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A new method for obtaining lower bounds on the computational complexity of logical 
theories is presented. It extends widely used techniques for proving the undecidability of 
theories by interpreting models of a theory already known to be undecidable. New 
inseparability results related to the well known inseparability result of Trakhtenbrot and 
Vaught are the foundation of the method. Their use yields hereditary lower bounds (i.e., 
bounds which apply uniformly to all subtheories of a theory). By means of interpretations 
lower bounds can be transferred from one theory to another. Complicated machine codings are 
replaced by much simpler definability considerations, viz., the kinds of binary relations 
definable with short formulas on large finite sets. 

Numerous examples are given, including new proofs of essentially all previously known 
lower bounds for theories, and lower bounds for various theories of finite trees, which turn out 
to be particularly useful. 

1. Introduction 

In this paper we present a new method for obtaining lower bounds on the 
computational complexity of logical theories, and give several illustrations of its 
use. This method is an extension of widely used procedures for proving the 
recursive undecidability of logical theories. (See Rabin [53] and ErSov, Lavrov, 
Taimanov, and Taitslin [21].) One important aspect of this method is that 
it is based on a family of new inseparability results for certain logical 
problems, closely related to the well known inseparability result of Trakhtenbrot 
(as refined by Vaught), that no recursive set separates the logically valid 
sentences from those which are false in some finite model, as long as the 
underlying language has at least one non-unary relation symbol. By using these 
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inseparability results as a foundation, we are able to obtain hereditary lower 
bounds, i.e., bounds which apply uniformly to all subtheories of the theory. 

The second important aspect of this method is that we use interpretations to 
transfer lower bounds from one theory to another. By doing this we eliminate the 
need to code machine computations into the models of the theory being studied. 
(The coding of computations is done once and for all in proving the inseparability 
results.) By using interpretations, attention is centered on much simpler 
definability considerations, viz., what kinds of binary relations on large finite sets 
can be defined using short formulas in models of the theory. This is conceptually 
much simpler than other approaches that have been proposed for obtaining lower 
bounds, such as the method of bounded concatenations of Fleischmann, Mahr, 
and Siefkes [27]. 

We will deal primarily with theories in first-order logic and monadic second- 
order logic. Given a set Z of sentences in a logic L, we will consider the 
satisjiability problem 

sat(Z) = {a E L 1 cr is true in some model of Z} 

and the validity problem 

vaZ(Z) = {(T E L 1 ~7 is true in all models of Z}. 

A hereditary lower bound for Z is a bound that holds for sat(Z) and val(E’) 
whenever _X’ E vaZ(Z). If L is a first-order logic, define inv(L) to be the set of 
sentences in L that are logically invalid, i.e., false in all models. If L is a monadic 
second-order logic, define inv(L) to be the set of sentences false in all weak 
models. (See Section 2 definitions.) 

The complexity classes used here are time-bounded classes for nondeterministic 
Turing machines and for the more general class of linear alternating Turing 
machines. In providing reductions between different decision problems, we are 
always able to give log-lin reductions. That is, our reduction functions can be 
computed by a deterministic Turing machine which operates simultaneously in log 
space and linear time. In particular, such functions have the property that the size 
of a value is bounded uniformly by a constant multiple of the size of the 
argument. 

Let Lo denote the first-order logic with a single, binary relation symbol. Let 
ML,, denote the corresponding monadic second-order logic. Let T(n) be a time 
resource bound which grows at least exponentially in the sense that there exists a 
constant d, 0 < d < 1, such that T(dn)/T(n) tends to 0 as n tends to m. (This 
condition is satisfied by the iterated exponential functions and other time resource 
bounds which arise most commonly in connection with the computational 
complexity of logical theories.) Let sat,(L,) denote the set of sentences o in Lo 
such that (I is true in some model on a set of size at most T(la)). (Here 1~1 
denotes the length of a.) Similarly define sat,(ML,-J for sentences of monadic 
second-order logic. The inseparability results which form the cornerstone of our 
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method are as follows: 
(a) For some c > 0, sat,(L,) and inv(L,) cannot be separated by any set in 

NTZME( T(cn)). 
(b) For some c > 0, sat,(ML,) and inv(ML,) cannot be separated by any set in 

A TZME( T(W), cn). 

(ATZME(T(cn), cn) d enotes the set of problems recognized by alternating 
Turing machines in time T(M) making clt alternations along any branch.) In 
proving (b) we prove another interesting result. Let ML+ be a monadic 
second-order logic with a ternary relation PLUS and sat,(M.X+) be the set of 
sentences cp in this logic true in the model ( r(n), + ), where n = 1~~1 and + is the 
usual ternary addition relation on the set T(n) = (0, . . . , T(n) - l}. Then for 
some c > 0, sat,(M,Y+) and inv(ML+) cannot be separated by any set in 
A TZME(T(cn), cn). 

We prove and discuss these results in Sections 3 and 4 respectively, In fact, we 
prove more: any problem separating sat,(L,) and inv(L,J is a hard problem 
(under log-lin reductions) for the complexity class 

Any problem separating sat,(MLJ and inv(MLo) is a hard problem for the 
complexity class 

=yO A TZME( T(cn), cn). 

In these results one can see a parallel between first-order logic and NTZME, on 
the one hand, and monadic second-order logic and linear alternating time, on the 
other. This parallel persists throughout the lower bounds for logical theories 
which we discuss here, and we feel that our point of view helps to explain why the 
complexity of some theories is best measured using NTZME while for others the 
best measure is linear alternating time. 

In order to obtain lower bounds from these inseparability results, or to transfer 
lower bounds from one theory to another, we use interpretations. However, 
sometimes we require not just a single interpretation, but rather a sequence 

{rn I it > 0} of such interpretations. Not only do we require that each Z, define a 
sufficiently rich class of models when applied to the models of the theory under 
study, but also we require that the function taking n (in unary) to I,, should be 
log-lin computable. 

As an example of how such interpretations are used, suppose 2 is a theory such 
that for each II 2 0, Z,, applied to models of 2 yields all the binary relations of size 
at most T(n) (and perhaps others), for a given time resource bound T. It follows 
that for some constant -c > 0, sat(z) and inv(L) cannot be separated by any 
set in NTZME(cn)). In general, it follows that 2 has a hereditary NTZME(T(cn)) 

lower bound. There is a corresponding result for the complexity classes 
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ATZME(T( ), ) h cn c11 w en the interpretations Z,, interpret monadic second-order 
logic of binary relations on sets of size at most T((n). 

Upon establishing a lower bound for sat(z) in this manner, we may then use 
interpretations of J? to obtain lower bounds for other theories. Continuing the 
example above, assume Z, applied to the set of models of z yields all the binary 
relations of size at most T(n). In fact, it will not be necessary to apply Z,, to all 
models of 2 to obtain ,a11 binary relations of size at most T(n), since there are 
only finitely many such binary relations. Suppose that %‘,, is a set of models of 2 
such that Z,, applied to %,, yields all the binary relations of size at most T(n). If 
{IA ( II 2 0} is another log-lin computable sequence of interpretations such that ZA 
applied to models of a theory 2’ in a language L' yields all models of %,, (and 
nerhaos others, some possibly not even models of _X), then for some constant r-----~r 
c > 0, sat(z’) and inv(L') cannot be separated by any set in NTIME(T(cn)). 
Thus, we have developed a theory for establishing lower bounds of logical 
theories analogous to the theory for establishing NP-hardness results via 
polynomial time reductions. 

The observation that ZA applied to models of 2 is allowed to yield models not 
satisfying 2 may seem unimportant, but in practice it results in significant 
simplifications in interpretations, especially compared to the method of estab- 
lishing lower bounds by Turing machine encodings. There one must produce, for 
a nondeterministic Turing machine M with the appropriate running time, an 
efficient reduction from strings w to sentences q,,, in such a way that when A4 
accepts w, q,,, is true in some model of F, and when M does not accept w, q,,, is 
true in no model of 2’. Ensuring that a sentence is true in no model of 2:’ in the 
case of nonacceptance can be cumbersome. Inseparability considerations elimin- 
ate the need for it. 

Our method can give short, transparent lower bound results in many cases 
where Turing machine encodings are far from apparent. An example is the result 
of Compton, Henson, and Shelah [16] that the theory of almost all finite unary 
functions is not elementary recursive. The proof there, using the methods of this 
paper, is set forth in a short paragraph. A proof by Turing machine encodings 
w0t.M run to many pages, and possibiy wouid never have been discovered at aii. It 
seems likely that our methods will have to be used if sharp lower bounds are to 
be obtained for some of the important, more algebraic (and less directly 
combinatorial) theories which are known to be decidable. (See for example 
Problems 10.1, 10.2, 10.7, 10.9, 10.10.) 

In making use of sequential families of interpretations there are certain 
technicalities regarding lengths of formulas which must be addressed. They can be 
illustrated by considering the formula q’ which results from a formula 9~ when 
one replaces every occurrence of a certain binary relation symbol P by a given 
formula v. If ~1 has many occurrences of P and if the length of rj~ is of the same 
order of magnitude as the length of q, then q’ may well be extremely long 
compared to ~1. (This is precisely the kind of operation on formulas used as a 
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reduction function between theories when one uses interpretations to obtain 
lower bounds.) This difficulty can be overcome if one uses sequences {Zn} of 
interpretations in which either all formulas in each Z, are in prenex form, or are 
obtained by a certain kind of iterative process. In practice, the interpretation 
sequences used to transfer lower bounds from one logical problem to another can 
always be found satisfying one of these conditions. 

We have used this approach to give a precise analysis of the computational 
complexity of various theories of finite trees. For each r let zr denote the 
first-order theory of all finite trees of height r, and let MZ: denote the 
corresponding monadic second-order theory. Also let 2, and ML, denote the 
corresponding theories of all finite trees. Let exp,(n) be the m-times iterated 
exponential function (e.g., exp,(n) = 22”) and let exp,(n) be the tower of two 

function: 

exp,(n) = exp, (1) = 22’..‘z 1 
n times. 

Our results concerning the various theories of finite trees can be summarized as 

follows: 
(a) For each r 2 4 there are constants c and d > 0 such that sat(&) is in 

NTZME(exp,_,(dn)) 

but that sat(&) and vaZ(&) are hereditarily not in 

NTZME(exp,_,(cn)). 

For r = 3 the upper bound is N7’ZME(2d”Z) and the hereditary lower bound is 

NTZME(2”“). 
(b) There exist constants c and d > 0 such that s&(X:,) is in 

NTZME(exp,(dn)) 

but that sat(.Xm) and vaZ(_%) are hereditarily not in 

NTZME(exp,(cn)). 

Hence, these problems are hereditarily not elementary recursive. 
(c) For each r 3 1 there are constants c and d > 0 such that sat(MJ$) is in 

ATZME(exp,(dnllog n), dn) 

but that sut(M_X,) and vul(M2,.) are hereditarily not in 

ATZME(exp,(cn/log n), cn). 

It is not hard to show that E, and ML are mutually interpretable, and hence 
have the same complexity. In any case, for such rapidly growing time resource 
bounds as exp,(n), the difference between NTZME and ATZME has vanished. 

In order to test our method for effectiveness and smoothness of use, we have 
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used it to provide new proofs of essentially all previously known complexity lower 
bounds for first-order and monadic second-order theories. (We do not consider 
lower bounds for sentences with restricted quantification prefixes, as in Lewis [43] 
and Scarpellini [62]; nor do we consider lower bounds for nonclassical logics such 
as temporal logics, dynamic logics, logics of knowledge, and other modal logics. 
Many of these logics have decision problems complete in deterministic time 
classes. See, for example, Fischer and Ladner [25], Emerson and Halpern [B], 
and Halpern and Vardi [35].) 

These new arguments avoid direct coding of machine computations, and are 
usually much simpler and more conceptual than the original arguments. We 
present many of these proofs, or at least sketches of them, in Section 8. In all 
cases our lower bounds are hereditary, and are expressed in terms of log-lin 
hardness for certain complexity classes, providing new complete problems for 
many of these NTZME and linear ATIME classes. In some cases we verify results 
which had been only announced, no published proof ever having appeared. 

It is our hope that this systematic reorganization and simplification of the 
subject will stimulate the interests of many computer scientists and mathe- 
maticians, and they they will be inspired to investigate the many decidable 
theories for which no detailed complexity bounds have been found. 

