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In this work, the resealed mean spherical approximation (RMSA) for colloidal mixtures 

interacting via a DLVO-type potential is developed, and its application to suspensions of 

highly charged macroions is illustrated. For this purpose we introduce a simple scheme to 

solve the mean spherical approximation (MSA) for Yukawa mixtures with factorized coupling 

parameters. This scheme consists of the mapping of the Yukawa system onto a corresponding 

primitive model system. Such a correspondence is used as a device for the calculation of the 

static structure functions of the original Yukawa mixture. Within this scheme, a straightfor- 

ward implementation of the resealing procedure is performed, which allows for the calculation 

of partial structure factors in strongly interacting mixtures. The resealing procedure we use is 

an extension of that introduced by Hansen and Hayter for monodisperse suspensions. The 

structure factors obtained with the resealed mean spherical approximation compare well with 

computer simulation results. The advantages and limitations of the RMSA are also discussed 

in some detail. 

1. Introduction 

The resealed mean spherical approximation (RMSA) for the one component 

macrofluid (OCM) model of suspensions of charged spherical particles, micel- 

lar solutions, etc., has found widespread application in the description of the 

structural properties of these systems. This is due to the practical simplicity 

resulting from the analytic solution of the mean spherical approximation for 

Yukawa potentials and from the use of the resealing idea introduced by Hansen 

and Hayter [l]. The qualitative and quantitative accuracy of the static structure 
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predicted by this approximation has been discussed rather extensively. It is 

found in particular [2, 31 that the RMSA results compare generally well with 

computer simulation data and with the results of other more elaborate and 

purely numerical (but reputedly more precise) integral equations. Further- 

more, it is now clear that a large amount of experimental data can be 

represented quite successfully in terms of this approximate scheme. In fact. 

even near the disorder-order phase transition, where the straight comparison 

of the RMSA results with the computer-simulated data is not quantitatively 

good enough, the RMSA has been found to provide a convenient titting 

device, from which the static structure factor at large and small wavelengths 

can be extrapolated [2]. The knowledge of this information is important for the 

calculation of dynamic properties, especially of transport coefficients. 

Unfortunately, a monodisperse suspension is to a large extent an exceptional 

system from a practical point of view. Therefore, it is desirable to extend the 

RMSA scheme to multicomponent suspensions of particles interacting by 

DLVO-type potentials, i.e., a hard-sphere plus a Yukawa pair potential with 

factorized coupling parameters of the form 

(I.11 

Here AC? denotes the coupling amplitude of particles of species LY and z is the 

screening parameter. An important example is the long-ranged part of the 

DLVO potential for mixtures, in which case 

(1.2) 

In this equation ZCz and v<,, are, respectively, the macroion charge number and 

diameter of species (Y, L, is the Bjerrum length, i.e., L,, = e’/EkHT and K is the 

Debye screening parameter due to the ionic strength of the counterions and 

salt ions. This particular form of the potential of mean force can be obtained 

from a linearized Poisson-Boltzmann equation for an infinitely dilute suspen- 

sion at large particle distance Y. 

The solution of the mean spherical approximation (MSA) for multicompo- 

nent Yukawa mixtures has been reported by Blum and Hoye [4]. For its 

practical use, however, a coupled set of algebraic equations, which possesses in 

general several solutions, has to be solved [5]. As it has been shown by Pastore 

[6], only one of such solutions is physical. Its identification, however, is still 

rather cumbersome [5, 61. One could also mention Ginoza’s [7] demonstration 

that Blum’s solution can be largely simplified for Yukawa mixtures with 

factorized coupling constants, such as in eq. (1.1). In his solution only a single 

non-linear equation in one parameter has to be solved. Still, the form of this 
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non-linear equation is rather complicated, and it is not clear if it has in general 
only one solution. Thus, one is still left with the task of determining the 
physical root. 

In contrast to this, the MSA solution (also found by Blum) for the primitive 
model (PM), i.e., charged hard spheres, is extraordinarily simple [S-11]. Here, 
too, a non-linear equation in a single parameter, r, has to be solved. However, 
one can show that this equation has only one real positive solution, which is the 
physical one [lo]. As we demonstrate in this paper, this fact can be used to 
simplify the task of determining the physical MSA structure functions of a 
Yukawa mixture. Thus, the first purpose of this work is to establish a method 
of solution of the MSA for Yukawa mixtures based on the transformation of 
the original problem into the mathematically equivalent (but much easier) 
problem of determining the MSA structure functions of a corresponding 
primitive model system. 

The second task of the present work consists in the application of this 
method of solution of the MSA for Yukawa mixtures, to the implementation of 
the resealing procedure, originally suggested by Hansen and Hayter [l] for 
monodisperse suspensions. 

This paper is organized as follows. In section 2, we extend to mixtures an 
important observation made by Belloni [12] for monodisperse systems. Thus, 
we show that the effective pair potential between macroions in a primitive- 
model representation of a polydisperse suspension with point-like small ions 
(counterions and added salt ions) is of the Yukawa type as shown in eq. (1.1). 
In section 3 we use this observation to establish the equivalence between the 
MSA solution for an m-component Yukawa mixture and The MSA solution of 
a corresponding (m + 1)-component primitive model. There we also illustrate 

the use of the resulting algorithm by calculating the MSA structure functions of 
a binary Yukawa mixture. In section 4 we explain how this algorithm can be 
combined with the resealing procedure for the mean spherical approximation, 
thus defining the “resealed mean spherical approximation” (RMSA) for 
Yukawa mixtures. Here we also illustrate the resulting approximation by 
calculating the structural properties of a bidisperse suspension of highly 
charged macroions, comparing our results to computer simulation data. Fur- 
thermore, in that section we comment on the range of applicability of the 
RMSA for mixtures. The main conclusions of the present work are summar- 
ized in section 5. 

