- 
ory for recrystallization and other nucleation and 
growth reactions is that developed independently 
by Avrami [4-61, Johnson and Mehl [7], and 
Kolmogorov [8] (JMAK). Kolmogorov’s work has 
not received significant attention in the Western 
literature but it deserves to be put on an equal footing 
with the latter authors. 

This type of theory assumes that the nucleation 
sites are randomly distributed in space. The true 
volume fraction of recrystallized material, F, can be 
estimated from the “extended volume fraction”, Fe, 
which is the volume fraction that the new grains 
would occupy in the absence of impingement and 
overlap of adjacent recrystallized grains. Provided 
that the JMAK assumption of random nucleation 
holds, the relationship between F and Fe [5, 71 is 
obtained from 

dF=(l-F)dF,. (1) 

If all nucleation events occur at time zero with a 
density I (number/unit volume) and isotropic growth 
occurs at a constant rate in three dimensions, G 

dF e = 4nIG3t2 dt. (2) 

Integration of equations (1) and (2) yields 

F = 1 - exp( - Fe) = 1 - exp - (4/3nlGjt3). (3) 

For other simple power law relationships for nucle- 
ation and growth rates, equations similar to equation 
(3) are obtained, see for example Christian [3] and 
Cahn [9]. The general equation, often referred to as 
the JMAK equation, is 

F= 1 -exp(-kt”). (4) 

The parameters of the equation are the kinetic par- 

ameter, k [=4/3rrZG3, in equation (3)] and an ex- 
ponent, n. The exponent, n, is referred to as the 
JMAK exponent. 

The focus of this paper is the JMAK exponent 
which is the most commonly used measure of re- 
crystallization kinetics in experimental studies. Fail- 
ure of the fundamental assumption of the JMAK 
theory as expressed in equation (1) is shown below to 
cause significant deviation from the theoretically 
expected values of the exponent. This deviation is 
almost universally observed in recrystallization ex- 
periments. The usual experimental determination of 
n is made by plotting equation (4) in a double 
logarithmic form and taking n to be the slope 

log[ - ln( 1 - F)] = log(k) + n log(t). (5) 

Such a plot, usually referred to as a 
Johnson-Mehl-Avrami or JMAK plot, is commonly 
used to determine the kinetics of the transformation 
under study. The magnitude of the exponent can be 
shown theoretically to be closely linked to the mor- 
phology of nucleation and growth [3,9]. Specifically, 
if growth takes place isotropically in three dimensions 
and all nuclei are present at time zero, the value of 
the exponent is predicted to be three. A reaction in 
which all nuclei are present at the beginning of the 
reaction will be referred to as “site saturated”. If 
three dimensional growth occurs but nuclei appear at 
a constant rate in the unrecrystallized material, which 
will be referred to as the “continuous nucleation” 
condition, the value of the exponent is predicted to be 
four. Lower values of n are predicted for such 
conditions as growth in less than three dimensions 
and heterogeneous nucleation on planar or linear 
defects [3,9]. In many experimental studies, however, 
low values of the exponent have been found without 
convincing evidence for nucleation being limited to 
defects of less than three dimensions [lo]. 

Historically, the most important verification of the 
JMAK theory was perhaps the much quoted paper 
by Anderson and Mehl [ 111. They measured rates of 
nucleation and growth in a lightly deformed fine 
grained sheet of aluminum. The growth rate, G, was 
effectively constant, though only in two dimensions in 
the thin sheet. The nucleation rate, 1, varied ex- 
ponentially with time but the authors were able to use 
equation (1) to derive a kinetic equation, similar to 
equation (4), that successfully linked the measured 
values of I and G to the overall recrystallization 
kinetics. This then provided support for the validity 
of equation (1). 
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The significant feature of Anderson and Mehl’s 
microstructure [ 1 l] is that the recrystallized grains are 
much larger than the deformed, unrecrystallized 
grains. The sites for nucleation at small strains are 
almost certainly pre-existing grain boundaries [ 121. 
Taking these two facts together suggests that only a 
small fraction of the possible nucleation sites actually 
operate. Under these conditions the spatial distri- 
bution of nucleation sites is effectively random [9], as 
required by equation (1). Gordon [13] used similar 
conditions in his studies of recrystallization of copper 
and obtained reasonable JMAK exponents of ap- 
proximately 4. Apart from these two studies and the 
special case of Galibois and Dube [14], discussed 
below, almost all other studies of recrystallization 
kinetics have found unacceptably low values of the 
JMAK exponent. 

The vast majority of experimental studies have 
shown exponents that were less than two, without 
microstructural evidence that the growth morphology 
was other than three dimensional or that there was a 
special nucleation morphology. A specific example is 
the study of Michalak and Hibbard [15] on the 
recrystallization of rolled, very low carbon steel, a 
material very similar to that used by Galibois and 
Dube [14]. They found exponents between 0.5 and 
1.2, which were very much lower than the values of 
2.4-4.3 determined by Galibois and Dube. Many 
other studies in Al, Cu and Fe have also found 
low exponents (see for example Rosen et al. [16], 
Perryman [ 171, Faivre [ 181, Fricke and McShane [lo], 
Juul Jensen [19], Compte and Form [20], Petkovic 
et al. [21], Luton et al. [22], and Hansen et al. [23]). 
The articles by Setzer and Morris [24] and Laurent 
and Batisse [25] reviewed a number of previous 
studies that had reported low exponents. 