The organization of our paper is as follows: Section 2 contains various 
definitions and technical conventions. In Section 3 we present some technical 
machinery needed to handle the details about lengths of formulas which arise in 
complexity arguments. Sections 4 and contain the basic inseparability results for 
logical problems; these are the analogoues of the Trakhtenbrot-Vaught 
Theorem. In Sections 6 and 7 we discuss interpretations and set up the 
procedures by which they are used to obtain lower bounds for logical theories. 
Here too are proved the lower bounds for the various theories of finite trees 
which are treated here. Section 8 contains a lengthy series of applications of our 
method, yielding lower bounds for a wide variety of theories of independent 
interest. In Section 9 we obtain various upper bounds for problems treated here, 
in order to show that our method is capable of achieving sharp results. We 
present a selected list of open problems at the end of Section 10. 

In this paper we have not discussed ways in which our method can be used to 
obtain lower bounds in terms of SPACE(T(n)) complexity classes. This is 
because there are so few known cases in which best possible lower bounds for 
logical theories are expressed in terms of space complexity classes. The 
exceptions are the PSPACE-complete theories such as those discussed in 
Stockmeyer [69] and Grandjean [31]. These are, in some sense, the least complex 
theories since Stockmeyer shows implicitly that if JZ is a logical theory with has at 
least one model with at least one nontrivial definable relation (i.e., the relation is 
true of some elements and false of others), then sat(Z) is log space, polynomial 
time hard for PSPACE. (Note that if equality is taken as a basic relation in the 
language, or is definable, then the hypothesis means simply that 2 has at least one 
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model with two or more elements.) If z does not have any such model, then it is 
utterly trivial, and both sat(z) and vaZ(E) are LOGSPACE. (We assume 
throughout that the vocabularies of logics are finite.) Possibly methods of this 
paper could be extended to obtain polynomial nondeterminstic time lower bounds 
for PSPACE-complete theories. 

On the other hand, all ‘natural’ logical theories which are known to be 
decidable seem actually to be primitive recursive. Furthermore, among theories 
where a somewhat careful upper bound analysis has been carried out, decidable 
logical theories seem to fall into NTZME(exp,(dn)) for some constant d in all but 
a few cases. It would be nice to have an explanation (or a convincing refutation) 
of this phenomenon. 

Reader, please do not be dismayed by the length of this paper. We believe that 
the method presented here is simple and can be mastered quickly. To get an 
overview of the applications of our method we advise looking over the results in 
Section 8 first. Not only does this give a summary of the main complexity lower 
bounds now known, but also we have tried to present these applications in such a 
way as to give an accessible exposition of how our methods are meant to be used, 
and the main technical points which arise in their use. 

We would like to thank the referee for his extraordinarily careful reading of 
this paper and helpful comments. 

2. Preliminaries 

In this section we present the definitions and notations used throughout the 
paper. 

All alphabets considered will be finite. The length of a string w is denoted 1~1. 
The empty string is denoted E. 

We use the standard ‘big oh’ and ‘little oh’ notations throughout, as well as the 
‘big omega’ notation: write f(n) = B(g(n)) if f(n) a kg(n) for some k > 0 on all 
large n. 

All theories considered here either first-order or monadic second-order. For 
convenience we explicitly treat only relational languages in Sections 3-7; 
functions are handled by using their graphs as relations, and constants are treated 
as special unary relations. This restriction makes no difference as far as the lower 
bounds we obtain: sentences containing function and constant symbols can be 
transformed into equivalent sentences containing relation symbols with an 
increase in length of only a constant factor. (It is necessary to ‘reuse’ variables to 
accomplish this.) 

We will assume for convenience that our languages contain equality. However, 
in many situations our methods work even without equality. We use equality 
mainly to keep formulas short while substituting other formulas for atomic 
formulas: equations are used for coding truth values. This can usually be done by 
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other formulas, as long as they satisfy the right conditions of nontriviality. If one 
is willing to accept polynomial-time reductions, then equality is generally not 
necessary, but the lower bounds degrade slightly. 

To specify a logic in this paper, we need only give its set of relation symbols 
and their associated arities (the vocabulary of the logic) and indicate whether the 
logic is first-order or monadic second-order. We formulate all of our logics using 
finitely many symbols, so that all terms and formulas are strings on a finite 
alphabet. In particular, a variable is represented by a symbol followed by a 
subscript in binary notation. Thus, to represent rr distinct variables we need 
strings with total length about it log 12. (Logarithms will always have base 2.) To 
avoid subscripted subscripts we use lower case Latin letters C, U, X, y, z-possibly 
with subscripts-as formal variables to denote actual variables vi. Monadic 
variables are represented by corresponding upper case letters. 

The power of a model is the cardinality of its universe. 
A weak model for a monadic second-order logic L is a pair (3, 9), where $?l is 

a model for L and 9 is a collection of subsets of the universe of 3. The truth 
value of a formula from L in (‘3, S) is determined in the usual way except that 
monadic quantifiers range over the sets in 9 rather than the collection of all sets. 
Throughout the paper, equivalence of monadic second-order formulas will mean 
equivalence on weak models. This is stronger than the usual notion of 
equivalence. 

The first-order and monadic second-order logics with vocabulary consisting just 
of a binary relation symbol P are central to our investigation. They will be 
denoted LO and ML0 respectively. 

We also study theories of finite trees; again the vocabulary consists just of one 
binary relation symbol which, in this case, interprets the successor (or parent- 
child) relation. Let L, and ML, denote the first-order and monadic second-order 
logics with this vocabulary. These are essentially the same as LO and MLo; they 
differ only in the binary relation symbol used. However, it will be convenient to 
have a different notation for these logics when considering trees. 

When considering finite trees we will often require the notion of a primary 
subtree. Such a subtree is formed by restricting to a set of vertices consisting of a 
child of the root and all its descendents. Thus, we may regard a tree as being 
formed by directing an edge from the root of the tree to the root of each of its 
primary subtrees. 

The depth of a vertex in a tree is its distance from the root. The height of a 
vertex is the maximum distance to a leaf below it. Thus, the height of a tree is the 
maximum depth its vertices, which is also the height of the root. 

As we noted in the introduction, we will consider problems of the form sat(E) 
and vaf(2). From a computational point of view, these two problems are 
complementary. That is, a sentence o is in sat(Z) exactly when lo is not in 
val(2). Hence, sat(Z) is a member of a particular complexity class if and only if 
val(E) is a member of the corresponding co-complexity class. If 2 is a complete 
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theory, then sat(Z) = val(2). When we are in a first-order logic, val(2) is the 
deductive closure of Z by the Gijdel Completeness Theorem. There is no 
corresponding result for monadic second-order logic. 

Often a logical theory is specified not by giving a set of axioms 2, but by giving 
a class of models 5%‘. In this situation we take .Z to be the set of sentences true in 
all members of %‘. It is easy to verify in this case that val(E) = E and sat(Z) is the 
set of sentences true in some member of (e. 

If L is a first-order logic we define inv(L) to be the set of sentences false in all 
models for L. This is just the complement of s&(0). If L is a monadic 
second-order logic we define inv(L) to be the set of sentences false in all weak 
models for L. 

Given a time resource bound T(n), let sutT(2) be the set of sentences Q, true in 
some model of 2 of size at most T(lq,l). Also, write sat,(L) for sutT(0). Let 
sutP,(Z) be the set of prenex sentences Q, true in some model of 2 of size at most 

T(lp71). 
Let 5?I be a model for a logic L, m = m,, . . . , mk elements of ?I, and 

Q)(x,, . . . >&I, Yl, . . . > yk) a formula from L. Then qB(x, m) denotes the n-ary 
relation defined by 

fora=u,,...,u,EM. 
Interpretations of one class of models in another are fundamental to many 

parts of logic, and we use them extensively here. For example, to interpret a 
binary relation ‘II’ (i.e., a model for the logic L,) in a theory Efrom a logic L, we 
must produce formulas 6(x, u) and n(x, y, u) from L so that for some model 5?l of 
2 and some elements m of ‘8, ‘21’ is isomorphic to the structure 

23 = (P(x, m), 2(x, y, m)) 

where we require that n’(x, y, m) E 6%(x, m) X 6%(x, m). There is also a more 
general kind of interpretation that is often used, in which the domain of 93 can be 
a set of k-tuples from YI (not just elements of %!I) and in which ‘II’ is isomorphic to 
a quotient of ‘93 by an equivalence relation definable in ‘21. 

Let Q, be a formula in a logic L and D a unary relation symbol. By @ we mean 
the refutivizution of q to D. This is formed by systematically replacing all 
subformulas Vy I,!J and 3y I/J of Q, with Vy (D(y)+ +) and 3y (D(y) A q), 
respectively. If L is a monadic second-order logic, it is not necessary to relativize 
the set quantifiers since elements have already been restricted to D. 

The complexity classes we use are defined by time resource bounds. A time 
resource bound T is a mapping from the nonnegative reals to the nonnegative 
reals such that for each k > 0, T(kn) is dominated by some fully time 
constructible function on the integers; see Hopcroft and Ullman [37] for 
definitions. (Readers who need a primer in complexity theory may also wish to 
consult a recent survey article by Stockmeyer [70].) We will also require that 
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T(n) an and that for each k > 1, T(kn) 3 k T(n). This last condition Machtey 
and Young [46] call at least linear. It says that when input length is increased by 
some factor, the allowed computation time increases by at least the same factor. 
It is included for technical reasons; we could get by with less, namely, that T be 
nondecreasing and for every I there should be a k such that T(kn) 2 I T(n). 

The iterated exponentials and tower of twos functions appear often as time 
resource bounds in the problems we consider. The iterated exponentials exp,(n), 
where m is a non-negative integer, are defined by induction on m. Let 
exp,(n) = n and exp,+,(n) = 2expm(n). The tower of twos function exp,(n) is 
defined to be 

exp,( 1) = 222**.2 I 
n times . 

Recall that a problem is elementary recursive if it is recognized in time exp,(n) 
for some m 3 0. 

All of our bounds are for nondeterministic or alternating Turing machines. The 
set of problems recognized by nondeterministic Turing machines in time T(n) is 
denoted NTZME(T(n)). With alternating Turing machines we will be concerned 
chiefly with the complexity classes ATZME(T(n), cn), the set of problems 
recognized by an alternating Turing machine in time T(n) making at most cn 
alternations. We will assume that alternating Turing machines have four types of 
states: universal, existential, accepting and rejecting. See Chandra, Kozen, and 
Stockmeyer [14] for the definition of acceptance by alternating Turing machines 
and a description of the computation trees associated with these machines. 

We will sometimes say that a theory .Z has a hereditary NTZME(T(cn)) (or 
ATZME(T(cn), cn)) 1 ower bound. By this we mean that there is a c > 0 such that 
for all EC’ G Z, neither sat(Z) nor var(_Z’) is in NTZME(T(cn)) (respectively, 
A TZME( T(cn), cn)). 

A log-lin reduction is a mapping computable in log space and linear time. In 
some sources this terminology is used for a log space computable, linearly 
bounded mapping, which is a weaker notion. (Linearly bounded means that 
output length is less than some constant multiple of input length.) It is not crucial 
for the applications presented here that our reductions be quite so restricted: 
polynomial time, linearly bounded reductions suffice. However, to obtain some 
results in the literature, such as the nondeterministic polynomial lower bounds in 
Grandjean [31], linear time reductions would be needed. 

We encounter a technical problem with log-lin reductions: we do not know if 
they are closed under composition. To overcome this difficulty we define a 
stronger notion of reset log-lin reduction. A machine performing such reduction is 
a log space, linear time bounded Turing machine with work tapes, an input tape, 
and an output tape. It has the capability to reset the input tape head to the initial 
input cell on k moves during a computation, where k is fixed for all inputs; on all 
other moves the input tape head remains in place or moves one cell to the right. 
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It writes the output sequentially from left to right. Suppose that M’ and M” are 
two such machines using at most k’ and k” resets, respectively. We informally 
describe a machine M to compute the composition of the reductions computed by 
M’ and M”. Imagine that the output tape of M’ and the input tape of M” have 
been removed. Instead, M’ sends its output directly to M”. As M” computes its 
output, it calls M’ to supply it with a new symbol on those moves when the input 
head of 44” would have moved right. M’ has only to resume its computation from 
the last call to supply this symbol. On those moves where M” would have reset its 
input head, M’ must begin its computation anew. Now the input head of M” 

would have passed over each input cell at most k” + 1 times during the 
computation, and to supply each symbol the input head of M’ passes over each 
input cell at most k’ + 1 times. Thus, M resets its input head at most 
(k’ + l)(k" + 1) - 1 times. Clearly, M is log space bounded. Since the part of M 

corresponding to M’ is forced to begin its computation anew at most k” times, it 
is easy to see that M is linear time bounded. 

It is not difficult to show that the prenex formulas of a logic are closed under 
relativization up to reset log-lin reductions. That is, there is a reset log-lin 
reduction which takes formulas of the form Q?, where Q, is a prenex formula with 
no variable quantified more than once, to equivalent prenex formulas. We use 
this fact often. Unfortunately, we know of no way to eliminate duplicate 
quantifications of variables using reset log-lin reductions, but this can be 
accomplished easily with polynomial time, linearly bounded reductions. 

