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Abstract: Influence diagnostics based on Cook’s curvature diagnostic (1986) are developed for the proportional hazards model. 

Three perturbation schemes are considered: perturbation of the likelihood, perturbation of the censoring information and 

perturbation of covariate values. 
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1. Introduction 

The Cox proportional hazards model is often the model of choice when analysing censored data and many 
methods have been proposed for residual analysis and assessment of influential observations for this 
model. Problems existed with the earlier methods of residual analysis (Crowley and Storer, 1983); however 
Barlow and Prentice (1988) have defined residuals that are closely related to the empirical influence 
function and other standard regression diagnostics circumventing these problems. Other commonly used 
regression diagnostics for the linear regression model have also been extended to the Cox proportional 
hazards model. These include the influence function (Reid and CrCpeau, 1985; Cain and Lange, 1984) and 
estimates of the deleted values of the regression coefficients based on an augmented design matrix (Storer 
and Crowley, 1985). 

The focus of this paper is on the application of Cook’s (1986) influence diagnostic to the proportional 
hazards model. This approach is based on perturbation of the likelihood function and perturbation of 
covariates included in the model. The proposed diagnostics differ from the diagnostic presented in Pettit 
and Bin Daud (1989) which is based on an approximation to the likelihood displacement. These methods 

are illustrated using a lung cancer data set (Kalbfleisch and Prentice, 1980) and the Stanford heart 
transplant data (Miller and Halpern, 1982). 

2. The Cox proportional hazards model 

Let T,, . _. , T, be the observed time to event and let 6, = I{ T, < U,}, where U,, . . . , U, are censoring times 
and U, is assumed to be independent of T, Then, under the assumption of the proportional hazards model, 
the hazard function is given by 

x(t Ix> =&(t) exp(xTP), 

where h,( 1) is an arbitrary baseline hazard function, (&, . . . , /I,)’ is a parameter vector, and (x1,. . . , x~)~ 
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is a covariate vector. Estimates of p are obtained from the partial likelihood function (Cox, 1972) which is 
given by 

L(P) = ii 
i 

exp(x~~) 6 

i=l &CR(,) , exp(xP) I ” 
where X, denotes the covariate vector associated with the ith time and R(t,) denotes the risk set at t,. 
Estimates of j? are obtained by maximizing the log of the likelihood function and covariance estimates are 
obtained from the inverse of the information matrix. In particular, the likelihood equations obtained from 

(1) are give by 

and estimates are obtained by solving (2) for /3,, . . . , /it,. 

3. Curvature diagnostics 

To measure the influence that observations have on the parameter estimates, the effect of perturbations on 
either elements in the score vector or the covariate vector can be measured by computing the curvature of 
the likelihood function (Cook, 1986). Let w = (a,, . . . , o,,) denote the vector of perturbations, then the 
curvature is defined by 

c, = 2 1 lTFl 1) 

where 111 = 1, the (i, j)th element of $ is given by a’L(p I o)/aw,i3w, and L(p I w) denotes the estimated 
perturbed likelihood. The computation of this measure is simplified by noting that 

FEArI-’ A, (3) 

where I is the information matrix and the 0th element of A is given by a2 log L(/l I w)/a&ao, evaluated 
at p = p^ and w = wO. The diagnostic of interest is based on the maximum curvature, C,,,,,, which is the 
maximum eigenvalue of p defined in (3). The corresponding eigenvector, I,,,, is then examined with large 

or small values pointing to observations which are possibly influential. 
The application of this diagnostic depends upon the choice of a perturbation scheme. For the Cox 

proportional hazards model there are many ways to perturb the data: the individual elements of the sum in 
the likelihood function can be perturbed, the vector indicating whether or not an individual is censored, a,, 
can be perturbed, or the covariate values can be perturbed. Perturbation of the likelihood provides 
information about the stability of the likelihood function as well as information regarding the likelihood 
ratio test. To implement the first perturbation scheme, that is, perturbation of the likelihood function, the 
elements of the likelihood given in (1) are perturbed as follows: 

log L(/3lw)= ts 
1=1 

ro'~KWlo~[,E~t,~ +j}. 

Based on this perturbation scheme, A takes on the form 

A .= a2 log L(Piw) )3 
J' w, aa, = 6,x;, - 6, 

c /cR(t,) exdx:@ ’ 
i=l,...,n, j=l 9 . . . 9 P, (4 

where the derivative is evaluated at w, = 0. It is of interest to note that the AJ,‘s are Schoenfeld’s (1982) 
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partial residuals. The appropriate curvature diagnostic will then be based on the eigenvector associated 
with the maximum eigenvalue of F= AT1-‘A as defined in (3) and (4). The disadvantage of this 
perturbation scheme is that all censored observations, that is, those observations with 6, = 0, will have a 
curvature of 0 under this definition. Thus, censored observations which are influential, will not be flagged 
by this diagnostic. 