The study of recrystallization in ultra low carbon 
steel by Galibois and Dube [14] showed exponents in 
the theoretically expected range for random nucle- 
ation and three dimensional growth, 2.44.3. The 
special feature of this study, however, was that a high 
stored energy was induced in their material not 
by plastic deformation but by quenching from the 
austenite phase. The quench produced a heavily 
dislocated lath martensite whose dislocation sub- 
structure is expected to be uniform. This uniformity 
of dislocation density is in contrast to the orientation 
dependence (on the grain scale) expected and ob- 
served for plastic deformation (see for example 
Kallend and Huang [26]). This dependence of stored 
energy as a function of crystallographic orientation is 
discussed below in more detail. 

An important experimental observation of re- 
crystallization that has been made on many 
occasions, but not properly quantified, is that the 
distribution of recrystallization nuclei is hetero- 
geneous. Observations have been made of grains or 
regions of a deformed metal that are difficult (or 
slow) to recrystallize. For example, Carmichael et al. 

[27], Rosen et al. [16] and Inokuti and Doherty [28] 

have observed grains in a deformed metal that are 
either entirely lacking in nuclei or have far fewer 
nuclei than their neighbors. Figure 1, shows the 
microstructure of rolled copper that has been par- 
tially recrystallized where it is clear that the nucle- 
ation density varies markedly from one location to 
another in the deformed microstructure. Such nucle- 
ation heterogeneities can sometimes be associated 
with specific structural features. Adcock [29], in his 
classic work on rolled Ni-Cu alloys, showed how 
nuclei can arise on shear bands (i.e. regions of intense 
local deformation). Embury et al. [30] are currently 
studying the recrystallization of AI-Mg alloys (which 
form copious shear bands in rolling) in an effort to 
quantify the kinetics of this type of nucleation. 
Particle stimulated nucleation, PSN, is an obviously 
heterogeneous nucleation mechanism. Nes and 
Solberg [31] found that particles, in commercial 
purity aluminum, led to clusters of nuclei with 
random orientations. Away from these clusters, 
however, cube-oriented nuclei could be found. 

It is of interest to note that in studies of nucleation 
and growth kinetics in structural transformations 
other than recrystallization, the expected values of 
the JMAK exponent are found. Examples include 
Christian’s report of isothermal studies of an allo- 
tropic transformation in Mn [3] and, more recently, 
isothermal studies of polymorphic reactions in metal- 
lic glasses by Ahktar [32]. In both these examples 
linear JMAK plots were obtained with exponents of 
nearly 4. In diffusion controlled precipitation reac- 
tions studied by Servi and Turnbull [33] in Cu-Co 
alloys, exponents of 1.5 + 0.5 were found. These 
JMAK exponents are compatible with site saturation 
nucleation conditions and diffusion limited growth 
where the particle radius is proportional to the square 
root of time. Fine [34] used data for the precipitation 
of carbon in cc-iron from Wert and Zener [35] to show 
that the exponent is only approximately 1.5 for this 
case because the JMAK correction, equation (I), is 
not accurate for diffusional reactions with “soft 
impingement” of the solute fields between neigh- 
boring precipitates. This is in contrast to the “hard 
impingement” that occurs between recrystallized 
grains, new grains in polymorphic transformations 
or, for example, in eutectoid decomposition. 

It is commonly observed that nucleation of re- 
crystallization occurs at grain boundaries [36] and 
since Cahn’s analysis [9] has given a low exponent for 
site saturated grain boundary nucleated reactions, it 
might be felt that this provides an explanation for the 
low recrystallization exponents. This is clearly mis- 
taken, however, since site saturated nucleation on 
grain boundaries means that all grain boundaries will 
be coated with new grains. This is observed in 
eutectoid decomposition [37], for example, but 
almost never in recrystallization (see Fig. 1). 

One possible explanation for lowered exponents is 
the simultaneous occurrence of recovery that reduces 
the driving force for recrystallization. Vandermeer 
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Fig. 1. Microstructure of copper uniaxially compressed 
179% and partially recrystallized by annealing for 3 h at 
200°C showing nonhomogeneous distribution of re- 
crystallized grains. Image obtained under channeling 

contrast conditions in a scanning electron microscope. 

and Gordon [36] used this explanation in their study 
of alloys of aluminum with small amounts of copper. 
Their study showed that the growth rate of new 
grains decreased with time. Several other studies, 
however, have shown that prior recovery treatments 
have little effect on recrystallization kinetics (e.g. 
Laurent and Batisse [25], Rosen et al. [16] and 
Perryman [38]). Fig. 2 is taken from Rosen et d’s 
study of recrystallization in iron and shows JMAK 
plots of the recrystallization kinetics at two different 
temperatures. At each temperature, the material was 
given various recovery treatments prior to re- 
crystallization with very little effect. This same figure 
also exhibits low exponents: one at short times and 
much less than one at long times. Perryman [38] also 
obtained low exponents of 1.4-1.43 but he showed 
for his material that the nucleation rate and growth 
rates were constant during all but the first few percent 
of recrystallization. The effect of recovery should be 
to cause the growth rate to decrease continuously 
during recrystallization. Therefore recovery seems 
not to be a plausible explanation of the low ex- 
ponents found in many studies of recrystallization. 