2. Effective pair potentials in a macroion mixture 

A long-standing problem in colloid science has been the determination of the 
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effective pair potentials between charged spherical particles in suspension. The 

basic model for the description of this effective interaction is the primitive 

model. where the macroparticles, the counterions, and salt ions are all 

represented as charged hard spheres in a dielectric continuum (the solvent). 

The classical work of Derjaguin, Landau, Verwcy, and Overbeek led to the 

first description of such an effective pair potential in the limit of infinite 

dilution of macroparticles and zero size of the small ions. After several 

approximations, their work leads to the particular case of eq. (1.2) correspond- 

ing to equal-sized spheres. More recently, such a particular expression for the 

effective pair potential has been taken as the starting point in the description of 

the structural properties of interacting suspensions at finite concentrations. in 

the spirit of the so-called “one component macrofluid” (OCM) model. Thus. 

the structural properties of a monodisperse suspension at finite concentrations 

can be calculated in two different manners. The first is the application of 

approximations developed in the theory of simple liquids to the calculation of 

the structural properties of this effective OCM system [l-3]. The second. 

conceptually more fundamental. but generally more involved in practice. is the 

use of similar approximations directly at the primitive-model level [ 12-181. The 

relationship between these two approaches has been clarified. at least within 

the framework of the mean spherical approximation, starting with the work of 

Medina-Noyola and McQuarrie 1151. In the most recent discussion of this 

subject, Belloni [12] has made the observation that there is a close relationship 

between the MSA solution for the two-component primitive model (macroions 

and point-like counterions) and the MSA solution for a corresponding OCM 

model. In what follows we extend this observation to multicomponent mixtures 

of macroions. Thus, we demonstrate that, within the MSA, the effective pair 

potential between two macroions in an (m + f)-component primitive model 

system with m macroion species plus 1 species of point-like small ions (counter- 

ions and added salt ions), is of the Yukawa type in eq. (1. I), with the screening 

parameter determined by the ionic strength of the small ions. In the following 

section we shall profit from these results by demonstrating that the MSA 

solution for an m-component Yukawa system with factorized coupling parame- 

ters is most easily determined by solving the MSA for a corresponding 

(m + 1)-component primitive model system. 

Let us first consider for simplicity a (m + I)-component primitive model 

consisting of m species of macroions plus their point-like counterions (species 

(m + 1)). In the MSA, the radial distribution functions g,,(r) for this system arc 

obtained by solving the Ornstein-Zernike equation 

h,,(r) = c,,(r) + ‘;g nk j- h,,(lr - r’l) c&‘) d3r’ 
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with the following closure relations: 

Cjj(T) = -L, 
yj 

I ’ 
r > ujj = ; (q + “,) ) (2.2) 

h,(r) = -1 ) r < cr,j , (2.3) 

Here, ci,(r) are the direct correlation functions and hii = gjj(r) - 1 are the 
total correlation functions. Also, nj, a,, and Z, are, respectively, the number 
density, diameter, and charge (in units of the elementary charge e) of species i, 

and L, is the Bjerrum length. Eqs. (2.1)-(2.3) constitute the MSA closure 
relation. Other closure relations have been discussed in the literature, but only 
the MSA allows for a simple analytic calculation of the correlation functions of 
the primitive model. As has been demonstrated by Blum and Hoye [8-111, all 
correlation functions can be expressed in terms of only a single parameter, r, 
whose value is obtained by solving the algebraic equation (see ref. [lo]) 

r2 = TrLJl(T) (2.4) 

with 

D(T) = -& + 2 n,KJ2 9 

B Cl=1 

(2.5) 

where 

In these equations 

K2 = 49-rL,n,Zi , (2.7) 

where K is the Debye screening constant, due to the point-like counterions, and 

A = 1 - $r CT+ nYo;. From here on we will label the macroion species by 
Greek subindices, whereas the counterions, species (m + l), will be labelled by 
s. Eq. (2.4) allows for only one, positive valued, real solution since D(T) is a 
monotonously decreasing function of its argument. This solution is easily 
obtained by using, e.g., the Newton-Raphson algorithm. Once this parameter 
r is determined , the static structure factors are easily calculated using the 
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analytic expressions reported by Blum and Hoye [S-11]. The Ornstein- 

Zernike equation for the (m + 1) species in eq. (2.1) can be contracted to 

eliminate the explicit reference to the correlation functions involving the 

counterions. This contraction procedure leads to the following “effective” 

Ornstein-Zernike equation: 

(2.X) 

which contains only the total correlation functions between the macroions. This 

contraction procedure was first discussed by Adelman [20], and employed by 

Belloni [12] in the present context. in reference to a monodisperse macroion 

suspension. The form of the direct correlation functions c$(r) of the effective 

m-component system is determined from the condition that /Z,,,(Y) in eq. (2.8) 

are identical with the macroion-macroion total correlation functions in eq. 

