520

Nuclear Physics B (Proc. Suppl.) 16 (1990) 520
North-Holland

A SEMI AUTOMATIC FORTRAN TRANSLATOR FOR THE FNAL SECOND GENERATION ACP

R.C. BALL AND B.P. ROE

University of Michigan - Ann Arbor, Michigan 48109 - U.S.A.

In preparation for building a 250 VUP second generation Fermilab ACP
system at Michigan for the CERN L3 experiment, we have developed a
semi-automatic pre-compiler to convert event oriented programs into parallel

code for the ACP.

The Fermilab second generation ACP system
hardware consists of a set of MIPs R3000
processors (15 VUPs/processor) in special
boards in VME crates. Each processor runs a
full UNIX system and the whole array needs no
master. However, it is capable of communicating
with a VAX VMS computer which can serve as a
front end.

A set of FORTRAN callzble routines has been
developed by Fermilab to enable the user to use
the parallel power of this array. When
designing a new program these routines allcu
convenient and flexible communication between
the various processors. However, for existing
large programs it is a non-trivial effort to
change them into a parallel form for ACP use.

VWie have helped automate this process by
developing a pre-compiler which does at least a
large fraction of the modification and in many
cases almost all of the modification for event
oriented programs. We divid= a user program so
that the bulk of the program is in one process
which is replicated on the different
processors. The binary event input to all
processes is through a single separate process,
as is the binary event output.

There are three parts to the pre-compiler
action:

1. Give guidance to the program and add
special features. This is done by the use of
ACP command lines which are in the form of
comment lines mainly in the main program.

2. Intercept all I/0 statements and replace
them with calls to appropriate I/0 routines.

3. Add the general I/0 routines, make up
the Job Description File needed by the ACP, and
add the generally needed ACP routines.

The ACP command lines tag various key points
in the program and provide some options.

0920-5632/90/$3.50 © Elsevier Science Publishers B.V.
North-Holland

The command lines are used to mark the start
and end points for initialization, summary,
event read in, event write out, and data re-
trieval. In addition they supply some needed
information on random numbers, numbers of events
to run, and indicate when to increment the event
number and when to add together the histograms
from the various processes.

Event binary cutput and event binary input
is sent to and from the many event processes by
means of a single input or output process. The
read/write statements are converted into do
loops and the record is moved from/to buffers
for 1/0 process communication.

A version of the Gheisha hadron monte-carlo
program was tested. This is a program of ap-
proximately 30,000 lines. A total of only 10 ACP
command lines were needed. At present we are
simulating the ACP system on a MIPs M/120
station which contains a single R2000 processor.

For up to five class 2 processes running on
the M/120 we find that the efficiency is about
97 % compared to the original Gheisha (but with
the new random number routine). For eight class
2 processes there is an additional loss of
efficiency of about 2 to 3 Z, presumably lJue to
memory swapping. A test using the much larger L3
simulation program, SIL3, based on GEANT is now
under way. This research is supported by the
U.S. National Science Foundation.