The conclusion to be drawn from this brief, and by 
no means exhaustive, survey of the recrystallization 
literature is that unexpectedly low exponents deter- 

10.00 , , , , ,111 , , , , ,,,, , , , , ,111 , , , , , ,,( , , , 

RECRYSTALUZED 

o.o,v,l 0.1 1.0 10.0 100.0 1000.0 

RECRYSTALLIZAl ‘ION TIME (min) 

Fig. 2. JMAK plot of data for recrystallization of Fe by 
Rosen et al. [16], showing low exponents and changes in 

exponent during recrystallization. 

mined by JMAK analysis of the kinetic data have 
been a general experimental observation, at least in 
plastically deformed metals. This paper attempts to 
account for the low exponents by exploring the effect 
of inhomogeneous stored energy resulting from plas- 
tic deformation. The method used is computer simu- 
lation of recrystallization where the stored energy is 
varied from grain to grain in the unrecrystallized 
structure. The remainder of this section discusses the 
experimental and theoretical basis for variations in 
stored energy in terms of dislocation and nucleus 
density. 

An explanation for non-uniform energy storage 
can be found in the theory of polycrystal defor- 
mation. The Taylor model [39] postulates that all 
grains undergo the same macroscopic shape change. 
In face centered cubic metals, for example, limited 
slip on { 111) (011) slip systems results in variations 
in the amounts of shear or dislocation activity re- 
quired to accommodate a given shape change, as a 
function of grain orientation. Texture prediction 
calculations [40] show that grain-to-grain differences 
in orientation lead to different accumulated total 
shear strains. The ratio between the magnitude of the 
shear sum (i.e. the sum of the individual shears on 
each slip system) in each grain and the magnitude of 
the external strain is known as the Taylor Factor. 
Figure 3 shows a plot of the distribution of the sum 
of the shears on all the slip systems for a simulated 
polycrystal with 200 grains at a von Mises equivalent 
strain of unity in plane strain compression (equiv- 
alent to a rolling reduction of 58%). This plot shows 
a variation of a factor of 2 between the lowest and the 
highest sum of the shears, reflecting the cumulative 
effect of the variation of Taylor Factor with orien- 
tation. Kallend and Huang [26], by detailed X-ray 
analysis of 50% cold rolled copper, found that the 
stored energy varied with orientation by a factor of 
four. There is also further experimental evidence for 
variation of stored energy in the experiments of Boas 
and Hargreaves [41]. They demonstrated that the 
microhardness of a deformed metal varied 

SUM OF THE MICROSCOPIC SHEARS 

Fig. 3. Plot of the distribution of the sum-of-the-shears for 
a simulated polycrystal deformed to a reduction in thickness 

of 58%. 
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significantly, both within individual grains and from 
one grain to another. The variation in dislocation 
density in each grain might be expected to lead 
to variations in growth rate. Such variations in 
growth rate have been observed experimentally by 
Vandermeer and Gordon [42], for example. Another 
theoretical reason for expecting major differences in 
nucleation density from one grain to another is the 
fact that some grains in a polycrystal develop large 
spreads in crystallographic orientation. Bellier and 
Doherty investigated this in aluminum [43], and 
found that the transition bands between two parts of 
a grain that had rotated to different orientations were 
favorable sites for the nucleation of recrystallization. 
Not all the grains developed transition bands and on 
recrystallization after 40% compression, only some 
of the transition bands, in a minority of the grains, 
gave rise to new grains. Those that did, however, 
often produced clusters of nuclei [43,44]. 

The next section develops two simple analytical 
models for recrystallization kinetics that show how 
non-uniform growth rates and incubation times 
might lower the observed JMAK exponents from the 
theoretical values. The following sections describe the 
application of a Monte Carlo model to re- 
crystallization. The results of applying non-uniform 
stored energies in the model produce JMAK ex- 
ponents that are very much lower than the theoretical 
values. These results are discussed in terms of the 
failure of the basic assumption of the JMAK theory 
of random nucleation and uniform growth. 

2. ANALYTICAL MODELS 

2.1. Variable nucleation and growth rate 

A first step in attempting to model the re- 
crystallization kinetics for heterogeneous nucleation 
and growth conditions was made by Rollett [45]. He 
considered a moderately deformed coarse grain poly- 
crystal as a model material. If it is assumed that the 
recrystallization kinetics vary from one grain to 
another then a reasonable model is that of a com- 
posite material where each component or sub-volume 

recrystallizes at its own rate, Fig. 4. For the purposes 
of this development, it will be assumed that each 
sub-volume of the model material recrystallizes with 
site saturated nucleation and three dimensional 
growth. This would give a JMAK exponent of three 
if measured in each sub-volume. The kinetic equation 
then becomes 

Fi= 1 -exp(-Kit”). (6) 

where Fi is the fraction recrystallized for the ith 
sub-volume and ki is the nucleation density and 
growth rate parameter for that sub-volume. For the 
conditions assumed here 

ki = (4n/3)ZjG, (7) 

where Ii and G, are the nucleation density and linear 
growth rate respectively for the ith sub-volume. In 
real materials, both the nucleation density and the 
growth rate might reasonably be expected to vary 
spatially. The kinetic equation for a composite mate- 
rial, where k is uniformly distributed between k, and 
k2, is then found by taking the infinitesimal sub- 
volume limit in equation (6) and integrating 