Another type of perturbation scheme can be used to circumvent this problem. This involves perturbing 

6 = (8 ,,.. ., 8,) by an amount w = (w,,. . ., a,,). This is the same as perturbing the counting process 
N,(f) = I{ T < t, 6, = 1) which counts the number of events for each observation. Under this scheme the 
perturbed likelihood takes on the form 

logL(Plw)= Ii (s,+o,>x~~+((s,+~,)log C exp(x,TP) 
i=l l I=R(t,) I) 

and the matrix A needed for computation of i: in (3) is given by 

A = a2 log L(P 10) = LR(I,)XI, exp(xT) 
Jl 

wJ aa, 
x - 

IJ 
c I= R(f,) 

exp(x;P) 3 _!=I ‘..., p, i=l,..., n, (5) 

where the derivative is evaluated at w, = 0. The curvature diagnostic based on this scheme has the 
advantage of being able to detect censored observations which may be influential as well as uncensored 
observations. This diagnostic has the same form as that given in (4); however, values are defined for both 
censored and uncensored observations, while (4) takes on nonzero values only for uncensored observa- 

tions. 
To determine the effect of perturbations in the covariate matrix, X, the k th covariate is perturbed as 

follows: 

X’ Ik = X,k + O,ksk, i=l ,..., n, 

where sk is a scale factor, typically, the standard deviation of the k th coefficient. The maximum curvature 
is computed as before with A being of dimension p X np. If A is partitioned into p submatrices, that is, 
A = (A,,. . . , A,,), then the jth submatrix is given by 

A mkl 
= a2 log a+) 

aflJ aWmk 

_ ;J&” zp;zi;; 

1~ R(r,) 

(j+k, .i,k=l,..., p, m=l,._., n) 

n 
= s,s, - c ‘h exp(xLP) + x,Jpksk exp(xLb) 

i=l c /t R(r,) 94 x2) 

Pksk exdx~b)xIGR(l,)Xlk exp(XfP) 

c /rR(r,) exdx$)]2 

(j=k=l,..., p,m=l,..., n), (6) 

where t, < . . . -c t, are the observed times, 8, t RC, ) = 1 if m E R( t,) and 0 otherwise, and the derivative is 
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evaluated at wlk = 0. Thus, for the jth covariate, the curvature diagnostic is based on the eigenvector 
associated with the maximum eigenvalue of 

A;I-‘A,, 

where A, is as defined in (6). This diagnostic has an advantage since it measures influence in terms of the 
location of observations in the covariate space. 

4. Examples 

The use of the perturbation diagnostics presented in the previous section is illustrated in several examples. 
The first of these examples is the Stanford heart transplant data presented in Miller and Halpern (1982). 
Table 1 presents the curvature diagnostics for selected observations, obtained from fitting a proportional 
hazards model with age and mismatch score included as covariates. Examining the results obtained from 

perturbation of the covariates, the observations with failure times of 538 and 2474 days are influential for 
the estimation of the mismatch score coefficient, while observations with survival times of 1612 and 3410 
days are flagged as influential for the estimation of the age coefficient. When considering the observations 
flagged by the diagnostics based on perturbation of the failure times or censoring vector, given by (4) and 
(5), observations with failure times at 10, 42 and 86 are flagged as influential, with the influential 
observation at time 10 being a subject aged 13. 

To assess the importance of each of these observations, they were deleted from the data set one at a 
time. Based on these deletion results, deletion of the failure time at 538 days results in a large change in the 
standard error of the coefficient for mismatch score as well as resulting in a change of 0.4 standard errors 
in the age coefficient. Similarly, deletion of the failure at 2474 days results in a large change in the 
standard error of the age coefficient and a change of 0.11 standard errors in the coefficient for mismatch 
score. The observation flagged as most influential for age, the survival time of 1612 days, had little effect 
on either age or mismatch score when it was deleted from the data set. Deletion of the failures at 10, 42 
and 86 days all result in large changes in the coefficients for both age and mismatch score. The magnitude 
of change observed when either of the failures at 538 and 2474 days, or the survival time of 1612 days are 
deleted is not surprising since the eigenvalue for the age coefficient is 0.0098, while the maximum 

eigenvalue for the mismatch score is 0.0161. Neither of these eigenvalues indicate that perturbation of the 
covariate values will cause substantial changes in the results obtained from this model. On the other hand, 
the maximum eigenvalues for the perturbation of the times and S, are 1.6 and 2.3, respectively indicating 
that observations flagged by these diagnostics will have an impact on the results obtained from this model. 