(2.1). From this it follows that 

where Cc+(q), C,p,(q), and C$(q) are. respectively, the Fourier transforms of 

the direct correlation functions (~*,,,*~)“~c~~~~(T). (17~~77,)’ ‘C,,,(Y), and 

(V$) “c$(r). 

In a next step we approximate the direct correlation functions between the 

point-like counterions by their Debye-Hiickel approximation (i.e., MSA with 

C7, = 0). 

1 

c,,(r) = -L,, $ , r > 0 (2.10) 

Then. from eq. (2.9), it follows that 

_ (4nW’ 1 [ I,2 
q2+2 

II,, Z,? + n; sLz,c:,,( q)][n;‘2z, + n,:“z,C;,(q)] 1 

(2.11) 

where 

(2.12) 
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is the short-ranged part of C,,(q). A similar definition holds for the short- 
ranged part, CL,(q), of the weighted macroion-counterion direct correlation 
functions. From eq. (2.11) it follows in the limit of large particle distance r that 

(2.13) 

with coupling parameters Kap, whose value depends on the specific form used 
for the macroion-counterion direct correlation functions. Eq. (2.13) defines 
the effective pair potentials LL$(~) between the macroions. These effective 
potentials are found to be of the Yukawa type, with the screening constant K 

given by eq. (2.7). 
The next step is to choose an approximation for the macrion-counterion 

direct correlations functions. In the framework of monodisperse suspensions, 
several different closure relations for these correlation functions have been 
discussed. Beresford-Smith et al. [16] used the HNCA closure relations in 
addition to the so-called jellium approximation for the macroion-macroion 
correlations. This approximation treats all the macroions, except one, as being 
smeared out. It preserves overall charge neutrality, but it neglects contribu- 
tions of the other macroions to the direct correlations between a given 
macroion and its counterion double layer. The coupling parameter of the 
effective pair potential is obtained in this approximation from the numerical 
solution of a Poisson-Boltzmann type equation. Belloni [12], on the other 
hand, used the MSA closure for both the macroion-macroion and macroion- 
counterion direct correlation functions. This is a better approximation regard- 
ing the influence of the macroion distribution, on the macroion-counterion 
correlations. However, the accumulation of the counterions close to the surface 
of a highly charged macroion is better described by the non-linear HNCA 
closure. 

In extending Belloni’s approach to m-components of macroions, we treat 
both C+(Y) and cas(r) within the MSA. Then, as Hiroike has shown, the 
short-ranged part of c,,?(r) is given by the following simple expression (see eq. 
(15) of ref. [lo] and eq. (3.12) of ref. [ll]): 

(2.14) 

with Y, defined in eq. (2.6). By observing that the short-ranged part of the 
direct correlation functions in MSA is identically zero outside the hard-core 
distance, the following important result is obtained: 

(2.15) 
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with the coupling amplitudes K_ given by 

K, = Lk’ZCr {cosh( $ ~a~~) + u,,[ {~a~~ cosh( $KS, ) - sinh( 1 KV,,)]} , 

(2.16) 

where 

(2.17) 

In the above expressions. 4,) = j, rrlz(, ~7~: is the volume fraction of species U. 

Notice that Ka depends on the number densities, charges. and diameters of all 

species, including the counterions. Its value is obtained once the parameter /‘is 

determined from eq. (2.4). Notice also that here the effective pair potential is 

of the DLVO type, i.e., a Yukawa potential with factorized coupling parame- 

ters KCt, = KcrK,, . In the limit of vanishing macroion concentration. eq. (2.15) 

reduces to the DLVO potential given in eqs. (1. I), (1.2), thus extending the 

result of Medina-Noyola and McQuarrie [19]. In the special cast of only one 

species of macroions, cy. (2.15) reduces to the expression given by Belloni 

[ 121. Let us mention. however, that Senatore and Blum [ 151 had previously 

considered the contraction of a two-component primitive model into a one- 

component macroion system at finite concentration. within the MSA. From 

their numerical calculations of the effective macroion-macroion direct correla- 

tion function, they conjectured a Yukawa form for this effective pair potential. 

Our results extend Belloni’s verification of this conjecture. 

As a final remark, let us emphasize once again that our present derivation 

involved for simplicity only one species of small ions, namely, the counterions. 

This derivation, however. can be extended to the case in which added salt is 

considered at the primitive-model level. In this manner. one tinds that the 

contraction of a (m + O-component primitive model with m macroion species 

and I species of point-like small ions. into an cffectivc m-component macrotluid 

system, yields the same results as above, except that the Dcbyc screening 

parameter K is determined not by cq. (3.7). but by the ionic strength of (r/l the 

SpeCieS Of Smd ions. i.e., K ’ = 47T~a,, xy-:,t + , tZ,Z;. 