F= 1 -[exp(-k,t3)-exp(-k,t3)]t3/(k,-k,) (8) 

where the exponent, n = 3, has been inserted. In 
equation (8), k, corresponds to the most rapidly 
recrystallizing sub-volume and k, corresponds to the 
slowest. The results of employing equation (8) are 
shown in a JMAK plot of log,,[ -ln(l 
-F)] vs log,,(time), Fig. 5, where the two straight 
lines show the kinetics of recrystallization of the two 
extreme sub-volumes. A ratio of 1000 was used for 
k,/k,. The curved line in between is for the composite 
material and shows how the apparent exponent has 
the correct value, 3, at short and long times but is 
much lower in the transition region. A minimum 
value of n o 0.66 is observed. The range of F that is 
experimentally accessible is limited to approximately 
O.l-99.9% or log,,[ -ln(l - F)] = -3 to 0.8. There- 
fore the transition from high rate recrystallization to 
low rate recrystallization may be spread over a 
sufficient range that an artifically low exponent is 
determined from the JMAK plot. 

F-l -exp{-kt”] 

F=l -exp{-kf”} 5 = 1 - exp { -kit” } _..__ Fq= 1 - exp ( -k,J” ) 

1 composite material with q recrystallization rates 

Fig. 4. Diagram of the method used to model heterogeneous nucleation and growth. 
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2.2. Variable incubation times 

An alternative model for recrystallization kinetics 
in an inhomogeneous material that also produces low 
values of the JMAK exponent is one based on 
variable incubation times. In this case it is assumed 
that the kinetics of recrystallization are identical in 
each subvolume except that there is a delay, or 
incubation time, in the onset of nucleation in each 
subvolume. The form of the kinetic equation for the 
composite is then 

F=l -Cexp-[k(t -0,)q (9) 

where 6, is the incubation time of the ith subvolume 
and the other symbols have their previous meanings. 
To obtain numerical results, the same value of the 
exponent was chosen (n = 3) and 30 subvolumes were 
modeled whose incubation times varied linearly from 
0 to a time comparable with the time required for 
63% recrystallization in one subvolume, i.e. 

emaximum = k I’“. (10) 

The results are plotted on a JMAK plot in Fig. 6 
which shows a slope that is considerably less than the 
value of 3 that is appropriate to each subvolume. The 
form of the curve is the same as for the previous 
model, that is, there is a transition from high to low 
to high slope. In contrast to the previous results, 
however, the range of F over which a low slope occurs 
is the experimentally accessible range of F = 0.1 to 
99.9%. In the limit of infinitesimally small sub- 
volumes and a range of incubation times much larger 
than the time available for measurement of F, the 
exponent will be one. 

The major limitation of these simple models is that 
they take no account of the fact that recrystallized 
grains in a rapidly recrystallizing subvolume may 
grow into a neighboring subvolume that is not re- 
crystallizing as rapidly. For this reason a Monte 
Carlo model was employed as de+-~Le~’ below. 

lo2 I I 

10' - 

100 - 
ii B I 3 

& 16' - 

zj / , 1 
lo" 100 10' 102 

TIME (arb. units) 

Fig. 5. JMAK plot of the kinetics of recrystallization of 
tnree model materials. Straight lines plotted with solid 
symbols correspond to two conditions of homogeneous 
nucleation and growth where k,/k, = 1000. The curve plot- 
ted with hollow symbols corresponds to a material where 
there is a spatial variation of the nucleation and growth 
parameter, k, over the same range. The result shows a 
significant decrease of the apparent JMAK exponent over a 

certain range of volume fraction recrystallized. 

3. MONTE CARLO MODEL 

In order to examine heterogeneous re- 
crystallization, the Monte Carlo model of grain 
growth [l] and recrystallization [2] developed by 
Anderson, Srolovitz, Grest and Sahni was used. This 
model has been shown to be highly successful in 
simulating the morphology, topology, kinetics and 
grain size distributions for grain growth [l, 46491. 
For recrystallization [2], it was shown that the model 
accurately simulated the kinetics of recrystallization 
as predicted by the JMAK equation in the limit of 
homogeneous stored energy. Only one change was 
made to the computer code to simulate the effect of 
heterogeneous stored energy. This was to impose a 
stored energy on the unrecrystallized structure that 
was a function of the orientation of the grain. 
Previous use of the model [2] had employed a single 
value of the stored energy imposed over the entire 
unrecrystallized structure. 

The Monte Carlo simulation is performed on a 
triangular lattice of size 200 x 200 sites with periodic 
boundary conditions. Each ith site is assigned an 
orientation number, S,. It was found that including 
Q = 48 different grain orientations was sufficient to 
model grain growth [50]. A grain boundary is con- 
sidered to exist between site i and a neighboring sitej if 
S, differs from Sj. Each unlike pair of nearest neigh- 
bors is assigned an energy, J, so that the total energy 
of the system, E, is calculated as 

E=-.&I -6,sj) 
i i 

(11) 

where the sum on i is over all 40,000 sites, the sum 
on j is over the nearest neighbor sites (1 . . . NN) of 
i, and 6, is the Kronecker delta. Grain growth is 
simulated by permitting the orientation of a particu- 
lar site to change to that of a neighboring site, 
provided that the total energy is reduced or left 
unchanged as a result of the change in orientation. 
The unit of time is defined in these simulations to be 
the Monte Carlo Step (MCS) which is the number of 
reorientation events, divided by the number of lattice 
sites (40,000). 