A problem 2 is hard for a complexity class % via reductions from a class 9’ if 
every problem Z’ E % can be reduced to .Z by some f E Y. That is, if A and A’ are 
the alphabets for 2 and 2’ respectively, then f maps A’* to A* so that w E 2’ if 
and only if f(w) E Z. If, in addition, 2 E %‘, we say that _Z is complete for % via 
reductions from 9’. 

3. Reductions between formulas 

One of our goals is to develop effective and easily used methods for 
transferring lower bounds from one problem to another. Our methods are based 
on interpretations between theories (or equivalently, between classes of models) 
and can be seen as an extension of the most widely used methods for proving the 
undecidability of logical theories; see ErSov, Lavrov, Taimanov, and Taitslin [21] 
and Rabin [53] for a discussion of undecidable theories from this point of view. 
To obtain complexity lower bounds for decidable theories we must use inter- 
pretations which have a somewhat more general form than those used in 
undecidability proofs, and there are certain technicalities about lengths of 
formulas which must be addressed in this more general setting. In this section we 
will develop the required machinery. The first-time reader may wish to skip the 
proofs in this section as they are somewhat tedious and only the statements of 
results will be used later. 
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A common method for proving that a theory E in a logic L is undecidable is to 
show that the theory Z0 of finite binary relations, formulated in the logic Lo, can 
be interpreted in Z. In the simplest case this means that formulas 6(x, U) and 
X(X, y, u) of L are given so that every finite binary relation can be obtained (up 
to isomorphism) in the form 

W%, m), Jr% Y, 4) 

for ‘3 a model of 2 and m a sequence of elements of 5%. The formulas 6 and Ed are 
then used to define a reduction from formulas of Lo to formulas of L, as follows: 
given a formula ~1 of Lo, replace every occurrence of an atomic formula P(z, t) 
by the formula ~d(z, t, u) and relativize every quantifier to the formula 6. (One 
must rewrite bound variables to avoid conflicts and make sure that u is a sequence 
of otherwise unused variables.) Call the resulting formula q’. The reduction 
mapping Q, I--, Ql’ is then used to obtain undecidability results for 2 from 
corresponding results for &. 

This kind of simple interpretation is not adequate for obtaining lower 
complexity bounds when 2 is a decidable theory. One works instead with a 
parameterized family of formulas {v~ 1 n 3 0) from Lo and uses a sequence of 

formula pairs {(&(x, u), JG,(x, Y, u)) I IZ a 0} from L. In reducing the formulas 
t.p,, to L, one proceeds as above, except that q; is obtained from Q),, using 6, and 
x”. In complexity lower bound arguments, it is not only necessary that the 
function Q),, H cp; should be efficiently computable, but also that lc,~Al should be 
linearly bounded in 1 cpnl. If P occurs many times in (P,, and Inn1 grows without 
bound as n increases, or if rp,, has many quantifiers and IS,,1 grows without bound 
as n increases, then the linear boundedness condition may not hold. However, in 
certain cases there are methods to efficiently replace qk by an equivalent formula 
for which the linear boundedness condition does hold. Roughly speaking, we can 
do this when the formulas 6, and JG, are all in prenex form, or are obtained by a 
certain kind of iterative procedure. The machinery developed here to accomplish 
this task is implicit in most complexity lower bound arguments for logical 

problems. 
In order to describe this machinery, it is convenient to introduce an extension 

L* of each logic L, in which explicit definitions are allowed. (L* has no more 
expressive power than L, but properties can sometimes be expressed by shorter 
formulas in L* than in L.) Continuing the example above, let qpn” denote a 
formula in which all quantifiers of ~~ have been relativized to a new unary 
relation symbol D. Then the extended lanugage L* in this case would include a 
formula 

[P(x, Y) = n,,(x, Y, ~11 [D(z) = &(z, ~11 cp,” 

whose interpretation is exactly the same as that of q;, although its length is likely 
to be more under control. Here the equivalences in brackets are interpreted to 
mean that P is explictly defined by n,, and that D is explicitly defined by 6,. The 
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general problem, treated below in this section, is to find situations in which 
certain formulas of the extended language L* can be efficiently reduced to 
equivalent formulas of L, without a signi@unt increase in the length of the 

formulas. (In general, it is possible to find for each L* formula of length n an 
equivalent L formula of length O(n log n); this is not good enough for sharp 
complexity bounds.) 

Let L be either a first-order or monadic second-order logic. Define L* as 
follows. Formulas of L* may contain any of the symbols occurring in formulas of 
L and, in addition, relation variables S{ for each i, j 2 0. In each case the arity of 
Si is j and the subscript and superscript of Sj are expressed in binary notation. (If 
L is a monadic second-order logic we need two superscripts, the first denoting the 
arity of element arguments and the second denoting the arity of set arguments.) 
Subscripts and superscripts of relation variables contribute to the length of 
formulas in which they occur, just as element variable subscripts do. (However, 
superscripts may be ignored in asymptotic estimates of formula length because 
they are dominated in length by their corresponding arguments lists.) We define 
the set of formulas q of L* inductively, and at the same time define free(q), the 
set of free variables in q. An atomic formula cp of L* is either an atomic formula 
of L or a formula P(x,, . . . , Xi) where P denotes a relation variable-in the 
former free(q) is the same as in L; in the latter, free(q) = {P, xl, . . . , Xi}. More 
complex formulas Q, may be constructed using the logical connectives and 
quantifiers appropriate to L; in these cases free(q) is defined just as in L. The 
only other way to construct more complex formulas is by explicit definition. Let I# 
and 8 be formulas in L*, P a relation variable which does not occur freely in 8, 
andx=x,, . . . , xi a sequence of distinct element variables. Then Q, given by 

[P(x) = 01 v 

is also a formula of L* and 

free(q) = ((free(e) - {xl, . . . , xj}) ufree(V)) - {P>. 

The part of cp within brackets is an explicit definition which defines the 
interpretation of P in I/J. If 0 is a prenex formula from L we will say that it is a 
prenex definition. The truth value of q is the same as that of the second-order 
expresssion 

VP ((Vx (P(r) * @)--+ V). 

Notice that the truth value is consistent with the definition of free(q). Notice also 
that the second-order expression above is equivalent to 

3p ((Vx (P(x) * 0)) * V) 

so that l[P(x) = 01 111 is equivalent to [P(x) = 01 ‘I#. If free(v) = 0, then QJ is a 
sentence of L*. 
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We will let sat*(Z) denote the set of sentences from L* true in some model of 
Z, sat%(Z) denote the set of sentences rp from L* true in some model of _Z of size 

at most Ncpl), sat:(L) denote the set of sentences rp from L* true in some 
model of size at most T(]ql), and inv*(L) denote the set of sentences from L* 
true in no model (or no weak model when L is a monadic second-order logic). 

Introduction of explicitly defined relations is standard practice in mathematical 
discourse. Explicitly defined relations are also similar to nonrecursive procedures 
in programming languages. 

Explicit definitions can be used to define reductions between satisfiability 
problems. To provide good lower bounds these reductions must be efficiently 
computable and linearly bounded. We will show, in fact, that there are reset 
log-lin reductions, defined on certain subsets of sentences from L*, that take 
formulas to equivalent formulas in L. (Unfortunately, such reductions probably 
cannot be defined on the set of all sentences in L*; with a little effort we can 
produce a polynomial time reduction which maps sentences in L* of length n to 
equivalent sentences in L of length O(n log n).) 

We inductively define positive and negative occurrences of a relation symbols 
Q in formulas from L*. Q occurs positively in atomic formulas of the form Q(X). 
Q occurs positively (negatively) in the formulas Q, A r+!~ and Q, v I/.J when it occurs 
positively (negatively) in either of the formulas 97 or $J. Q occurs positively 
(negatively) in the formula 1~ if it occurs negatively (positively) in the formula 
rp. Q occurs positively (negatively) in the formulas Vx Q, and 3x q if it occurs 
positively (negatively) in the formula cp. Q occurs positively (negatively) in the 
formula [P(x) = 01 3, where P is not Q, if it occurs positively (negatively) in q, 
or if it occurs positively (negatively) in 8 and P occurs positively in q, or if it 
occurs negatively (positively) in 8 and P occurs negatively in ly. We say that P 
occurs only positively in a formula if it does not occur negatively (in particular, it 
may not occur at all). 

We inductively define an iterative definition [P(x) = 01, as follows. The iterative 
definition [P(x) = 01 O is equivalent to the explicit definition [P(x) = 11, where L is 
a sentence false in all models (or all weak models if L is a monadic second-order 
logic). The iterative definition [P(x) = O],,, is equivalent to 

[P(x) = [P(x) = 01, e]. 

We make iterative definitions part of the syntax of L*, but we require that the 
subscript n be written in unary notation so that the length of an iterative 
definition is of the same order (O(n) and G?(n)) as the length of the nested 
explicit definitions it replaces. We call 8 the operator formula for the iterative 
definition. 

We can think of iterative definitions as approximations to implicit definitions. 
We will not formally define implicit definitions, since they do not figure directly in 
what follows, but an example should convey the idea. (See Moschovakis [51] for 
an account.) Consider a language containing just a binary relation symbol E 
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denoting the edge relation on graphs. The implicit definition 

[P(x, Y) = (x =y v 32 (P(4 2) A W-G Y)))l 

defines the path relation in each graph: P(x, y) is the least relation satisfying the 
equivalence, so it holds precisely when there is a path between x and y. Now 
consider the related iterative defintion 

[P(x, Y I= (x = Y v 32 (W, 2) A J%% Y )))In 

which defines a relation P(x, y) which holds precisely when the distance between 
x and y is at most n - 1 (when 12 5 1). Notice that this ‘approximation’ to the 
implicitly defined relation does not converge very rapidly. The iterative definition 

[P(A Y) = (x = Y v % Y) v 32 (PC6 2) A P(z, Y)))ln 

defines a relation P(x, y) which holds precisely when the distance between x and 
y is at most 2”-’ (for Iz > l), so this approximation to the path relation converges 
exponentially ‘faster’. For an implicit definition to make sense, 8 = 8(P) should 
be monotone in P (i.e., for every structure ‘3, if P and P’ are relations on ?I with 
P E P’, then O’(P) c O”(P’)). Monotonicity can be guaranteed by requiring that 
P is positive in 8. No such restriction is needed for iterative definitions. In most 
of our applications P does occur positively and the iterative definitions approxim- 
ate an implicit definition. Usually, the faster the convergence, the better the 
lower bounds obtained by our methods. We will see that the positivity of P in 8 
does have implications in lower bound results. 

To show that we can efficiently transform iterative definitions into equivalent 
explicit definitions, we require the following theorem, which will also be used to 
show that certain sets of formulas in L* can be efficiently transformed into 
equivalent formulas from L. 

Theorem 3.1. Let L be a first-order or monadic second-order logic and let L’ be a 

logic, of the same type, whose vocabulary consists of the vocabulary of L together 
with relation symbols PI, . . . , P,,,. There in a reset log-lin reduction taking each 
prenex formula of L’ to an equivalent prenex formula of L’ having at most one 
occurrence of each I$ 

Proof. The proof follows an argument of Ferrante and Rackoff [24, pp. 
155-X57]. We must add some details, however, because they were not interested 
in obtaining a reset log-lin reduction. We adopt the same assumption they did 
there: we assume that L has a symbol for equality and that all structures have 
cardinality at least 2. We could dispense with this assumption at the cost of added 
complications. 

We deal explicitly only with the case m = 1. It will be clear from the proof that 
the procedure can be iterated to treat PI, P2, . . . in succession. 