3. MSA for the primitive model, a device to solve the MSA for 

Yukawa mixtures 

The results of the previous section allow for the following interpretation (SW 

ref. [15] for the particular case when m = 1). The MSA macroion-macroion 
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radial distribution functions gap(r) of a (m + 1)-component PM with point-like 
counterions may be obtained most directly from the analytic solution of eqs. 
(2.1)-(2.3) (which, in addition, would also provide the macroion-counterion 
correlations). However, these correlation functions also satisfy eq. (2.8) with 
c:!(r) given by eq. (2.15). Thus, they are the solution of the Ornstein-Zernike 

equation 

of a corresponding m-component Yukawa system with closure relations 

c&r) = -A,A, q , r> uap > 

(3.1) 

(3.2) 

and 

kg(r) = -1 7 r<u,p 7 (3.3) 

provided that the Yukawa coupling parameters A,, and screening constant z, 
are given by 

A,=KJZ,,...,Z,,Z,) (3.4) 

and 

2 = K(Z,, . . . , z,,, , z,) > (3.5) 

where the functions K, and K were defined in eqs. (2.16) and (2.7), respective- 
ly. Notice, however, that the Debye screening constant K depends indirectly 
also on the macroion charges via the overall charge-neutrality condition. 
Solving eqs. (3.1)-(3.3) to determine the macroion-macroion correlations is, 
of course, an unnecessary complication of a relatively simple problem, since 
the radial distribution functions of the primitive model are much easier to 
calculate using directly the analytic solution [g-11] of eqs. (2.1)-(2.3), than 
the solution of eqs. (3.1)-(3.3) discussed in refs. [4, 51. 

The inverse interpretation of this observation is, of course, a more profitable 
way of using these results, provided that we are interested in obtaining the 
MSA structure functions of an arbitrary m-component Yukawa system of the 
type in eq. (1.1) with diameters a, and number densities n, , for given 
parameters A, (a = 1,2,. . . , m) and z. In this case, the (m + 1) equations 
(3.4)) (3.5) could be numerically inverted to determine the parameters Z, and 
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2, of a corresponding primitive model with the same macroion diameters and 

number densities as for the Yukawa system, and with the number density of 

the point-like counterions determined by the electroneutrality condition. 

(Notice then that the counterion charge number 2, and number density n, can 

be trivially expressed in terms of the macroion charge numbers Z,, . . , Z,,, by 

using eq. (3.5) and the electroneutrality condition. It is, therefore, only 

necessary to solve the m equations (3.4) numerically for the m unknowns 

z,...., Z,,,). The resulting solution defines the primitive model system whose 

MSA macroion-macroion structure functions are identical to the MSA struc- 

ture functions of the originally given m-component Yukawa mixture. Thus, the 

latter can be calculated quite conveniently from the analytic solution of the 

MSA for the corresponding primitive model, since in this manner there is no 

ambiguity concerning the physical solution. This is to be contrasted with the 

available methods of solution of the MSA for the actual multicomponent 

Yukawa system (eqs. (3.1)-(3.3)), which is comparatively more involved 

because, precisely, of the practical difficulties to single out the physical solution 

(as discussed by Arrieta et al. [5] and Pastore [6]). 

Notice that in general the physical significance of the primitive model thus 

associated to a given Yukawa mixture is not particularly obvious. Thus, for the 

moment such a primitive model plays here no other role than that of a 

convenient mathematical device to simplify an otherwise rather cumbersome 

numerical problem. Thus, we should not be concerned if, for example, the 

resulting “charge” numbers ZCf are not exact integers. 

To illustrate the use of this scheme, we calculate the partial structure 

functions gaB(r) and S+( 4) for a binary Yukawa mixture with parameters 

n, = 4.03 X 10” cmm3, n, = 5.35 X 10” cmm3. rr,=50A. 7 (7 =7oA, u, = 

54.14 A”‘, Al = 166.96 A’!’ and z = 6.77 x lo-’ A ‘. These parameters are 

typical of a concentrated micellar solution (whose composition was chosen in 

such a way that both species contribute equally to the scattered intensity). The 

three equations (3.4), (3.5) are first numerically solved for the parameters Z, , 

Zz and Z, of the correspondent three-component primitive model. We find 

Z, = 8.04, Z, = 15.44 and Z, = - I .25. 

Let us notice also that, for given Yukawa parameters AC” and z. besides the 

charges Z_ of the corresponding primitive model, one could also define 

“DLVO charge”-numbers, Z,yLv”, as 

which is eq. (1.2), with AfLVo = AC? and K = z. For the system in our example, 

we find that ZyLvo = 10 and ZyLvc) = 19.6. Thus, in this case we observe that 

z‘z < z,~Lv”. 
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Fig. la shows the three partial structure factors S,,(q) of the Yukawa 
mixture of our example, obtained in the manner explained above. We have 
checked these results against the direct calculation of the structure functions 
using Blum and Hoye’s solution [4] of the two-component Yukawa-system as 
elaborated by Arrieta et al. [5] and Pastore [6] and found, of course, complete 
agreement. To calculate the corresponding radial distribution functions g,,(r) 
in fig. lb, a Fourier sine transform algorithm was used, and an asymptotic 
correction is included to obtain gap(r) accurately everywhere, including in the 
neighborhood of the contact distance r = flap. 

There is still the question whether the m equations (3.4) can always be 
solved for PM parameters (2,) . . . , Z,}, for arbitrary Yukawa coupling 
amplitudes A a, and if so, whether the set {Z,, . . . , Z,} is unique. For the 
Yukawa systems we considered we did always find a set of PM parameters, and 

hence, we conjecture that corresponding PM parameters can always be found, 
although we cannot provide a rigorous proof. Our conjecture is supported, 
however, by the consideration of limiting cases: in the infinite-dilution limit, 
n, + 0, where we have that K, --+ K, DLVo, and in the limit CC, + 0, of point-like 

macroions, a one-to-one correspondence between the two sets {A,, . . , A ,} 

and {Z1,..., Z,} is guaranteed. 