Primary recrystallization is modeled in the same 
way as previously described [2,49] in the studies of 
abnormal grain growth and primary recrystallization. 
Each distinct grain of the unrecrystallized structure, 
obtained from a previous grain growth simulation, is 
assigned a stored energy, H. The unrecrystallized 
grains are distinguished from the recrystallized ones 
by using values of S for the recrystallized grains that 
are larger than Q, the largest orientation number in 
the initial, unrecrystallized structure. Whenever a site 
changes orientation from an unrecrystallized value of 
S to a recrystallized value, the stored energy, H, at 
that site is liberated, i.e. the total energy is decreased 
by H, in addition to whatever change in grain bound- 
ary configuration there may have been. The total 
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TIME (arb. units) 

Fig. 6. JMAK plot of a model material in which the 
incubation time varies significantly from part of the material 
to another. Again, the apparent JMAK exponent is lower 
than the value used within each sub-volume of the material. 

energy, E, of the system is then calculated as 

E=JCy(l -&,s,)+Hf(SJ (12) 

where the function f is one for Si < Q (un- 
recrystallized) and zero for S, > Q (recrystallized) and 
the other terms of the equation are as defined in 
equation (11). 

The essential change made for this work was to 
employ an H that depended on the orientation num- 
ber, S,, of the grain. Given a maximum value of 
stored energy, H,,, , the stored energy at an un- 
recrystallized site (S, < Q) is chosen to vary with 
orientation number as 

H, = ffmx&/Q (13) 

and the total energy is given by equation (12) above, 
except that H = H(S,). For most of the simulations 
described below, the stored energy was varied over a 
range of 0.1 (S, = 1) to 5.01 (S, = Q = 48). As with 
previous work, each calculation was repeated with 
five different initial structures in order to improve the 
statistics of the results. The physical analogue is that 
of examining five different regions of a material. 

Nucleation is modeled by placing a nucleus, of size 
three lattice sites, on an arbitrary position on the 
lattice. Two types of nucleation conditions were 
modeled here. Site saturated nucleation was modeled 
by adding a fixed number of nuclei to the lattice at 
the beginning of the stimulation. Continuous nucle- 
ation was modeled by attempting to add a certain 
number of nuclei to the lattice at each Monte Carlo 
step. The essential feature of this condition is that if 
the nucleation attempt occurs at recrystallized sites or 
a site with very low stored energy, the nucleus is 
sub-critical and decays away. Hence the actual 
nucleation rate decreases with time as the fraction 
recrystallized increases. This corresponds to the 
assumptions used in deriving the JMAK equation. 

Nucleation also depends on the ratio of the local 

stored energy to the grain boundary energy, as dis- 
cussed by Srolovitz et al. [2,51]. The critical homo- 
geneous nucleus size, i.e. the smallest nucleus that can 
grow, is three sites for H/J > 2. This was the nucleus 
size used in this work. If H/J is less than 2, a nucleus 
can only survive if it is adjacent to an existing 
boundary. Srolovitz et al. [2] have shown that the 
growth rate of a nucleus is higher for H/J = 5 than 
for H/J = 3 by a factor of about 5. In a subsequent 
paper [51] it was shown that grains with H/J < 2 can 
initially sustain growth only along their boundaries. 
Furthermore [Sl] invasion of such grains can only 
occur once the nucleus straddles a vertex of the 
unrecrystallized grain. Therefore grains with H/J < 2 

can only be recrystallized by nuclei forming in adja- 
cent grains and growing to the point where they 
straddle a vertex. In the current simulations the 
stored energy was varied from grain to grain over the 
range 0.1-5.01. Therefore variations are anticipated 
in both nucleation and growth rates because the 
range includes the critical value of H/J = 2. It is 
suggested below that observed changes in slope of the 
JMAK plots are connected with these variations in 
nucleation and growth rates. 

4. SIMULATION RESULTS 

4.1. Site saturated nucleation 

A plot of fraction recrystallized versus time, F vs t, 

for site saturated nucleation with five different num- 
bers of initial nuclei, 100, 200, 500, 1500 and 3500 
nuclei is shown in Fig. 7. The plots have a truncated 
sigmoidal shape that lacks the usual lead-in with 
small slope at short times. This lack of sigmoidal 
shape at early times is because of the low slopes of 
the JMAK plots. By differentiating equation (3) it can 
be seen that if n < 1, the slope of a plot of F vs time 
will decrease monotonically. If n > 1, however, dF/dt 
first increases and then decreases, giving the con- 
ventional sigmoidal shape. 

The temporal evolution of the microstructure is 
illustrated in Fig. 8 for the case of 500 initial nuclei. 

o.of ’ ’ ’ ’ ’ ’ ’ 
0.0 2.0 4.0 0.0 8.0 10.0 12.0 14.0 

Tlmo (MCS) l 1d 

Fig. 7. Plot of fraction recrystallized, F, vs time for the 
Monte Carlo model undr site saturated conditions with 100 
(slowest rate), 200, 500, 1500 and 3500 (highest rate) nuclei 

present initially. 