We describe the action of our algorithm on cp, a prenex formula from L. First 
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add a 0 bit to the end of every variable index occurring in QA this will allow us to 
introduce variables of odd index without creating a conflict. Now Q, is of the form 

where each Qi is a quantifier and ‘1’ is quantifier free. Let 

be all the subformulas of $J containing P1. 
The idea is to replace each subformula Pr(x,,, . . . , xi,) of I/J with a Boolean 

variable and stipulate with a formula containing just one occurrence of Pi that 
each of these Boolean variables has the same truth value as the formula it 
replaces. Since we have no Boolean variable type, we instead replace each 
subformula Pr(Xii, . . . , xii) with an equation vr = u b(i). We must ensure for each i 
that b(i) is odd and greater than 1, that b(i) is log-lin computable from 

P*(x,,, . . . 7 Xii) (with not resets), and that b(i) # b(j) when i # j. To produce b 
satisfying these conditions suppose that xii, . . . , Xi/ are formal variables denoting 
actual variables with subscripts jl, . . . , jr respectively. In the string j1 #j, # . . . # 
j, replace every occurrence of 0 with 01, of 1 and 11, and of # with 10; let the 
result be b(i). Let I/J be the result of replacing each formula P,(x,,, . . . , xii) in v 
by the formula u1 = ubCi). Now with a little effort we can see that Q, is equivalent 
to 

<QA> . * * (Q,-Q%, 21b(l), . . . > 21b(k))(vy, Y,, . . . > Yl) 

J, ((Y = vb(i) * Yl = xi1 A - * 

whereyandy=y,,..., yI denote variables with odd indices of odd length. It is 
not difficult to verify that this formula is reset log-lin computable from Q, using 
two resets. 0 

Remark. The formula q in the proof of Theorem 3.1 uses the symbol *. If we 
require that formulas use only the Boolean connectives A, v, and 1, we must 
expand the subformula u1 = y f, PI(y) of q’ to obtain a formula in which P 
occurs twice, once positively and once negatively. It is easy to see that this is the 
best we can do. Suppose that the number of occurrences of P in such a formula 
could be reduced to one. If this occurrence were positive, then cp’ would be 
monotone in P (i.e., truth is preserved when the interpretation of P is expanded). 
If this occurrrence were negative, then 1~)’ would be monotone in P. But it is 
easy to produce a formula cp such that neither it nor its negation is monotone in 
P. However, in the case where P occurs only positively in rp, we can construct rp’ 
in the proof of Theorem 3.1 using the subformula cr =y+ P,(y) in place of 
vi = y f) PI(y). For this case the theorem is true even if just the connectives A, 
v, and 1 are allowed. This is one of the advantages of using positive formulas. 



A method for lower bounds on theories 17 

Theorem 3.2. Let L be a first-order or monadic second-order logic and I be a fixed 
positive integer. There is a reset log-& reduction which taking each iterative 
definition of the form [P(x) = e],,, where 8 is a formula from L* of length at most 
1, to an equivalent explicit definition. 

Proof. Since there are only finitely many formulas from L* of length at most I, 
we may, given such formula 8, find an equivalent prenex formula 6’ from L in 
constant time. Moreover, by Theorem 3.1 we may assume that P occurs in 8’ just 
once, say in a subformula P(y). Define formulas 0, = e,(x) by induction on n. 
Let 8,, be a sentence false in all models (or all weak models if L is a monadic 
second-order logic). Form 8,+1 by substituting the variables y for corresponding 
free variables x in 8, (perhaps changing other variables to avoid conflicts) and 
substituting the result for P(y) in 0’. It is clear that [P(x) = 01, is equivalent to 
[P(x) = f3,]. If the substitution of variables has been done in a systematic way in 
the construction of 8,, then it is clear that 8, can be obtained from [P(x) = 01, by 
a reset log-lin reduction. Cl 

Often we need to make several iterative definitions simultaneously. For 
example, Fischer and Rabin [26], in their lower bound proof for the theory of 
Real Addition, define sequences of formulas P~(x, y, r) and ~t,(x, y, z). Formula 
,uJx, y, z) holds precisely when x is a non-negative integer less than 2’” and 
x . y = z; formula ~d,(x, y, z) holds precisely when X, yX, and z are nonnegative 
integers less than 2’” and yX = z. These definitions are simultaneous: the definition 

of .7d,+19 for example, depends not only on .7~,, but also on pn. Let us make the 
notion of simultaneous definition precise. 

Let L be a first-order or monadic second-order logic and el, . . . , Ok be 
formulas from L*. A simultaneous iterative definition is denoted 

~44 = e1 

P,(Q) = e2 

[: :I pk@k) = ok n 

Fix a structure !!I for L and an assignment from 5?l to the free variables of this 
definition (defined in the obvious way). The simultaneous iterative definition 
assigns a relation from the universe of ‘8 to each symbol PI, . . . , Pk. We define 
this assignment by induction on the depth n of the definition. When n = 0 it 
assigns the empty relation to each symbol. When n > 0 the assignment to Bi is 
determined by letting the assignment for depth n - 1 interpret the free occur- 
rences of PI,..., Pk in e,. We can use simultaneous iterative definitions to 
augment the syntax of a logic in the same way we used iterative definitions. In 
particular, subscripts on definitions are expressed in unary notation. 

The following theorem shows that simultaneous iterative definitions do not 
increase the expressiveness of a logic. Moreover, their use does not make for 
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appreciably shorter expressions than use of ordinary iterative definitions. The 
theorem is proved along the same lines as similar results in Fischer and Rabin [26] 
and Ferrante and Rackoff [24, p. 1591. Moschovakis [51, p. 121 used similar ideas 
to prove an analogous theorem for simultaneous implicit definitions. 

Theorem 3.3. Let L be a first-order or monadic second-order logic and 

Pl, . . * 9 Pk be fixed relation variables. There is a reset log-lin reduction taking each 

formula cp of the form 

where 1~ and 8,, . . . , 0, are formulas from L* whose only free relation variables 
are PI, . . . , Pk, to an equivalent formula q’ of the form 

[P(X) = eq, 7+v . 

where 8’ and 3’ are formulas from L* whose only free relation variables is P. 
Moreover, if PI, . . . , Pk occur only positively in each of the formulas &, . . . , Ok, 

then we may arrange that P occurs only positively in 8. 

Proof. As before, we assume that L has a symbol for equality and that all 
structures have cardinality at least 2. Again, we could dispense with these 
assumptions at the cost of added complications. 

Without loss of generality, we may assume that the variable sequences 

Xl,.--, xk are mutually disjoint. Let z denote a sequence z, zl, , . . , zk of distinct 
variables disjoint from xl, . . . , xk. The idea of the proof is that one relation 

P(t, Xl, . . . , .qJ will code the relations PI@,), . . . , P&). To be more precise, 
the relation P(z, x1, . . . , x,J is equivalent to 

Thus, a particular e(Xi) can be extracted by writing 

(3Z,Xl,...,Xi_l,...,Xk) P(Z9Xl9...9xk)A/\Z#Zj 

( 
- 

j#i > 

Call this formula hi(X) (or Si for short). Define 8’ to be the L* formula 

Notice that P is the only free relation variable in 8’. Let q’ be the formula 

[PI(XI) = 41 * - - E&k) = &I v. 
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Now we can easily show that 

is equivalent to [P(X) = 0’1, rj~’ by induction on IZ. Cl 

Remark. Notice that in the proof of Theorem 3.3 formula $I,’ is formed simply by 
inserting explicit definitions of fixed length before rj~. These definitions may be 
eliminated by replacing relation variables in r& with their corresponding defini- 
tions. Now if I/J is a prenex formula or a member of a prescribed set of formulas 
(defined below), it is easy to arrange that +’ is a formula of the same type. 

We can now say precisely which kinds of definitions are used in the reductions 
described at the beginning of this section: they are prenex definitions and iterative 
definitions. It is useful, therefore, to have terminology to describe sets of 
formulas in L* built up from ‘prenex formulas using prenex and iterative 
definitions. We must place some restrictions on these sets to be able to efficiently 
translate them into equivalent formulas from L. 

Let L be a first-order or monadic second-order logic. Let L’ be the logic 
formed by adding relation variables Pi, . . . , Pk to the vocabulary of L, and 1 be a 
fixed positive integer. A prescribed set offormulas over L is a set of formulas of 
the form 

]P,(x~) = elin, . . - wk) = okink 3 

where $J is a prenex formula from L’, and for each i either IZ~ = 1 and f$ is a 
prenex formula from L’ in which only PI, . . . , e-1 may occur as free relation 
variables (i.e., 8 has a prenex definition), or Bi is a formula of length at most 1 

from L* in which only PI, . . . , 8 may occur as free relation variables (i.e., fl has 
an iterative definition in which the operator formula has bounded length). We 
place one further restriction on sets of prescribed formulas: each variable is 
quantified at most once in rj.~ and in each formula Oi where Z$ has a prenex 
definition. We impose this condition so that when we relativize all the formulas 
within a set to a unary relation symbol D, there is a reset log-lin reduction taking 
resulting formulas to equivalent formulas from another prescribed set of 
formulas. The condition is easy to satisfy in practice. 

We now present our fundamental theorem for making reduction between 
formulas. 

Theorem 3.4. Let L be a jirst-order or monadic second-order logic. For each 

prescribed set of formulas over L there is a reset log-lin reduction taking each 

formula in the set to an equivalent formula in L. 
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Proof. Fix a prescribed set of formulas over L. There are relation variable 

p,, . . . , Pk as in the definition such that all formulas ~1 in the set are of the form 

[PI(&) = &In, . . . kcw = &In* VT 
where ‘1’ is a prenex formula in which only PI, . . . , Pk may occur as free relation 
variables, and for each i either n, = 1 and 8, is a prenex formula in which only 

PI, * f f , &_1 may occur as free relation variables, or 0, is a formula of length at 
most 1 in which only PI, . . . , 8 may occur as free relation variables. 

At first glance it may seem that PI, . . . , Pk are being defined simultaneously, 
but this is not the case. First PI is assigned a value by an iterative definition of 
depth n1 which is substituted in the remaining definitions. Then P2 is assigned a 
value by the next iterative definition of depth n2 which is substituted in the 
remaining definitions, and so on. The proof combines this observation with the 
construction used in Theorem 3.3. As in that theorem, we will code the relations 

SW, . . * 9 P,(X,) into a single relation P(y) equivalent to 

,y<, t&&i) * z = G) 
__ 

where y is the variable sequence z, zl, . . . , zk, x1, . . . , xk. As before, let ai 
be the formula 

(32, XI, . . . Y xi-l, xi+19 * f * 7 &) 
( 

p(z,+ ,..., &)A,,zi+j 
> 

. 
j#i 

To construct a formula q’ from L equivalent to Q, we build, inductively, a 

sequence of formulas &y), q*(y), . . . , t&(y). Begin by taking Q)~ to be a 
sentence false in all models (or weak models, if L is a monadic second-order 

logic). 
Suppose now that ~i-1 is given. Consider the simultaneous definition 

Plh) = P,(Xl) - 

&_I,(Xi-l) E e_l(Xj_l) 

Stxi) 
s ei 

&+l(xi+l> s S+l(xi+l) 

This definition simply defines &(xi) to be ei and leaves the other relations 
unchanged. Use the construction in the proof of Lemma 3.3 to produce an 
equivalent definition [P(y) = vi(y)]. Hence, ni is 

[PI(xI) E 611 * * ’ [Pk(Xk) s ak] V’i 

where vi is the formula 

( 0, A Z = Zi) V ,yi (Pj(Xj) A Z = Zj)) . 
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We claim that there is a reset log-lin reduction taking vi to an equivalent prenex 
formula rlf with just one subformula P(u) in which P occurs. Whether 8 has a 
prenex definition, in which case 8i is in prenex form, or an iterative definition, in 
which case Oi is of bounded length, there is a simple reset log-lin reduction to 
convert vi into prenex form. Apply the reduction given by Theorem 3.1 to the 
result to obtain an equivalent formula in which each of the symbols PI, . . . , Pk 

occurs just once. In this formula, for each i, substitute 6j(yj) for the subformula 
I. Convert to prenex form again by a reset log-lin reduction and apply the 
reduction of Theorem 3.1 one more time to obtain r,r’ as desired. Notice that if Pi 

has an iterative definition, r]i has length less than some constant determined by I 
and the arities of PI, . . . , Pk. 

If e has a prenex definition, form Cpi by substituting vi-i(U) for P(u) in nf. If fl 
has an iterative definition we must make several substitutions. Beginning with 
qi_i replace free variables y with the corresponding variables u and substitute the 
result for P(u) in vi. Repeat this operation ni times. The resulting formula is vi. 

In either case it is easy to see that pi is obtained by a reset log-lin reduction. 
Since IJJ is in prenex form, we can apply the reset log-lin reduction of Theorem 

3.1 to obtain an equivalent prenex formula $J’ in which each of the symbols 

pi, * * * 7 Pk occurs at most once. As before, there is a reset log-lin reduction to 
convert 

into a prenex formula with just one subformula P(u) in which P occurs. 
Substitute Q+(U) for this subformula to obtain finally 47’. Repeated use of closure 
of reset log-lin reductions under composition shows that the mapping Q, H cp’ is 
reset log-lin computable. 0 

Remark. Scrutiny of the preceding proof reveals two useful facts. First, if all the 
symbols Pi have prenex definitions we can arrange that q’ is in prenex form. 
Second, if we wish to restrict to formulas in which the only connectives are A, v , 

and 1, the theorem remains true providing Pi occurs only positively in Oi when Pi 

has an iterative definition. To see this, observe that by the remark following 
Theorem 3.1 we can always ensure that the formulas n] each contain at most two 
occurrences of P. This is not a problem when Pi has a prenex definition because 
n,! figures only once in the construction of qk and there are a bounded number of 
such definitions. When & has an iterative definition we can insure, again by the 
remark following Lemma 3.1, that Pi occurs at most once in ~1 since it occurs 
only positively in 19~. 