On the other hand, the question concerning the uniqueness of the set 

{Z,, . . . 9 Z,} is in fact irrelevant for our present purpose, in which the PM is 
being used as a mere mathematical device. Thus, even if there were more than 
one set of PM parameters solving eqs. (3.4), all of the corresponding PM 
systems must be such that their macroion-macroion correlation functions 
coincide, and are identical to those of the m-component Yukawa mixture. 
However, since we expect that different charges in the PM give rise to different 
MSA structure functions, it is resasonable to expect that the set {Z, , . . . Z,} is 
in fact unique. 

The main purpose of this section was to establish a convenient algorithm to 
solve the MSA for fluid mixtures of particles interacting through hard-sphere 
plus arbitrary Yukawa tails of the type in eq. (1.1). Here, however, we shall 
not attempt to determine the general degree of accuracy of the MSA structural 
properties as compared, for example, with computer simulation results. We 
know, in fact, that for dilute suspensions of highly charged particles, this 
approximation may lead to the unphysical result that gap(r) becomes negative 
near contact. To overcome this difficulty, the resealing procedure will be 
implemented in the following section. However, in the opposite regime, i.e., 
for weakly charged suspensions at high volume fractions, such as in our 
example in fig. 1, the MSA is expected to be a reasonably accurate approxima- 
tion, since in this regime the electrostatic effects can be considered as a 
perturbation with respect to the uncharged hard-sphere reference mixture. Let 
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us mention, however, that under some special conditions, the MSA for 
Yukawa mixtures could lead to other un-physical artifacts, not observed in the 
monodisperse case. For example, if in a binary mixture one of the species is 
uncharged (i.e., A, = 0), and the other is highly or even moderately charged, 
the possibility exists that the contact value of the radial distribution functions 
are positive, but with the first minimum becoming negative. A simple example 
is provided by the limiting case in which the first species is uncharged and the 
second, charged species, is present at infinite dilution. In this case, one can 

show that 

gg*(r) = g;;(r) - (A$ G , r>q 3 (3.7) 

for the MSA radial distribution function of the tracer spheres. g::(r) is the 
Percus-Yevick radial distribution function of the corresponding pure hard- 
sphere system (where also A, = 0). The function g;:(r) is positive, with a 
contact value larger than one. For a sufficiently small coupling amplitude A,, 

g,M,S*t ). P ‘t’ r 1s OSI we at and in a neighborhood of the contact distance uz. If now 
the screening parameter z happens to be small, g:“(r) is observed to be 
negative in a neighborhood around its first minimum, albeit it is positive 
around the contact distance. These artifacts, however, are not expected to 
occur in parameter ranges typical of charged micellar solutions or suspensions 
of highly charged macroions, which are the systems we have in mind in terms 
of the practical applications of our results. 

As a final remark, let us mention that the practical use of the MSA structure 
factors of model Yukawa mixtures, in the interpretation of experimental 
measurements, does require the definition of a precise connection between the 

model parameters A, and z and the actual experimental values of the 
macroparticle charges and ionic strength. Such a connection can be provided 
by the DLVO potential, as in eq. (1.2), in which case one first determines the 
Yukawa parameters A,, in terms of the given experimental charges 2:’ using 
this equation, and setting z = Key’, the corresponding experimental screening 
constant. Then, the structure factors are evaluated in the manner indicated 
here, thus resulting in some accessory PM charges, Z,, with no particular 
physical meaning. 

Fig. 1. (a) Partial static structure factors S,,(q), and (b) radial distribution functions g,,@(r) 

calculated within the mean spherical approximation for a hard-sphere plus Yukawa binary mixture 

with diameters (r, = 50 A, a2 = 70 A, number concentrations n, = 4.03 x 10” cm-9 n2 = 5.35 x 

101’cmm’. The interaction potentials u,a are given by eq. (l.l), with A, =54.14A”‘, A, = 
166.96 A”’ and z = 6.77 x 10-2A-‘. These model parameters correspond to a concentrated 

micellar solution; no resealing is needed. 
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Alternatively, Belloni [12] has suggested, in the context of monodisperse 

suspensions in the absence of added salt, that this connection be defined by the 

effective pair potential resulting from the contraction procedure, i.e., by eqs. 

(2.15)-(2.17). In this case, the primitive model charges ZIX are assumed to be 

the experimental charges, and the MSA macroion-macroion radial distribution 

functions of the effective Yukawa system with coupling parameters given by 

eqs. (3.4)-(3.5) are hence given directly by the primitive model MSA solution. 

Although this suggestion seems to render the Yukawa mixture model com- 

pletely unnecesary, Belloni also notes that this, or the DLVO definition of an 

effective Yukawa potential, is still the most useful concept when the MSA 

correlation functions become negative at contact, since no fully consistent 

prescription has been proposed to “rescale” the primitive model. Thus, for 

dilute suspensions of highly charged macroparticles, the effective Yukawa pair 

potential (within the DLVO, or within Belloni’s definition), along with the 

resealed mean spherical approximation, continues to be the simplest approach 

to the structural properties of strongly repulsive systems. The following 

sections defines the manner to implement the resealed mean spherical approxi- 

mation in the case of mixtures. 