634 ROLLETT et al.: COMPUTER SIMULATION OF RECRYSTALLIZATION 

The shaded grains are recrystallized grains whereas 
the unshaded grains are unrecrystallized. The micro- 
structures at long times have a similar appearance to 
those observed experimentally. This suggests that the 
introduction of inhomogeneous stored energy has not 
affected the ability of the model to produce realistic 
microstructures. Elongated grain shapes do occur in 
the recrystallized regions but these are eventually 
spheroidized by grain growth in the recrystallized 
regions. A consequence of the variable stored energy 
appears to be that, although recrystallization is rapid 
in a few areas, small values of H in other areas result 
in a delay of the completion of recrystallization. This 
allows time for grain growth to occur to a significant 
extent which produces final microstructures with 
regularly shaped grains. This is in contrast to the 
results of the homogeneous stored energy case 
studied previously [2] where the final microstructures 
were found to have irregularly shaped grains. An 
interesting feature of the microstructures obtained 
under homogeneous stored energy conditions [2] was 
that the edges of the rapidly growing recrystallized 
grains contained pockets of unrecrystallized material, 
which Srolovitz et al. [2] referred to as “granulation”. 
Although this feature can be seen at very short times, 
Fig. 8 (t = 100, 200) it rapidly disappears. 

Figure 9 shows a JMAK plot of the kinetics of 
recrystallization under conditions of inhomogeneous 
stored energy for the five different numbers of initial 
nuclei. The slope of each line corresponds to the 
exponent, n, of the JMAK equation, equations (4) 
and (5). The expected exponent for these two- 
dimensional nucleation and growth conditions is 2, as 
was found for homogeneous stored energy [2]. The 
minimum slope for each line in Fig. 9, however, 
varies from a low of 0.4 for the largest number of 
initial nuclei (1500) to a high of 0.9 for the smallest 
number of initial nuclei (100). These exponents are 
very much lower than the theoretical value and are 
consistent with the results of the analytical model. 

‘O’ m 

16’ t.,.,.,.,,,,,,, 
lo' ld ld lo' ld 

Time (MCS) 

Fig. 9. JMAK plot of the results of the Monte Carlo model 
under site saturated conditions with 100 (lowest curve), 200, 
500, 1500 and 3500 (uppermost curve) nuclei present ini- 
tially. The slopes of the curves are all less than 1 in contrast 
to the theoretically expected value of 2 for these conditions. 
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Fig. 10. Double-logarithmic plot of mean area, (A ), vs 
time for site saturated conditions with 100 (uppermost 
curve), 200,500, 1500 and 3500 (lowest curve) nuclei present 

initially. 

described above. Figure 8 also shows that the slope 
is not constant during recrystallization but generally 
has a minimum at intermediate times. The transition 
from the higher slope at small values of F to the 
minimum slope at intermediate values of F, shifts to 
higher fractions recrystallized (longer times) as the 
nucleation density increases. This feature of the 
JMAK plots also occurred in the simulations of 
continuous nucleation described below where it is 
discussed further. 

A logarithmic plot of the mean recrystallized grain 
area versus time for the five nucleation densities 
under site saturated conditions is shown in Fig. 10. 
The largest slope observed is 1.25 for the smaller 
nucleation densities. This is significantly less than the 
expected slope of 2 of un-impinged new grains grow- 
ing in two dimensions which would be expected at 
short times. It is also apparent that the slopes of the 
plots are similar at long times in all five cases. This 
suggests an influence of grain growth on the final 
microstructures. 

4.2. Continuous nucleation 

The fraction recrystallized versus time for five 
different rates of attempted nucleation, 0.5, 2, 10, 25 
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0.0’ I I I ’ ’ I 
0.0 2.0 ,4.0 0.0 2.0 10.0 12.0 14.0 
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Fig. I I. Plot of fraction recrystallized, F, vs time for the 
Monte Carlo model under continuous nucleation conditions 
with nucleation rates of 0.5 (lowest rate), 2, 10. 25 and 100 

(highest rate) nuclei per MCS. 

and 100 nuclei added per MCS is plotted in Fig. 11. 
The plots have a very similar appearance to those for 
the site saturated case. 

Figure 12 illustrates the temporal evolution of the 
microstructure in a simulation with a nucleation rate 
of 10 per MCS. As with the site saturated case, the 
effect of grain growth is to promote compact grain 
shapes. An interesting feature of the large variations 
in stored energy is that there are areas where the 
stored energy is just sufficiently large to support the 
introduction of a nucleus but not large enough for the 
nucleus to grow appreciably. This is particularly 
apparent at short times where there are several 
unrecrystallized (unshaded) grains that have a num- 
ber of very small recrystallized grains (nuclei) in their 
interior. The granulation that was a feature of the 
simulations of recrystallization [27] with large ho- 
mogeneous stored energies is only observable at very 
short times, Fig. 12 (t = 100). As with the site satur- 
ated case, the end of recrystallization is prolonged by 
the existence of pockets of material that are very slow 
to recrystallize, Fig. 12 (t = 2500). These pockets of 
unrecrystallized material are areas where the stored 
energy is too low to support homogeneous nucleation 
and rapid growth. This is in contrast to the homo- 
geneous stored energy case where continuous 
nucleation fills in the pockets. 