4. Inseparability results for first-order theories 

Hereditary lower bound results have proofs similar to the classical hereditary 
undecidability results. Young [78], for example modified techniques used in the 



22 K.J. Compton, C. W. Henson 

proof of the hereditary version of Giidel’s Undecidability Theorem, which states 
that all subtheories of Peano Arithmetic are undecidable, to show that all 
subtheories of Presburger Arithmetic have an NTZ~E(2*“) lower bound. Our 
starting point is another classical undecidability result-the Trakhtenbrot-Vaught 
Inseparability Theorem. Many hereditary undecidability results have been 
derived from this theorem. 

Recall that Lo is the first-order logic whose vocabulary contains just a binary 
relation symbol P. Let fiat(&J be the set of sentences Q, of Lo true in some finite 
model, and inv(L,J the set of sentences of L,, true in no model. The 
Trakhtenbrot-Vaught Inseparability Theorem states that fsat( L,) and inv(L,J 
are recursively inseparable: no recursive set contains one of these sets and is 
disjoint from the other. Trakhtenbrot [72] showed this for a first-order logic with 
sufficiently many binary relations in its vocabularly and Vaught [74, 751 reduced 
the number of binary relations to one. To see how this theorem gives hereditary 
undecidability results, suppose that for some theory _X in a logic L there is a 
recursive reduction from the sentences of LO to the sentences of L that takes 
fsat(LJ into sat(E) and inv(L,) into inv(L). Clearly sat(_X) is not recursive since 
it separates the image of fsat(Lo) from the image of inv(LO). Moreover, if 
_Y G vuZ(z), then sut(J5) G s&(2’) and sut(E’) II inv(L) = 0 so sat(Z) is not 
recursive either. 

Let T(n) be a time resource bound. Recall that sat&L,) is the set of sentences 
91 in LO such that rp is true in a structure of power at most T(( ~1). Our analogue 
of the Trakhtenbrot-Vaught Inseparability Theorem states that for T satisfying 
certain weak hypotheses, sut,(L,J and inv(L,) are NTZME(T(cn))-inseparable 
for some c > 0. That is, no set in NTZME(T(cn)) contains one of these sets and is 
disjoint from the other. We show, in fact, that the result is true if we restrict to 
prenex sentences in LO. Thus, using the reductions between formulas described in 
the previous section, we can obtain hereditary NTZh4E lower bounds for theories 
in much the same way that we obtain hereditary undecidability results. In the 
next section we prove an inseparability theorem which gives hereditary linear 
ATZME lower bounds. 

Our result is a consequence of the following theorem. 

Theorem 4.1. Let T(n) be a time resource bound and A be an alphabet. Given a 
problem A E A* in UC,,, NTZZME(T(cn)), there is a reset log-lin reduction taking 
each w E A* to a prenex sentence rpw of LO such that if w E A, then q,,, E sut,(L,) 
and if w $ A, then q,,, E inv(L,J. Moreover, each variable occurring in qw is 
quantified just once. 

Proof. Let M be a T(cn) time bounded nondeterministic Turing machine that 
accepts A. We may assume that on all inputs, all runs of M eventually halt since 
we may incorporate into M a deterministic ‘timer’ which halts after some number 
of moves given by a fully time constructible function dominating T(cn). To 
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simplify notation we assume that A4 has just one tape. Extending to multitape 
Turing machines requires only minor modifications. Let m be the number of tape 
symbols used by M. We assume that one of the tape symbols not in A is a blank 
symbol, denoted #. 

The proof has two parts. In the first we translate information about runs of M 
on input w into formulas qh in a logic with a vocabulary consisting of m + 3 
binary relation symbols so that VP:, satisfies the conditions of the theorem. In the 
second we transform sentences qk into the desired sentences q,,, by combining 
m + 3 binary relations into one. 

Translating Turing machine runs into first-order sentences is an old 
idea in logic; see Turing [73], Btichi [13], and for a general discussion Borger 
[8, 9, lo]. Our translation of runs into sentences is standard except for some 
difficulties that must be overcome to obtain prenex sentences using reset log-lin 
reductions. 

First we describe the intended meanings of the m + 3 binary relation symbols 
constituting the vocabulary of the logic for sentences q&. The symbol c will 
interpret a discrete linear order with a least element. For convenience we use 
infix notation with this symbol. We call the least element with respect to this 
order 0 and denote the successor and predecessor of an element x by x + 1 and 
x - 1 respectively. In this way we identify elements of a model with consecutive 
nonnegative integers. We also have relation symbols STATE, HEAD, and SYM, 
for each a EA. STATE(x, t) holds if M is in state x at time t. (States are ordered 
arbitrarily. We may assume that all models considered have at least as many 
elements as A4 has states since we can precede q; with enough dummy quantifiers 
to insure that T(lq~kl) exceeds the number of states.) HEAD@, t) holds if the 
read head of M scans the tape cell at position x at time t. SYM,(x, t) holds if the 
tape cell at position x contains symbol a at time t. 

Let q; be a prenex sentence asserting the following. 
(a) Relation 6 is a discrete linear order with a least element. 
(b) Each tape cell contains precisely one symbol at each time. The read head 

scans prescisely once cell at a given time. M is in precisely one state at a given 
time. 

(c) If HEAD@, t) does not hold and SYM,(x, t) holds, SYM,(x, t + 1) also 
holds. If HEAD(x, t) holds, then the values of SYM,(x, t + l), HEAD(x f 1, t + 

l), and the element z making STATE(z, t + 1) true are determined by the values 
of SYM,(x, t), and the element y making STATE(y, t) true, in accordance with 
the transition function of M. 

(d) The read head initially scans cell 0. M begins in its initial state. 
(e) If STATE(x, t) holds, then t has a successor if and only if x is a final state. 

For some t there is a final state x such that STATE(x, t) holds. 
(f) The input tape initially contains w. 

Notice that (f) is the only conjunct depending on w; the others are fixed. Thus, 
if we can express (f) as a prenex sentence obtainable from w by a reset log-lin 
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reduction, it is a simple matter to produce a prenex sentence q_~k equivalent to the 
conjunction of (a)-(f) obtainable from w by a reset log-lin reduction. 

Suppose that w = aoal . . * u,,_~ where each Ui is an input alphabet symbol. We 
cannot just say that there are positions vo, ur, . . . , v,,-~ such that u. = 0, 

vi+l = vi + 1, and SYA4ai(Vi, 0) for i <n because the combined length of variable 
indices is Q(n log n). We must define two relations LEFT and RIGHT to reduce 
the number of quantified variables. 

Intuitively, LEFT and RIGHT interpret the left and right child relations for a 
binary tree t on the first n elements 0, . . . , n - 1 of the model. It is intended that 
LEFT@, y) holds precisely when y = 2x and RZGHT(x, y) holds precisely when 
y = 2.x + 1. Then r has root 0 and 0 is its own left child (so the notion of tree is 
interpreted somewhat loosely). 

Using the machinery of the last section it is easy to give short formulas defining 
LEFT and RIGHT on long intervals. Let 0 be the formula 

(xl=y,Ax~=y*)v(xl+1=y,Ax~+2=y*) 

v 3% 22 (P(x1, x2, 21, z2) A P(Zl, 22, Yl, Y2)). 

Then the relation P(xl, x2, y,, y2) given by the iterative definition 

[P(Xl, X27 Yl, Y2) = f%I 
is true when 0 Gyl -x1 G 2”-’ and 2(y, -x1) = y, -x2. Now LEFT(x, y) is 
equivalent to P(0, 0, x, y) and RZGHT(x, t) is equivalent to P(0, 1, x, y) on the 
interval 0, . . . ,2” + 1, so we take m = [log(n - l)] to obtain RZGHT and LEFT 

on the interval 0, . . . , n. By Theorem 3.2 there are first-order formulas f3; and 0; 
defining LEFT and RZGHT; moreover, they are computable from the unary 
representation of m by a reset Turing machine in time log n and space log log n. 
By increasing time to log n log log IZ we can make 0: and 0; prenex formulas. 

The height of r is h = [log n1. Now for every i such that 0 G i =S h and every 

j < 2h-i define a quantifier free formula f3i,j(xo, . . . , Xi) by induction on i. 
Roughly, ei,j(xo, . . . , Xi) says that if (Xi, Xi-l, . . . , x0) is a path in t from vertex 
j =xi, then the symbol at position x0 on the input tape is a,,. First 80,j(xo) is 
SYMOi(xo, 0) when j < n and some tautology (say x0 =x0) when 12 =zj 6 2h. Next, 

ei+l,j(Xo, . . . , Xi+l) is the formula 

(LEFT(xi+l, xi)+ e&x0, . . . y Xi)) A (RZGHT(xi+l, Xi)* &j+l(xo, . . + , Xi))- 

By induction on i we can show that for j c 2h-i the sentence 

Vxo, . . . ) Xi (Xi =j* f3i,j(Xo, . . . , Xi)) 

is true if and only if for every vertex k < n which is an ith generation descendent 
of j, SYM,,(k, 0) holds. Since 0 is a left child of itself, every vertex in t is an hth 
generation descendent of 0, so the sentence 

Vxo, . . . ) xh (xh = o+ ~h,O(xOp . . . , xh)) 

says that SYM,,(k, 0) holds when k < n; that is, it says w is written on the first n 



A method for lower bounds on theories 2.5 

cells of the input tape at time 0. Let I/I,,, be a conjunction of this sentence and a 
sentence that says SYM,(x, 0) holds for all x > n (that is, that all the tape cells 
from position n onward are blank at time 0). We must show that there is a reset 
log-lin reduction taking w to I/J,,,, from which it follows easily that there is a reset 
log-lin reduction taking w to q,I. 

We describe the actions of a machine effecting such a reduction. For the 
conjunct asserting that cells from position n onward are blank this is straightfor- 
ward so we need only show it for the conjunct asserting w is written on the first n 
cells. 

We will suppose that induces of variables are in unary; thus, the formal 
variable xi denotes the actual variable 

“W’ 
i+l times 

First, w is read from the input tape while h cells are marked off on a work tape. 
One way to accomplish this is simply to keep a count on a work tape of the 
number of input tape cells scanned. Count in binary. Incrementing the count 
requires changing the low order l-bits to 0 until encountering a 1, which is 
changed to 0. The work tape head is then returned to the lowest order bit to 
prepare for the next advance of the input head. It is not difficult to show that the 
time required to read the input tape and do all the increments is O(n). 

Next the input head is reset. Now a simple algorithm utilizing a stack to keep 
track of subscripts will generate r/~,,,. The maximal stack height is h. Formula I& 
was defined in such a way that the information required from the input tape can 
be read off from left to right as the algorithm proceeds. Variable indices are easily 
computed from the stack height since they are in unary. 

This computation clearly uses just log space. We need show that it takes just 
linear time. The time required is less than a constant multiple of the length of 

&&0, . * * > xh); the length of this formula is in turn less than a constant multiple 
of the combined lengths of variable indices occurring within it. By induction on i, 

variable xk occurs no more than 3 - P-k times in 8,,j when k < i and Xi occurs just 
twice. Hence, the combined lengths of variable indices occurring in f3,,, is not 
more than 

i 3(k + 1)2h-k = 3(2h+2 - h - 3) < 24n. 
k=O 

Thus, the computation requires just linear time. Notice that each variable in &, is 
quantified just once so it is easily arranged that the same is true of q;. 

If necessary we can add dummy quantifiers at the beginning of qh to make its 
length at least cn. Thus, if w E A, then q; is true in some model of size at most 
T(Iq:l). If w 4 A, then q; is true in no model. Suppose, on the contrary, that cpk 
is true in some model 8. Consider the submodel of ??l obtained by restricting to 
the elements which can be reached from 0 by finitely many applications to 
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successor. The values of STATE(x, t), HEAD(x, t), and SYM,(x, t) on this 
submodel describe a run of A4 on input w. Since we have incorporated a timer 
which halts A4 on every run, this submodel is finite. But then the last element t in 
this submodel has no successor, so the state x for which STATE(x, t) holds is 
final. Thus, M accepts w, a contradiction. 

This completes the first part of the proof. We now show how to combine m + 3 
binary relations into one. 