4. Resealed mean spherical approximation for Yukawa mixtures 

The contact values of the radial distribution function of the binary Yukawa 

system in fig. (lb) happened to be all positive. It is well known that in strongly 

coupled systems the MSA gives rise to unphysical negative values of some. or 

all, of the radial distribution functions in a neighborhood around the contact 

distance. To overcome these features, Hansen and Hayter [l] provided phys- 

ical arguments for one-component Yukawa systems leading to the well-known 

resealed mean spherical approximation (RMSA). They implemented their 

resealing procedure using the analytic MSA solution given by Hayter and 

Penfold [21], whereas Nagele et al. [2] used, instead, the equivalent MSA 

solution of Hoye and Blum [22], which is simpler and more compact than that 

of Haytcr and Penfold. Here we extend Hansen and Hayter’s MSA resealing 

arguments to hard-sphere plus Yukawa mixtures. Let us mention. however, 

that a particular case of this extension (a binary mixture in the limit of 

vanishing concentration of one of the species) has been previously discussed by 

Nagele et al. [23], this being the only precedent of the full extension described 

here. 

The resealing argument is the following [ 1, 2, 231: consider a dilute m- 
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component hard-sphere -plus Yukawa mixture of spheres with purely repulsive 
interactions (that is, all coupling amplitudes A, are of the same sign). Let us 
assume in addition that the Yukawa tails A,A, e-“/r happen to have values at 
hard-sphere contact, A ,A B e -Zua@/aaa, which are very much larger than 1, so 
that two particles (of species (Y and p) will virtually never get closer than a 
certain distance u$ > uaP. As a result, the radial distribution functions gap(r), 
besides being strictly zero for r c asp, will remain vanishingly small within an 
interval f7aP < r G w& , i.e., they do not exhibit any hard-sphere discontinuity 
at r = Use. The effective distances of closest approach a&, and in fact the full 
radial distribution functions gup(r; CT~, . . . , urn, A 1, . . . , A,,, , z), are then only 
dependent on the Yukawa parameters A, and z and on the thermodynamic 
state (i.e., on ~ti,. . . n, and T), and do not depend on the hard-sphere 
diameters a,. As a consequence, the same radial distribution functions will 
describe the structure of a family of systems with the same Yukawa tails and at 
the same state, but with different hard-sphere diameters, provided that such 
diameters are such that gaP s a$. Thus, we may choose from this family the 
system with the largest hard-sphere diameters, which we shall denote by g:, to 
represent the structural properties of all the systems in the family, so that we 
can write 

gap(r; ul, . . . , c,,,, Al,. . . 7 A,, 2) 

=gap(r; (+I,. . . ,(+A, A,, . . . , A,, 2). (4.1) 

Of course, U; must be such that $(crA + a;) is identical to the distance of 

closest approach U& (which only depends on A 1, . . . , A,, and z). The 
conditions determining (+& may then be written as 

g,,(r=uL+;m; ,..., aA,A, ,..., A,,z)=O (a = 1,2,. . . , m). 

(4.2) 

Thus,ifweknewthefunctionsg,P(r=a,+;a, ,..., a,,,,A ,,..., A,,z),eq. 
(4.2) would constitute a set of m equations for the m unknowns aA. It is at this 
point where the mean spherical approximation enters. As it happens, the MSA 
provides indeed a very reasonable approximation for the structural properties 
of the representative system, i.e., that with hard-sphere diameters u:, al- 
though it may be a rather deficient approximation for the original system. 
Thus, we approximate eq. (4.2) by 

g~~“(r=(+~+;~~ ,..., “;,A, ,..., A,,z)=O (a = 1,2,. . * ) m) . 

(4.3) 
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Furthermore. since the accuracy of the MSA radial distribution functions for 

the effective system is not restricted only to the contact region. we use this fact 

to approximate the rhs of eq. (4.1). The resulting approximation for the radial 

distribution functions of the original system is what we define as the rescafed 

mean spherical approximation (RMSA). Thus. in summary, the rcscalcd mean 

spherical approximation is defined as 

g <:;SA(r; u,, . . u ,,,. A,. . . , A,,,, z) 

=,&jA(r;a;,. ,u,;,. A,,. . .A,,,.z), (4.4) 

where the effective diameters are first determined solving eq. (4.3). 

This resealing prescription can now be combined with the analytic solution of 

the MSA for the m-component Yukawa system based on the correspondence 

with the MSA solution of a (m + I)-component primitive model, explained in 

the previous section. The resulting algorithm to calculate the structure of the 

m-component Yukawa mixture with given hard-sphere diameters al and 

Yukawa parameters A (I and z. may be summarized as follows: for these 

Yukawa parameters, solve cqs. (3.4), (3.5) for the primitive model charge 

numbers ZCV and Z,. keeping the same macroion concentrations and hard- 

sphere diameters as given for the Yukawa mixture. Next. check if all the 

corresponding macroion-macroion radial distribution functions at contact. 

g:sA(uCC+), are negative. If yes. solve the following (2m + I) equations (the 

rzCV being kept fixed): 

g ;,S”“‘“)(r = U;k+; U;. . , CJ,;?, z;, , z,;,, z:) = (1 . (4.5) 

Kcl(~~;, > u,:,, Z; , , Z,:, . Z:) = A<? (4.6) 

and 

K(z;, . , z,;,. z:) = 2 (4.7) 

for the (2m + 1) unknown parameters aA, .Z<i and Z: of the corresponding 

(m + I)-component PM. The functions g,, MSA(PM) are the MSA contact values of 

the PM (see eq. (12) of ref. [lO]), and the functions KCr and K are, once again. 