JMAK plots for the five different nucleation rates 
are shown in Fig. 13. Once again, the slopes of the 
plots are very much lower than the predicted value 
which in this case is 3. This theoretical value, it 
should be noted, was accurately reproduced in the 
previous simulations carried out with homogeneous 
stored energy [2]. The slope of the curve for 
each nucleation rate, measured at F = 63% 
[ -In(l -F) = I], varies from a low of 0.76 for the 
highest nucleation rate (100 per MCS) to a high of 
1 .I6 for the smallest nucleation rate (0.5 per MCS). 
Although all the plots show some variation of slope, 
at no point do any of the plots approach the theor- 
etical slope of 3. Again the effect of heterogeneous 
stored energy has been to drastically lower the 
apparent exponent as determined from a JMAK plot. 

A logarithmic plot of the mean recrystallized grain 
area, (A ), vs time for the five different nucleation 
rates is shown in Fig. 14. In contrast to the site 
standard case, all five plots follow a similar course 
with the lowest nucleation rate case reaching the 
largest grain size before recrystallization is complete. 
The slope at large times is slightly less than unity 
which is consistent with the early time grain growth 
rate previously reported for this model [l]. 

5. OTHER SIMULATIONS 

The simulations described so far used a large 
enough range of stored energy that both the growth 
rate varied and the nucleation varied from homo- 
geneous in high H/J regions to only heterogeneous in 
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Fig. 13. JMAK plot of the results of the Monte Carlo model 
under continuous nucleation conditions with nucleation 
rates of 0.5 (lowest curve), 2, 10, 25 and 100 (uppermost 
curve) nuclei Per MCS. The slopes of the curves are all less 
than 2, in contrast to the theoretically expected value of 3 

for these conditions of nucleation and growth. 

low H/J regions. Both the site saturated and the 
continuous nucleation cases produced JMAK plots 
with pronounced “knees” part-way through re- 
crystallization. The effect of nucleation conditions on 
this transition was investigated by varying the range 
of stored energy at fixed nucleation rate (i.e. 25 
attempts per MCS). In the one case, H/J was varied 
from 0.1 to 1.99 such that only heterogeneous nucle- 
ation was possible, which resulted in a minimum 
slope of 1.1. In another case, H/J was varied from 
2.01 to 5.01 so that all unrecrystallized grains would 
support homogeneous nucleation, which resulted in a 
minimum slope of 2. Figure 15 shows a JMAK plot 
of the results of these two simulations, together with 
the results of the simulation for 25 attempts per MCS 
shown in Fig. 13, which resulted in a minimum slope 
of 0.71. In addition, Fig. 15 shows a curve for the 
results of a further simulation with the same nucle- 
ation conditions but a smaller range of stored energy, 
H/J = 0.5 to 5.01, which resulted in a minimum slope 
of 0.74. It is clear that when the nucleation conditions 
are such that nucleation is either entirely homo- 
geneous, 2 d H/J < 5, or entirely heterogeneous, 

Id ; 

Fig. 14. Double-logarithmic plot of the mean grain area vs 
time for conditions of continuous nucleation with nucle- 
ation rates of 0.5 (uppermost curve), 2, 10, 25 and 100 

(lowest curve) nuclei per MCS. 
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Fig. IS. JMAK plot of recrystallization under continuous 
nucleation at a rate of 25 per MCS with stored energy 
ranges of 0 < H/J < 1.99 (lowest curve), 0 < H/J S 5, 

0.5 $ H/J < 5 and 2 C H/J < 5 (uppermost curve). 

0 < H/J < 2, no “knee” or transition in slope is 
observed. The next-to-lowest curve where nucleation 
conditions are mixed, 0 <H/J < 5, shows a pro- 
nounced knee. This knee is tentatively ascribed to 
a transition from recrystallization dominated by 
homogeneous nucleation and rapid growth at short 
times, to recrystallization dominated by hetero- 
geneous nucleation and slower growth at long times. 
The curve for the smaller range of stored energy, 
0.5 < H/J < 5, shows that the knee is not sensitive to 
the exact range of H/J used. Such transitions have 
been frequently observed experimentally, as can be 
seen in the JMAK plots of Rosen et al. [16], Fig. 2, 
or Vandermeer and Gordon [36]. 

Simulations were also performed under conditions 
of homogeneous stored energy but limiting nucle- 
ation to a small minority of grains. This results in 
clustering of the nuclei, early impingement of the 
recrystallizing grains and a transient decrease in slope 
of the JMAK plot. 

6. THE JMAK EQUATION 

The JMAK equation depends fundamentally on 
the differential relationship between actual volume 
fraction recrystallized and the extended volume, 
equation (1). If this equation does not hold then the 
JMAK theory is not an adequate description of the 
kinetics of recrystallization. One possible variant of 
equation (1) has been worked out in detail by Gok- 
hale et al. [52] where a particular clustering of nuclei 
was assumed. Their mode1 does not appear to be 
generally applicable, however. 