To simplify notation, let us rename the relation symbols PO, Pi, . . . , Pm+*. 
Suppose ‘%?l’ is a model of cph. Before describing how to transform qb into q,,,, we 
describe the model % of q,,, corresponding to ‘21’. First form the disjoint union of 
the interpretations of PO, PI, . . . , Pm+2 in 5%‘. We have then relations 

Ro, R,, . . ., Rn+2 on disjoint domains BO, B1, . . . , Bm+2. Their union is a single 
binary relation R on the domain B = Uism+2 Bi. Now enlarge R so that 
R n (B,, x BJ is the natural bijection from B. to Bi when 1 <i 6 m + 2. Next, 
enlarge B by adding elements bO, bi, . . . , b,,, and then add the pairs (bi, b) to 
R for each i s m + 2 and b E Bi. Define ‘?I to be (B, R). We see that if 

bo, bi, . . . , bm+2 are known, then the relations R,,, RI, . . . , R,,, can be 
recovered in ?I and in fact we may use the natural isomorphisms from B. to Bj to 
define an isomorphic image of VI’ with domain B,,. 

Relativize the quantifiers of rp: to a unary relation symbol D, thereby forming 
(VP:)“. This sentence contains relation symbols D, PO, PI, . . . , Pm+2. Put the 
explicit definitions [D(X) = P( x0, x)], [PO@, y) = P(x, y)] and for 1 s i s m + 2, 

[S(X,Y)‘3X’,Y’(P( x7 x’) A p(Y9 Y’) A p(x’9 Y’) A p(xi, x’) h p(Xi, Y’))] 

before this formula. Here x0, x1, . . . , x,+~ are new free variables whose intended 
interpretations in ‘8 are b,; bl, . . . , bm+2. Now existentially quantify 

x0, Xl, * * * ,-Gn+2. There is a reset log-lin reduction that takes the resulting 
formula to an equivalent prenex formula qw. (Since each variable in qk is 
quantified just once the relativizations may be pushed inward. Then since all of 
the explicit definitions are of fixed length, conversion to prenex form is 
straightforward.) 

If A4 accepts w, then q; is true in some model ‘8’ of power at most T(Iq:I). It 
follows that q,,, is true in some model ‘% of power at most 

(m + 3)(T(lVLl) + 1. 

We can assume this quantity is less than T(lq,,,l) by lengthening q,,, with dummy 
quantifiers if necessary and using the definition of time resource bound to infer 
that (m + 3)2(n) < T((m + 3)n). If A4 does not accept w, then Q$, has no models 
and hence neither does rp,. Finally, it is easy to arrange that every variable in q,,, 
is quantified just once. 0 

Remark. Inspection of the construction of sentences v,,, in Theorem 4.1 reveals 
that for every constant b > 0 there are constants co and c1 such that lrp,,,l G 
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c1 IwI + c,, whenever 0 < c < 6. The constant c1 depends only on the size of the 
input alphabet A and the constant b. (This will be useful in the proof of Theorem 
4.3.) On the other hand, the constant co depends on the particular Turing 
machine M whose runs q,,, describes. 

Corollary 4.2. Let T,(n) and T,(n) be time resource boundr such that 

NTZME( G(n)) - iVTZME( T,(n)) # 0. 

Suppose that lim,,, Tl(n)/n = CQ. Then there is a constant c > 0 such that for each 
set r of satkjiable sentences with sat,,(Lo) E r, 

r 4 NTZME(T,(cn)). 

Proof. Let A be an element of NTZME(T,(n)) - NTZME(T,(n)), where A GA*. 
By Theorem 4.1 there is a reset log-lin reduction taking each w E A* to a sentence 
q,,, in Lo so that A is mapped into sat,(L,) and A* - A is mapped into inv(L,). 
Suppose that this reduction takes at most time b (w I. 

Let c = l/b and r be a set of satisfiable sentences containing sat,(L,). Suppose 
that r E NTZME( T,(cn)). To decide if w E A we will compute QI,,, in time b Iw 1, 
and then determine if qw E r using a T,(cn) time-bounded nondeterministic 
Turing machine. Certainly l~l,,,l G b I I w so the composition of these two reduc- 
tions takes time at most b ]wI + T,(bc Iwl). We know that IwI < Tl(lwl) so this 
time is bounded above by (b + l)T,(lw I). Since lim,,, T,(n)/n = 00 we can apply 
the Linear Speed Up Theorem (see Hopcroft and Ullman [37]) to show that 
A E NTZME( T,(n)), a contradiction. Therefore, r 4 NTZME(T,(cn)). 0 

Remark. We see from Corollary 4.2 that application of our results relies on the 
ability to separate nondeterministic time complexity classes. The strongest result 
in this direction for time resource bounds in the range bounded above by exp,(n) 
is due to Seiferas, Fischer, and Meyer [64]. It says that if T,(n) is a time resource 
bound and T,(f (n + 1)) E o( T,(f (n))) f or some recursively bounded, strictly 
increasing function f(n), then 

NTZME( T,(n)) - NTZME( T,(n)) # 0. 

This theorem has interesting implications for us. Let T(n) be a time resource 
bound. Take T,(n) = T(dn), where O< d < 1, T,(n) = T(n), and f(n) = n. The 
Seiferas-Fischer-Meyer Theorem, tells us that if T(dn + d) = o( T(n)), then 

NTZME( T(n)) - NTZME( T(dn)) # 0. 

By taking a slightly smaller d the hypothesis may be simplified to T(dn) = 
o(T(n)). By Corollary 4.2 there is a constant c > 0 such that if r is a set of 
satisfiable sentences with sat,(L,) G r, then r 4 NTZME(T(cn)). 

Most time resource bounds that occur as complexities of theories satisfy the 
hypothesis T(dn) = o( T(n)). A mong them are the functions expl(n) when r > 1, 
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2”nogn, and 2”‘. Powers do not satisfy this hypothesis, so when T(n) = nk where 
k > 1, we can only conclude that r$NTZME(g(n)) for all g(n) such that 
g(n) = o(nk). 

By considering just one time resource bound T(n) we gain another advantage: 
we can prove a full-fledged inseparability theorem. This will allow us to obtain 
NTZA4E lower bounds for problems of the form v&(E), as well as problems of 
the form sat(z). 

Theorem 4.3. Zf T is a time resource bound such that for some d between 0 and 1, 

T(dn) = o( T(n)) then there is a constant c > 0 such that sat,(&) and inv(L,) are 
NTZME( T(cn))-inseparable. 

Proof. Corollary 4.2 and the preceding remark show that there is a c > 0 such 
that if sat,(&) G r and inv(L,) fl r = 0, then Z $ NTZME(T(cn)). (The corollary 
applies because lim,,, T(n)ln = 03 when T(dn) = o(T(n)).) We must show that 
there is a c’ > 0 such that if sat,(&) G r and inv(L,J n r = 0, then r, the set of 
sentences from Lo not in r, is not in NTZME(T(c’n)). 

Let b be a positive constant (say 1). By Theorem 4.1, if A E A* is in 
NTZME(T(c’n)) for O< c’ <b, there is a reset log-lin reduction taking each 
w EA* to a sentence q,,, of Lo such that A is mapped into sat,(&) and d is 
mapped into inv(L,,). We know also from the remark following Theorem 4.1 that 

l%vl s cl IWI + co, where ci is a constant depending only on A and b, not on c’ or 
A. Take c’ small enough that c’ci < c. 

Now consider a set r such that sat,(L,) G r and inv(Lo) n r = 0. We must 
show that Z= $ NTZME( T(c’n)) so suppose the contrary. We can take A in the 
previous paragraph to be r so there is a reset log-lin reduction mapping r into 
satT(lo) c r and r into inv(Lo) c i? This reduction takes an input w to a 
sentence IJJ~ in time at most b 1 w 1. 

Thus, we can determine whether w E r by computing qw and determining in 
nondeterministic time T(c’n) if cp,,, E Z? Hence, 

r E NTZME(bn + T(c’(con + Cl))) G NTZME(T(C~)) 

a contradiction. 0 

Remark. For simplicity, Theorem 4.3 was stated for sets sat,(Lo) and inv(Lo). 
By Theorem 4.1 it remains true if we take instead sa@L,) and the set of prenex 
formulas in inv(L,). Similarly, Theorem 4.2 holds if we restrict to prenex 
sentences. 

5. Inseparability results for monadic second-order theories 

In this section we develop inseparability results for monadic second-order 
theories analogous to those for first-order theories in Section 4. The appropriate 
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complexity classes here are the linear alternating time classes rather than 
nondeterministic time classes. Because linear alternating time classes are closed 
under complementation, we do not need a special argument like the one used in 
Theorem 4.3 to obtain inseparability results. Also, lower bounds are obtained by 
simple diagonalization, rather than more sophisticated results such as the theorem 
of Fischer, Meyer, and Seiferas used in the last section. 

As before, inseparability results are closely related to satisfiability problems 
that are hard for certain complexity classes. The classes are of the form 

C&4TZME(T(cn), cn) 

which is in many ways more natural than 

U0A7’ZME(7’(cn), n). 

If there is a reset log-lin reduction from a problem r to a class of the first form, 
then we may concude that Tis also in the class. We know of no speed up theorem 
for alternations, so we cannot make the same claim for classes of the second 

form. 
One of the main results of the section is Theorem 5.2, an analogue of Theorem 

4.1. We could prove this result along the same lines as Theorem 1.4, but we 
obtain a somewhat sharper result if we appeal to a result of Lynch [45] relating 
nondeterministic time classes to the spectra of monadic second-order sentences. 
Lynch encodes Turing machine runs in a way different from the classical method 
used in the last section. Rather than explicitly accounting for symbols at each tape 
position and time in a machine run, he keeps track of just the symbol changed 
(not its position), the symbol which replaces it, and the direction of head 
movement at each time. If the underlying models have enough structure, it is 
possible to express derivability between instantaneous descriptions of nondeter- 
ministic Turing machines with just this information. Lynch shows, in particular, 
that this is the case if the underlying models have an addition relation 
PLUS@, y, z) which holds when x + y = z. 

We begin, therefore, by considering the monadic second-order logic ML+ 

whose vocabulary contains just a ternary relation symbol PLUS, and MZ,, the 
monadic second-order theory of addition on initial segments of the natural 
numbers. Ml?, can be axiomatized by a set of first-order sentences. Explicitly 
define a relation c by 

[X G y = 32 PLUS(x, 2, y)]. 

Then Ml?+ says that < is a discrete linear order with least element 0 and 

PLUS(x, y, z) ++ ((y = 0 A x = z) v PLUS(x, y - 1, z - 1)). 

(The immediate predecessor of an element x is denoted x - 1; the immediate 
successor is denoted x + 1.) Note that even though M2, consists of first-order 
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sentences, satr(M2+) is the set of monadic second-order sentences q true in some 
model of A4JS+ of size at most T(I ~1). 

Theorem 5.1. Let T(n) be a time resource bound and A an alphabet. Given a 
problem A G A * in I_&,ATZME(T(cn), cn), there is a prescribed set T of 
sentences over ML+, and a reset log-lin reduction each w E A* to a sentence q,,, in 

Zsuch that if w E A, then qw E satF(M2,) and if w 4 A, then Al,,, E inv*(ML+). 

Proof. Fix c > 0; we may take c to be an integer. Let M be an alternating Turing 
machine that accepts A in time T(cn) with at most cn alternations. As in 
Theorem 4.1 we may assume that on all inputs, all runs of M eventually halt: 
incorporate into M a deterministic ‘timer’ which halts after some number of 
moves given by a fully time constructible function dominating T(cn). We assume 
for simplicity that M has just one tape; extending to multitape Turing machines 
requires only minor modifications. Let aI, . . . , a, be the tape symbols used by 
M. 

Let r = (0, . . . , r - l} be a finite ordinal and + be the usual addition relation 
on r, so that (r, +) is a model of M2,. In this model we represent an 
instantaneous description of M by a sequence of sets X1, . . . , X,,,,, =X, where 
sets X1, . . . , X, partition r and X,,, is a singleton set, and X,,,+2 is singleton set 
whose element is one of the states of M. The set of states is identified with an 
initial interval of r. We intend that the symbol ai is at position x when x E Xi, that 
the head scans position x when x E Xm+l, and that M is in state x when x E X,,,. 
We will need to restrict to initial intervals in our models because when we 
consider truth in weak models at the end of the proof we may not be able to 
quantify over all subsets, but we can arrange to quantify over subsets of finite 
initial intervals. Let ZD(x, X) be the formula specifying that sets Xi, . . . , X, 
partition the interval [0, x], X,,, and X,,, are singleton sets contained in this 
interval, and the element in X,,, is a state. 