those defined in eqs. (2.16) and (2.7) respectively. Notice that here also the 

counterion parameters n, and Z: are trivially expressible in terms of 

z; , . . z,:, via eq. (4.7) and the electroneutrality condition n,Z: = 

-XT=, n,ZG, which means that only the 2m equations (4.5), (4.6) have to be 

solved numerically for the 2m unknowns a(!, (>a,, ) and ZCt. Then the radial 
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distribution functions gylA(r) required in eq. (4.4) are calculated using Blum’s 
PM solution [g-11], i.e., eq. (4.4) can also be written as 

g 
RMSA 

4 
(r;a, ,..., u,,A,,...,Arn~) 

=&yPM)(r; CT;, . . . ) CT;, z;, . . . ) .z;, 2;). (4.8) 

It is not the aim of this paper to report an extensive comparison of the 

RMSA with other integral equations (HNCA, etc.), or against computer 
simulation data. Such a comparison has been made in the case of monodisperse 
systems [l-3], and it will be done for mixtures in a forthcoming paper. 
However, for illustrative purposes, let us discuss the application of our RMSA 
approach to calculate the structural properties of a dilute binary mixture of 
highly charged polystyrene spheres. We choose the system parameters in our 
illustration in such a way to compare with available computer simulation 
results. Thus, we take the Yukawa parameters to have the values A, = 

672.88 A’12, A, = 961.26A1’2, z = 6.8 x 10e4 A-‘, and the number concen- 

trations n, = 2.656 x 1012 cme3 and n2 = 5.344 x 1012 cm-‘. In addition, we set 
both hard-sphere diameters equal to 500 A, i.e., u1 = a2 = 500 A. These pa- 
rameters correspond to a dilute mixture of highly charged polystyrene spheres 
in water at room temperature. The Yukawa amplitudes above would corre- 
spond, according to eq. (3.6), to DLVO charges of ZyLvo =247.7 and 
Z FLvo = 353.9. Alternatively, if we were to use Belloni’s connection between 
Yukawa parameters and macroion charges, i.e., if we solve eqs. (3.4), (3.5) for 
Z, and Z, with the Yukawa parameters A 1, A, and z above, we would 
determine Z, = 248.3 and Z, = 355.0. Clearly, in this illustrative case the 
quantitative difference between these two sets of charge numbers is rather 
small. 

The straightforward use of the MSA for this Yukawa mixture leads to 

negative contact values of all the radial distribution functions. In fact we find 
g;SA(PM)(‘T1 +) = -206.6, gFA(PM)(a,2+) = -295.7, and gFAcPM)(a,+) = 

-423.1. Thus, resealing is necessary. The application of our algorithm requires 
the solution of eqs. (4.5)-(4.7) for the effective primitive-model parameters 

c;, a;, Zi, Z; and Zi, which are found in this manner to have the values 
a; = 3671.8 A, a; = 4247.3 A, Z; = 137.95, Z; = 172.57 and Z: = -3.97. 
Notice that the increase in the diameters has been compensated with a 
corresponding decrease in the charges in order to keep the Yukawa amplitudes 
to be the same as in the original system. This is also and more easily 
appreciated from the DLVO connection in eq. (3.6) between coupling am- 
plitudes, charges, and diameters. Finally, the RMSA macroion-macroion 
radial distribution functions for our original Yukawa mixture are given, 
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according to eq. (4.8), by the macroion-macroion radial distribution functions 

of this primitive model (with, of course, the same macroion number concen- 

trations 11, and n, as above). The resulting radial distribution functions are 

presented in fig. 2, which also include for comparison the computer simulation 

data of Kremer et al. [24, 251. Clearly, although there are evident quantitative 

discrepancies in the height of the first maximum of g,,(r), the overall com- 

parison seems to be quite satisfactory given the simplicity of our approach. 

Furthermore, the extents of these discrepancies are not much more serious 

than they are known to be in the monodisperse case under conditions of strong 

electrostatic couplings [2]. Let us emphasize, however, that the RMSA de- 

termination of the effective distance of closest approach, ‘T&, as well as the 

prediction of the location of the maxima and minima of gap(r), are found to be 

in full quantitative agreement with the computer simulation results, as it can be 

observed in fig. 2. 

Let us also comment that the resealing procedure is based on the condition 

that g,,,(a<i+) = 0, but no similar condition is imposed a priori on the 

cross-correlation functions gap(r) (with (Y f p) at r = ;(a: + a;). Thus, we 

should not expect g,,(a& +) to be exactly zero. However, a noticeable 

departure of these quantities from zero could probably indicate overall inac- 

curacies of the RMSA results. Hence, monitoring the value of this quantity 
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061.3 A”‘. The radial distance is scaled with the mean interparticle distance a = (n, + n,)-“. The 

circles are the computer simulation results of Kremer et al. [24]. 
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Fig. 2 (cont.). 

might be an advisable suggestion during the use of our method. In the case of 
the illustrative example above, we find g12(cr;+) = 0.002, which is, of course, a 
completely acceptable value. For most systems of this type, we found similar 
results, although we also observed that stronger asymmetries in the coupling 
parameters A, could lead to appreciable departures of gi,(a;+) from zero. To 
quantify this observation for systems related to that in our illustration, fig. 3 
shows g12(cr;2+) as a function of the coupling asymmetry parameter, AZ/A,. 