Table 1 
Curvature diagnostics obtained from the Stanford heart transplant data example 

Time Age Mismatch Curvature diagnostics 

score 
A@= Mismatch 

score 

Likelihood 6, 

538 
2414 

2805 

3410 

1612 

10 

86 

42 

49 216 0.006 

52 170 - 0.075 

48 120 -0.140 

45 98 - 0.143 

51 125 -0.153 

13 149 0.114 

12 126 0.114 

19 63 0.113 

0.345 -0.151 - 0.082 

0.197 -0.105 - 0.074 

0.019 0.000 - 0.045 
- 0.021 0.000 - 0.023 

0.032 0.000 - 0.072 

0.001 0.237 0.225 

0.002 0.244 0.225 

- 0.008 0.243 0.201 
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In fact, deletion of any of these three observations, the failures at lo,42 and 86 days, has a large impact on 
parameter estimates. 

This example was also examined in Reid and CrCpeau (1985) and Pettit and Bin Daud (1989). The 

results obtained with the curvature diagnostics presented here are similar to those obtained from the 
influence function diagnostic in Reid and Crtpeau (1985). The observation with a failure time of 10 days 
and age of 56 was not flagged as influential by the curvature diagnostic while it was flagged by the 

influence function. Deletion of this observation results in the largest change in the coefficient of mismatch 
score while deletion of the most influential observation flagged by the mismatch curvature diagnostic, the 
failure at 538 days, resulted in the largest change in the standard error of the mismatch coefficient. 

For comparison with the analysis in Pettit and Bin Daud (1989) curvature diagnostics were also 
computed for the Stanford heart transplant data with the model including individuals who survived more 
than 10 days and the covariates (age - 41.9)/10 (age - 41.9)‘/100 and mismatch score. The results 
obtained did not agree well with those of Pettit and Bin Daud. As in Pettit and Bin Daud (1989), several 
observations with ages less than 20 were flagged as influential; however, observations of other types were 
also flagged by the diagnostics presented here. In particular, observations with ages of 58, 52, 56 and 53 
were also flagged. These observations all had an impact on parameter estimates when deleted from the 

data set. 
Table 2 presents results from the lung cancer data set given in Kalbfleisch and Prentice (1980). This 

data set includes information on 40 patients with lung cancer and examines the effectiveness of a 

treatment while controlling for age, months treated, performance status, tumor type and treatment. The 
results indicate that observations 30 and 36 are the two most influential observations in the data set. There 

is nothing to distinguish these two observations as being influential; however, deletion of either of these 
observations results in substantial changes in most of the coefficients. In particular, deletion of observation 
30 causes the effect of the variable x6, the indicator variable for adeno tumor cell type, to become 
statistically significant, while deletion of observation 36 causes the significance level of the coefficient 
associated with this variable to become over twice as large. Observations 33 and 18 were also flagged as 
being influential by the curvature diagnostics based on perturbation of the covariate values, but deletion of 
these observations resulted in little change in the parameter estimates. When the diagnostics for the failure 
times and perturbation of 6, were examined, observations 3 and 6 were flagged as the most influential. 
Deletion of either of these observations from the data set resulted in changes in the parameter estimates; 
but these changes were not large enough to affect the inferences drawn from this analysis. These results 
agree well with those obtained by Reid and Crtpeau (1985). 

5. Conclusions 

The curvature diagnostics presented in this paper are useful for detecting influential observations when the 
Cox proportional hazards model is fit to censored data. In particular, the diagnostic based on perturbation 
of covariate values (6) is useful for locating observations which have an impact on estimation of individual 
coefficients. The value of w,, the perturbation vector, can also be varied so that a more detailed influence 
analysis can be done. The diagnostics based on perturbing the likelihood function (4) and the censoring 
vector (5), 6,, are also useful for this type of analysis; however, the diagnostic based on the censoring 
information is more useful since it treats both censored and uncensored observations in the same way. 
These diagnostics are useful for flagging observations which may influence the results obtained from the 
likelihood ratio test. 

The results obtained in the examples also indicate that censored observations can be influential even 
though they do not play the same role in the estimation of parameters as the uncensored observations. This 
is not the case for the diagnostic based on perturbation of the likelihood (4), where censored observations 
will always have a value of 0. Those censored observations which are influential will be flagged by the 
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other two diagnostics as well as the diagnostics presented by Cain and Lange (1984), Pettit and Bin Daud 
(1989) and Reid and CrCpeau (1985). The curvature diagnostics presented here have the added advantage 
of flagging observations which are influential due to masking. 
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