In order to test equation (1) for the site saturated 
case (Section 4.1) two further sets of simulations were 
performed in which only one, new (recrystallized) 
grain was introduced. These single grain simulations 
were performed in order to estimate the “extended 
volume fraction” in multi-grain simulations. As in all 
the simulations, five different initial microstructures 

derived from grain growth simulations were used to 
obtain improved statistics. The first set used a ho- 
mogeneous stored energy, H/J = 3 and the second set 
used the same range of stored energy as employed 
in the site saturated simulations of Section 4.1, i.e. 
0.1 < H/J < 5. The results of these simulations were 
used to determine the growth rate of a single re- 
crystallized grain. Since, in this case, no impingement 
with other recrystallized grains occur until the single 
grain reaches the edges of the lattice and impinges on 
itself, the volume fraction, F,, at any time is equal to 
the extended volume fraction [F, in equation (l)]. 
Therefore, from this simulation we calculate an ex- 
tended volume fraction, F,, from which dF,/dt was 
obtained by differentiation. If the single grain volume 
fraction is F, and the number of grains in the 
multi-grain simulation is m 

F, = mF, (14) 

The results of a previous simulation of re- 
crystallization [2] with homogeneous stored energy, 
H/J = 3 and 500 nuclei (site saturated) were used 
to calculate dF/dt. The test of equation (1) was made 
by using the ratio of dF/dt to the extended volume 
growth rate, dF,/dt, obtained from the single grain 
simulations described above. Figure 16 shows a log- 
arithmic plot of [(dF/dt) t (dF,/dt)] vs (1 - F). The 
straight line on this plot is the relationship of equa- 
tion (1). The result of this test is clearly that the main 
assumption of the JMAK theory is valid for the 
Monte Carlo model of recrystallization under con- 
ditions of homogeneous stored energy. This is, of 
course, as expected in view of the good agreement 
between theory and simulation for the JMAK ex- 
ponents found by Srolovitz et al. [2]. 

When the same comparison of [(dF/dt) t (dF,/dt)] 
us (1 - F) is made for the case of heterogeneous 
stored energy conditions and 3500 nuclei, Fig. 17, the 
results are dramatically different. The line of equation 
(1) is close to the simulation results at 1 - F - 1 

Fig. 16. Double-logarithmic plot of the ratio of rate of 
increase of actual fraction recrystallized to extended frac- 
tion, versus I-F for conditions of site saturation with 200 
nuclei and homogeneous stored energy, H/J = 3. Equation 
1 is plotted as a dashed line and the coincidence of the 
results with the theoretical prediction indicates that the basic 

assumption of the JMAK theory is correct. 
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Fig. 17. Double-logarithmic plot of the ratio of rate of 
increase of actual fraction recrystallized to extended frac- 
tion, versus I-F for conditjons of site saturation with 3500 
nuclei and heterogeneous stored energy, H/J = &5. The 
slope is much greater than one at all times and indicates a 
departure from the basic assumption of the JMAK theory, 

Eq. 1 (dashed line). 

within the statistical scatter. However, the simulation 
data rapidly fali below the values predicted by equa- 
tion (l), by a factor of 10 at 1 - F = 0.25 and by two 
orders of magnitude at 1 - F = 0.15. That is, equa- 
tion (1) gravely underestimates the impingement cor- 
rection in the case of heterogeneous stored energy. 
Similar discrepancies were observed for different nu- 
cleation densities. This result shows that the reason 
for the low JMAK exponents observed in these 
simulations is the failure of the key assumption of the 
JMAK theory, that is, spatially random nucleation 
and uniform growth. This suggests that the JMAK 
analysis is not appropriate for recrystallization of 
plastically deformed materials which almost inevita- 
bly have non-uniform stored energies. 

7. CONCLUSIONS 

The conclusions from this work can be stated as 
follows: 

The significance of inhomogeneous stored energy 
(from deformation) has been demonstrated for the 
process of primary recrystalii~tion. The in- 
homogeneity of stored energy arises from the aniso- 
tropy of dislocation-controlled slip which gives rise 
both to grain-to-grain differences in predicted total 
shear and to differences in measured stored energy. 
Such inhomogeneity also appears to give rise to 
nucleation densities that vary from one grain to 
another. 

Inhomogeneous stored energy can lead to Avrami 
exponents (i.e. the slope in the JMAK plots) that are 
much lower than those theoretically predicted for the 
given nucleation and growth conditions. The low 
exponents obtained from the simulations are similar 
to the results observed in many experiments. 

The reason for the low JMAK exponents in the 
inhomogeneous stored energy case appears to be the 

failure of the differential equation, equation (I), used 
to derive all the various forms of the JMAK equa- 
tion, equation (4). In the limit of homogeneous stored 
energy, however, a test of equation (1) showed that 
it is valid over a large range of fraction recrystallized. 

The exponents observed in the simulation decrease 
with decreasing grain size in the recrystallized state. 
This trend is in the same direction as observed 
experimentally where high exponents were obtained 
for small pre-strains, leading to a recrystallize grain 
size that was coarse compared to the prior grain size. 
When large prestrains were used, however, such that 
the recrystallized grain size was comparable to the 
initial grain size, low exponents were typically ob- 
tained experimentally. 

Transitions or “‘knees” in the JMAK plots are a 
characteristic feature of primary recrystallization 
with inhomogeneous stored energy and occur at 
fractions recrystallized that increase with the nucle- 
ation density. This feature is also commonly observed 
experimentally. 

Grain growth is significant when primary re- 
crystallization is slowed by the presence of “hard to 
recrystallize” (i.e. low stored energy) regions of the 
microstructure. Grain growth coarsens the re- 
crystallized grain structure while the transfo~ation 
is going to completion in the unrecrystallized regions. 
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