93x H. Ruiz-Estrada et al. I RMSA for colloidal mixtures 

0.04 

_ 0.03 

.N 
b 

--& 
6 

ooz- 

Fig. 3. Cross radial distribution function g17(r) at I’ = i (CT: 
spherical approximation for the same parameters as in fig 

A>=A, to A.=AA,. 

4 5 6 

t WA) obtained from the rescalecl mean 

2. except that A 1 i\ being varied from 

These results correspond to the same system as in fig. 2, except that the 

coupling amplitude A, was varied from A, = A, to A, = 6A, (the system in 

fig. 2 corresponds to A,IA, = 1.4). These results illustrate the fact that even 

under rather severe conditions of charge asymmetry, the discontinuity of 

gyzMsA(r) at r = CT;? is still rather small compared with the relatively large 

values that g,,(y) must attain at slightly larger distances. namely, at its first 

maximum. Plotted in a similar manner we also show in fig. 4 the corresponding 

effective diameters a:! and the corresponding primitive model charge numbers 

.Z(l. Notice that as the asymmetry increases, a larger effective diameter 

corresponds to the more highly charged species. We can also see that the 

increase in A, also needs a corresponding increase in the effective charge 

number Z; . On the other hand, for the species whose coupling amplitude, A,, 
remained unchanged, the increase in A2 leads to a decrease in its effective 

diameter cr; , but also to a rather mild change in its charge number 2;. Let us 

mention that for the conditions in figs. 3 and 4, we found that 4.:. = 
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Fig. 4. Hard-sphere diameters a; and u;, and charge numbers Z; and 2; of the primitive model 

corresponding to the resealed binary Yukawa mixture with the same parameters as in fig. 3. 

arr Et+ n,,(~:)~, the effective volume fraction, was always below 0.6. In 
particular, for the system in fig. 2 we found that 44 = 0.283. As a reference, a 
monodisperse hard-sphere system freezes at a volume fraction of approximate- 
ly 0.49. 

As a final remark, let us notice the following differences of our RMSA 
procedure for Yukawa mixtures with respect to the one-component resealing 
procedure of Hansen and Hayter: the resealing procedure is, in the monodis- 
perse case, almost always applicable, for parameter sets within the physically 
reasonable regime. Our extended resealing procedure, however, may be more 
restricted in its applicability. First, it works only in mixtures with purely 
repulsive interaction, i.e., A aA, > 0 for all CY, p E { 1, . . . , m} . Second, if one 
or more of the MSA contact values &,(a, +) at the physical contact distance 
a, happen to be positive, then our procedure is not applicable, and third, large 
asymmetries in the coupling amplitudes may imply unphysical discontinuities in 
the RMSA cross radial distribution functions, i.e. g~~““(a&+) may be 
appreciably different from zero for (Y # /3. However, the general ideas behind 
the resealing arguments do have in mind systems with strong electrostatic 
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repulsions, of the type that has been studied rather extensively in the last years 

in the monodisperse case. Mixtures of such model systems will most likely fall 

in the range of applicability of our approach. 

5. Conclusions 

In this work we have introduced a scheme to solve the mean spherical 

approximation for Yukawa mixtures with factorized coupling parameters. This 

scheme is based on the transformation of the original problem into the 

equivalent, but much easier, problem of determining the MSA structure 

functions of a corresponding primitive model system with point-like counter- 

ions. The resulting algorithm was illustrated by calculating the structure 

functions of a binary Yukawa system with parameters typical of a concentrated 

binary mixture of charged micelles. 

In a second step, this algorithm for solving the MSA in Yukawa mixtures was 

combined with the resealing procedure for those cases in which the contact 

value of the MSA macroion-macroion radial distribution functions were all 

negative. The resulting resealed mean spherical approximation allows for the 

calculation of the structure of mixtures of highly charged macroions, like 

polystyrene spheres in water. For such systems, the MSA itself predicts 

unphysical radial distribution functions. As an illustration, the RMSA structure 

functions of a bidisperse Yukawa mixture with strong interparticle repulsion 

were calculated here. They were found to compare well with computer 

simulation data. Comments on the range of applicability of the RMSA for 

mixtures were given: It applies only to purely repulsive Yukawa pair potentials, 

i.e. A,A, >O, and the g,,, RMSA(y) for cr # /3 are expected to exhibit no 

appreciable discontinuity only for mixtures with not too broad asymmetries in 

the coupling amplitudes. Furthermore, the resealing procedure does not apply 

if at least one of the partial radial distribution functions shows, before 

resealing, a positive discontinuity at the physical contact distance. 

In spite of these limitations, the RMSA for Yukawa mixtures is expected to 

be quite useful for the calculation of static structure functions. The merit of our 

RMSA scheme is its analytic simplicity, which makes it easy to apply for 

mixtures with more than two species. This makes it feasible to use the RMSA 

scheme for the investigation of polidispersity effects in macroion mixtures. In 

addition, the RMSA scheme allows for a fast calculation of partial structure 

factors over an extended range of wavenumbers. This is important for the 

calculation of dynamic properties in mixtures. We are at present using our 

RMSA structure factors in the calculation of self-diffusion properties in binary 

suspensions of highly charged polystyrene spheres suspended in water, whose 
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static and dynamic properties are currently under experimental investigation 

[26-281. 
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