Recall that each state of M has one of four types: universal, existential, 
accepting, and rejecting. Let 

UNZV(x, X), EXZS(x, X), ACC(x, X), and RE.Z(x, X) 

be formulas indicating that ID@, X) holds and the state for the instantaneous 
description represented by X is of the corresponding type. 

Lynch [45] shows that for each nondeterministic Turing maching M’ there is a 
monadic second-order formula q,.(X, Y) that holds in (r, +) precisely when X 
and Y represent instantaneous descriptions for M’ and Y can be obtained from X 
within r or fewer moves of M’ by a computation in which the head does not reach 
a tape position greater than or equal to r. We can regard the alternating Turing 
machine M as a nondeterministic Turing machine simply by ignoring state types. 
We also form the nondeterministic Turing machine M’ by eliminating transitions 
out of all states in M except existential states and then ignoring state types, and 
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M” by eliminating transitions out of all states in A4 except universal states and 
then ignoring state types. Let 7(x, X, Y) be the formula 

[D(y) = y <xl rlw(X, Y)“. 

Let r/&, X, Y) be the formula 

[D(y) =y Gx](UZVZV(x, X) A rj&j(X, Y))“. 

Let nv(x, X, Y) be the formula 

[D(y) =y Gx](EXZIs(x, X) A rIM”(X, Y))“. 

That is, 7(x, X, Y) expresses derivability between instantaneous descriptions on 

the interval [O, xl; r/&r, X, Y) (rlv(x, X, Y)) ex P resses the same except that all 
states, excluding possibly the last, are existential (universal). Notice, in particu- 
lar, that r&r, X, Y) holds of all X. Let Z’ERM(x, X) be the formula 

VY (?I(& x, Y)-+X = Y) 

and TERMv(x, X) be the formula 

VY (nv(x, x, Y)-+X = Y). 

Let r+!~,,&, X) be a prenex sentence asserting the following. 
(a) Relation s is a discrete linear order with a least element and a greatest 

element; every element other than the greatest has a successor. 
(b) The relation PLUS(xO, x1, x2) holds if and only if either x0 =x2 and x1 = 0 

or PLUS(xo, x1 - 1, x2 - 1) holds. 
(c) There is a set Y with no elements. For every set Y and element y there is a 

set Y U {y}. 
(d) If y is an element such that for all Y satisfying ZD(y, Y), TERM(y, X, Y) 

implies ACC(y, Y) or REJ(y, Y), then x s y. 

(e) The sequence X represents the instantaneous description for an input tape 
with w written on it, the head scanning the first position, and M in the initial 
state. 

Each of these items can be expressed by a fixed sentence except the part of 
condition (e) concerning the input tape. The prenex formula expressing this part 
is constructed in the same way as in Theorem 4.1. As in that construction, it 
follows that there is a reset log-lin reduction taking w to &,. 

Consider any weak model ?I in which conditions (a)-(c) hold. For the moment, 
let us suppose that the element x from the universe of ‘$I is finite, i.e., a finite 
distance from the least element 0. (By condition (a), this is a well defined notion.) 
Condition (b) ensures that PLUS restricted to the interval [0, . . . , x] in 2I is the 
usual addition relation. Condition (c) ensures that quantification over subsets of 
(0, . . . , x} in the weak model ‘8 is quantification over all subsets of (0, . . . ,x}. 

Thus, for finite x, the formulas ?,r(x, X, Y), n3(x, X, Y), and nv(x, X, Y) have 
interpretations in ‘3 corresponding to computations of M as described above. 



32 K.J. Compton, C.W. Henson 

Now in ‘2I consider x and X satisfying conditions (d) and (e). (We no longer 
stipulate that x is finite.) Since all runs of A4 on input w halt, say within k moves, 
we see that every such x is at most distance k from 0. (Note that this is the case 
even if there is no y as described in (d).) Thus such an x will be finite and the 
observations of the previous paragraph pertain. 

Let 0(x, X) be the formula 

ACC(x, X) v (EXZS(x, X) A 3Y (q3(x, X, Y) A P(x, Y))) 

v (UNW(x, X) A VY ((q&, X, Y)) A TERM&, Y))+ P(x, I’))). 

Let q,,, be the sentence 

[P(X> X) = @7 X)lcn+I 3X 3x (Ii&, x) A p(X, x)) 

where IZ = 1 w I. Clearly, there is a prescribed set of sentences r containing every 
q,,,. It it also clear that if w E A, then rp, is true in some model of size at most’ 
T(lq,,,l) because in such models P interprets acceptance by A4 for x = T(cn). 

If w $ A, then q,,, is true in no model. Suppose on the contrary that qpw is true 
in ‘$I. Then in $?I there are x and X such that q&(x, X) and P(x, X) hold, where P 
is given by the implicit definition 

[P(x, X) = r-+7 .vlcn+l. 
By’ the remarks above, x must be finite, and hence P describes an accepting 
computation of M on input w, contradiction. 0 

The next theorem, the analogue of Theorem 4.1, follows from the previous 
theorem and a result of Kaufmann and Shelah [39]. 

Theorem 5.2. Let T(n) be a time resource bound and A an alphabet. Given a 
problem A z A * in UC,,, ATZME(T(cn), cn), there is a prescribed set r of 
sentences over MLo, and a reset log-lin reduction taking each w E A* to a sentence 
rp, in r such that if w E A, then qw ~satg(ML,,) and if w $ A, then qw E 

inv*(ML,). 

Proof. By the previous theorem we need only show that there is a formula 
n(x, y, z) from ML,, such that for each finite ordinal n = (0, . . . , n - l} there is a 
binary relation R on n such that #(x, y, z) is an addition relation on 12, where 
%!I = {n, R). Kaufmann and Shelah [39] prove a much stronger result: there is a 
formula n(x, y, z) such thaat for almost every binary relation R on n, ;n%(x, y, z) 
is an addition relation on it, where ‘%?I = (n, R). 

For the sake of completeness, we sketch a proof of the simpler result that 
there is a formula that codes an addition relation on some binary relation of each 
finite power. 

First suppose that the vocabulary for the logic has three binary relation symbols 
PI, P2, P3, rather than just one, and that they interpret binary relations RI, RZ, 
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R3 on m. To simplify the proof we assume that m = r3. It is easy to specify a 
formula v(X) saying the relations Rr, R2, R3 restricted to m x X are functions, 
respectively denoted f f f i, *, 3, and that (fi(x), f*(x), J&r)) ranges over each triple 
in X3 precisely once as r ranges over m. Thus 1X(= r and we have defined a 
bijection between m and X3. Since we can quantify over subsets of m, we can 
quantify over ternary relations on X when q(X) holds. Therefore, we can, 
without much trouble, define an addition relation on X. Also, we can extend this 
relation to define addition modulo r. But then it is easy to define addition on m 
using the bijection between m and X3. 

Using the construction in the proof of Theorem 4.1, the three binary relations 
R,, R2, R3 on a set of size m = r3 can be coded as a single binary relation on a set 
of size n = 3(m + 1). This set has three disjoint subsets of size m on which 
addition and addition modulo m can be coded. It is not difficult now to define 
addition on all of n. Thus, there is a binary relation on n from which an addition 
relation can be defined when n is of the form 3(r3 + 1). With a little effort this 
construction can be made to work for arbitrary n. 0 

We now state an analogue of Corollary 4.2. 

Corollary 5.3. Let T,(n) and T,(n) be time resource bounak such that 

ATZME(T,(n), n) -ATZME(T,(n), n) #0. 

Suppose that lim,,, T,(n)/n = 03. Then there is a constant c > 0 such that for each 
set T of satisfiable sentences with sat,(ML,) E Z, 

Z$ATZME(T,(cn), cn). 

The proof is the same as for Corollary 4.2. Note, however, that we rely on a 
result that says the Linear Speed Up Theorem applies to the alternating Turing 
machines. We must also use Theorem 3.4 to obtain a reset log-lin reduction from 
a prescribed set of sentences over ML,, to equivalent sentences in MLo. 

We also have an analogue for Theorem 4.3. 

Theorem 5.4. Zf T is a time resource bound such that for some d between 0 and 1, 
T(dn) = o(T(n)), then there is a constant c > 0 such that satr(ML,J and inv(ML,) 
are A TZME( T(cn), cn)-inseparable. 

Proof. The proof is much simpler than that of Theorem 4.3. We can separate 
ATZME(T(n), n) and ATZME(T(dn), d n using a straightforward diagonaliza- ) 
tion, so we do not appeal to the more difficult methods used in separating 
NTZME classes. Then we use the previous corollary to show that for some c > 0, 
if satr(ML,J c T and inv(ML,) rl T = 0 then r $ ATZME(T(cn), cn). Since 
ATZME(T(cn), cn) is closed under complementation, we have that satT(MLo) 
and inv(ML,) are A TZME( T(cn), cn)-inseparable. 0 
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Remark. By Theorem 5.1, Theorems 5.3 and 5.4 hold with sat,(M~+) and 
inv(ML+) in place of sat,(ML,J and inv(ML,). 

It is also important to note that even though we reduced the prescribed sets of 
sentences in these theorems to equivalent sets of monadic second second-order 
sentences, it is the prescribed sets which are used to obtain lower bound results. 
For example, in the proof of Theorem 5.4 we actually showed that there is a 
prescribed set Z of sentences over ML,, such that sat~M&,) tl Z and 
inv*(ML,) II r are ATZME(T(cn), cn)-inseparable. In Section 6 and 7 we will 
find lower bounds for various theories z from logics L by finding a reset log-lin 
reduction from Z to Z’, a prescribed set of sentences over L, so that 
s&.(ML,) n r is mapped into sat*(E) tl Z’ and inv*(ML,) fl r is mapped into 
inv*(L) n r’. Thus, for some c >O sat*(E) n Z’ and d*(L) fl r’ are 
ATZME(T(cn), cn)-inseparable. Then by Theorem 3.4, sat(X) and inv(L) are 
A TZME( T(a), cn)-inseparable. 

6. Tools for NTIME lower bounds 

We present several useful tools for establishing NTZA4E lower bounds for 
theories by interpreting models from classes of known complexity. We begin with 
some definitions regarding interpretations of classes of models and give a general 
outline of how interpretations are used to obtain lower bounds. Theorem 6.2, a 
specific instance of the method, follows from the results in Section 4. It tells how 
to obtain lower bounds by interpreting binary relations. We then show in 
Theorem 6.3 how to interpret binary relations in finite trees of bounded height. 
As a consequence we obtain hereditary lower bounds for theories of finite trees of 
bounded height and a tool for obtaining further lower bounds by interpreting 
classes of these trees in other theories. We obtain similar results for classes of 
finite trees of unbounded height in Theorem 6.6 and its corollaries. 

Let E be a theory in a logic L’ and %$, %$, %$, . . . be classes of models for a 
logic L whose vocabulary consists of relation symbols Pi, . . . , Pk. Let x1, . . . , xk 

be sequences of distinct variables with the length of X~ equal to the arity of 8. 
Suppose that there are formulas 6,(x, u), nk(x,, u), . . . , n!$rk, u) from L’ 
which are reset log-lin computable from it (expressed in unary notation) so that 
for each $?I E Y,, there is a model VI’ of 2 and elements m and ?I’ with 

isomorphic to $?l. The parameter sequence u is allowed to grow as a function of n. 
The sequence {Z, ( 12 3 0} where 

T, = (a,, xi, . . . , n;) 

is called an interpretation of the classes %‘,, in X. The interpretation is a simple 
interpretation if the formulas a,, Ed!,, . . . , ndf: are fixed with respect to n; this is 
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the situation traditionally found in logic. The interpretation is a prenex 

interpretation if the formulas 6,, 3ti, . . . , JC~: are all in prenex form. The 
interpretation is an iterative interpretation if the formulas 6,, x,!,, , . . , JC~ are 
given by iterative definitions. By this we mean that there are formulas 

and integer functions f, g,, . . . , g, which are reset log-lin computable (using 

unary notation) such that 6, is the formula given by the iterative definition 

and rr: is the formula given by the iterative definition 

as in Theorem 3.2. Notice that we may regard simple interpretations as special 
cases of either prenex or iterative interpretations. 

There is a slightly more general point of view toward interpretations which is 
sometimes useful. Suppose %b E %i c %i E . . . are classes of models of _X such 
that for each n > 0 and Vl E Ce,, the model VI’ in the above definition can be found 
in %A. Then we will say that we have an interpretation of the classes %$ in the 
classes %‘A. Sometimes we will not mention ,Y at all when discussing interpreta- 
tions in this context. In that case we must say whether we intend the classes %A to 
be models for a first-order or for a monadic second-order logic. Thus, we will say 
that there is an interpretation of the classes Ce, in the first-order (or monadic 
second-order) classes %A. 

Interpretations, inseparability, and prescribed sets are the cornerstones of our 
method. Suppose we have an interpretation of classes %,, in classes %i,, for some 
nonnegative integer k. (In most cases k is 1 but occasionally we need a larger 
value.) Suppose also that there is a prescribed set Zof formulas over L such that 

{ ~1 E r ) (p is realized in some ‘ZT E %,, where ) VI= n} 

and h*(L) are NTZME(T(cn))-inseparable for some c > 0. (A formula is 
realized in ?I if it is true in ‘8 for some assignment to its free variables). Now map 
each formula Q, in Z to the formula q’ given by 

where n = ]CJJ[. By adding dummy quantifiers in the right places we can ensure 
that Iv’] 2 kn. If Q, is realized in some model in %,,, then 9’ is realized in some 
model in %& If Q, is true in no model, then q’ is true in no model. (There is a 
minor point which should be addressed here. To be completely rigorous we 
should require that for all models %’ that 6:‘(x) # 0 since certain formulas in 
inv*(L) may become true when relativized to an empty relation. For example, 
consider the sentence Vx(x Zx). We can always meet this requirement by 
replacing 6,,(x) with the formula 6,(x) v Vx l&(x) so we can ignore this point in 
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subsequent discussions.) When we have a prenex interpretation, or an iterative 
interpretation and the definitions in cp’ are replaced by the appropriate iterative 
definitions, the sentences q’ all belong to some prescribed set r’ of formulas over 
L’. (If the interpretation is iterative, then by definition the parameter sequence 
cannot grow with n.) We have now that 

{q’ E Z’ 1 cp’ is realized in some Vl’ E ‘%‘,!, where (9’1 = n} 

and inv*(L’) are NZZME(T(cn))-inseparable for some c > 0. It follows by 
Theorem 3.4 that sat(E) and inv(L’) are NTZME(T(cn))-inseparable for some 
c > 0 so 2 has a hereditary NTZME( T(M)) lower bound. 

Now let us broaden the definition of interpretation to cover instances where the 
formulas 6, and J& . . . , nf: contain free relation variables which also receive 
prenex or iterative definitions. For example, if these formulas contain a free 
unary relation variable Q we would write 

for q’, the formulas 8, having the same sort of restrictions as 6, and x,!,, . . . , I$ 

In this case we would have 

as the elements of our interpretation. If these formulas have all prenex definitions 
we could use Theorem 3.1 to rewrite 6, and JG:, . . . , n,k so that Q occurs just 
once and substitute 0, for occurrences of Q. For iterative definitions, we know of 
no similar substitution which eliminates Q and keeps the length of QJ’ linearly 
bounded in II. Fortunately, such a substitution is not needed and is even 
undesirable. By taking a top down approach to the construction of interprata- 
tions, building complex relations from simpler relations, we make our task easier 
and exposition clearer. 

We extend our definitions of simple, prenex, and iterative interpretation to this 
more general situation. (In principle, some definitions could be prenex and others 
iterative, but this does not seem to occur in practice.) 

We see that hereditary lower bounds are obtained using interpretations to 
transfer inseparability results from one prescribed set of formulas to another. One 
of the advantages of this method is that by establishing lower bounds in this 
manner, we also establish tools for proving further lower bounds. In the situation 
described above, if we have another prenex or iterative interpretation of classes 
%‘A in classes UE of models of A, then we can use %A and Z” in place of %,, and r 
to establish a lower bound for A. Compare with the well known methods for 
establishing NP-hardness of a problem by reducing to a problem already known 
to be NP-hard. After the first lower bound or hardness result has been proved 
one should never again have to code Turing machines. 

It is worth noting what happens when the interpretation used to establish a 
lower bound is not prenex or iterative. In that case we do not know that there is a 
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reset log-lin reduction taking formulas q’ defined above to equivalent formulas in 
L’. As we mentioned in Section 3, the shortest equivalent formula in L’ we know 
how to obtain has length Q(n log n) in the worst case. We can only conclude that 
sat(_Z) and inv(L’) are NTZME(T(cn/log n))-inseparable for some c > 0 so .Z has 
a hereditary T(cn/log n) lower bound. Successive applications of such interpreta- 
tions give increasingly worse bounds. After k interpretations the lower bound 
would be T(cn/(logn)k) rather than T(cn). In the case where the formulas in r 
are in prenex form already we do not have this loss in the lower bound, but even 
then, when the interpretation is not prenex or iterative, we cannot use the classes 
%,, to obtain further lower bounds without a subsequent loss. We have introduced 
prenex and interative interpretations to avoid these losses. In our experience 
prenex and iterative interpretations not only achieve sharp lower bounds, but also 
are easy to manage and occur quite naturally in applications. 

Within this framework we can also accommodate the more general kind of 
interpretation in which the domain of the interpreted model is not a subset of ‘?I’, 
but a set of k-tuples from ?I’, and the equality relation is interpreted by an 
equivalence relation definable in ?I’. We have found this to be necessary for only 
two theories treated here and so we avoided stating these definitions in the fullest 
generality. However, it would not have been difficult to introduce these features 
explicitly. (See Examples 8.7 and 8.8.) 

Although we have emphasized inseparability results, we should not lose sight of 
the fact that the starting point for our reductions, Theorem 4.1, is a hardness 
result: every set r of satisfiable sentences with sat,(L,) c Z is hard for the 
complexity class 

via reset log-lin reductions and for the class 

via polynomial time reductions. Thus, all our inseparability results can be 
reformulated as hardness results. We summarize the previous discussion and 
make this point precise in the following theorem. 

Theorem 6.1. Let V$,, CeI, Ce,, . . . be classes of models such that for some 

prescribed set Z of formulas over a first-order logic L, 

{g,~~~~)isrealizedinsome2I~%,, wherelq,1=n} 

and inv*(L) are NTZME(T(cn))- inse ara p 61 f e or some c > 0. Let %A c %?i c %i E 

* . . be classes of models of a theory 2 in a logic L’. If there is a prenex or iterative 

interpretation of the classes %,, in the classes %L,, for some nonegative integer k, 

then the following are true. 

(i) The sets sat(z) and inv(2) are NTZiME(T(cn))-inseparable for some c > 0. 
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(ii) Zf for some d between 0 and 1, T(dn) = o(T(n)), then JC has a hereditary 
NTZME( T(cn)) lower bound. 

(iii) For each 2’ c vaZ(J?), 
class 

s&Y) and vaZ(2’) are both hard for the complexity 

C.-0 NTZME(T(cn)) 

via reset log-lin reductions. 
(iv) For each JY E v&(2), sat(2) and vaZ(2’) are both hard for the complexity 

class 

&JJ NTZME(T(n”)) 

via polynomial time reductions. 

(v) There is a prescribed set Z’ of sentences over L’ such that 

{q’ E Z’ ( q’ is realized in some ‘21’ E 5%; where Iv’1 = n} 

and inv*(L’) are NTZME(T(cn))-inseparable for some c > 0. 

Usually when we apply our method we state the result as in (ii) for brevity, but 
the reader should be aware that all of the conclusions hold. 

The following results is an immediate consequence of the above theorem and 
Theorem 4.3. It is one of the most useful tools for establishing NTZME lower 
bounds. 

Theorem 6.2. Let T(n) be a time resource bound such that for some d between 0 
and 1, T(dn) = o(T(n)). Let %,, be the class of binary relations (i.e., structures for 
L,) on sets of size at most T(n) and t: a theory in a logic L. Zf there is an 
interpretation of the classes Ce, in 2, then z has a hereditary NTZME( T(cn)) lower 
bound. 

The first application of 
bounded height. 

Recall that we express 

this result is to first-order theories of finite trees of 

first-order properties of trees in the logic L, whose 
vocabulary contains just a binary relation symbol which interprets the parent- 
child relation. Let Z: be the theory of finite trees of height at most r and 2, be 
the theory of finite trees of arbitrary height. Define M,YY, and M2, similarly for 
the monadic second-order logic ML,. 

Let Yk be the class of finite trees of height k. We inductively define certain 
restricted classes of finite trees in which the classes %Y,, in Theorem 6.2 are 
interpreted. For each m > 0 let 5f be the class TO (all of whose elements are 
isomorphic). The class Yp+i consists of those trees whose primary subtrees are all 
in Yr, but such that no more than m primary subtrees may be in the same 
isomorphism class. Clearly, 9r c & and JY E JT c J’ c . - . . Also, if JT 
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contains t isomorphism types, then Y’,l contains at most (m + 1)’ isomorphism 
types. 

From the following theorem we obtain hereditary lower bounds for theories of 
finite trees of bounded height and another useful tool for obtaining other lower 
bounds. 

Theorem 6.3. Let %,, be the class of binary relations on a set of size exp,_,(n) and 
m = m(n) be the least integer such that m log m 3 It. Then there is a prenex 
interpretation of the classes %?,, in the first-order classes 57 when r > 3 and in the 
first-order classes e when r = 3. 

Proof. Note that m = O(n/log n). 
First, consider the case r > 3. Define cp,(x, y) to be a formula, with free 

relation variable Q, which says that for all children tl, . . . , t,,, of x, there are 
children ul, . . . , U, of y such that Q(ti, ui) holds for 1 c i 6 m, and 

&fiern 4 = tj * ui = uj- 
*- 

We wish to write ~)m as a prenex formula which can be computed from n (in 
unary) by a reset log-lin reduction. Unfortunately, the displayed formula has 
length S2(n2) so we replace it with 

which is reset log-lin computable from n. Hence, we can write Q),,, as a prenex 
formula which is reset log-lin computable from n. 

When k > 0, the iterative definition 

IQ@, Y) = (P&, Y) A QLAY, x)lk 

defines an equivalence relation on the vertices of height less than k. For k = 1, Q is 
an equivalence relation on the leaves, which are precisely the vertices of height 0. 
This relation makes all leaves equivalent. Increasing k to 2, we must extend the 
relation to vertices of height 1. These are the vertices adjacent to a leaf and all of 
whose children are leaves. Two such vertices are equivalent if they either have 
the same number of children or both have at least m children. In general, for 
larger k we extend the relation to vertices of height k - 1 leaving the relation 
unchanged for lower heights. Two vertices of height k - 1 are equivalent if for 
each equivalence class represented among their children (on which the relation 
has already been defined), they either have the same number of children in the 
class or both have at least m children in the class. When k = r we have an 
equivalence relation on the set of all vertices in a tree of height r except the root. 
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By Theorem 3.2 there is a reset log-lin reduction taking the iterative definition 

[Q(x) Y) = R&G Y) A RAY, ~11, 
to an equivalent explicit definition 

IQ@, Y) = I+%%, Y)I- 

Moreover, since r is fixed we can arrange that r/t: is a prenex formula. We will 
say that two vertices x and y in a tree of height r have the same $:-type if 
qy(x, y) holds. 

Define 6,(r) to be a prenex formula that says x is a child of the root, x has at 
least one child, and no two distinct children of x have the same qy-type. Define 
3d,(x, y) to be a prenex formula that says 6(x) and 6(y) hold and there is a child 
z of the root coding (x, y). By z coding (x, y) we mean that for every qy-type, if 
x and y have no child of that type, then neither does z; if x has a child of that type 
but y does not, then z has precisely two children of that type; if x has no child of 
that type but y does, then z has precisely three children of that type; and if x and 
y both have a child of that type, then z has at least four children of that type. (For 
this coding to work, m must be at least 4, but this is not really a problem because 
if m < 4, then 12 < 5 and we can easily formulate interpretations of %‘,, in 9: when 
n < 5.) Both 6,(x) and ~d,(x, y) are reset log-lin computable from 12. 

Now is is easy to show by induction on k that if x and y are vertices of height at 
most k, where k < r - 1, and two subtrees formed by restricting to x and its 
descendents, and to y and its descendents, are nonisomorphic trees in Yr, then x 
and y have different r&?-types. We know that 

IJYI = (m + l)m+l> 2” 

and that if IJTI = t, then lYr+ll = (m + 1)’ so l.Yrl >exp,_i(n) when k>2. 
Thus, for vertices of height r - 2 there are at least exp,_,(n) qr-types. If x is a 
child of the root satisfying 6,(x), its children are of height at most r - 2 and it has 
either 0 or 1 children of each possible v:-type. Thus, it is possible to distinguish 
between as many as exp,_,(n) vertices x satisfying S,(x). Clearly, if 6,(x) and 
6,(y) hold, (x, y) can be coded by some child of the root. It is easy to see that 
every binary relation on a set of size at most exp,_,(n) is isomorphic to 
(6:(x), nF(x, y)) for some tree %?I in Yr. This concludes the case r > 3. 

Now we consider the case r = 3. The construction just given shows that every 
binary relation on a set of size at most 2” = 2°(nnogn) is isomorphic to 
(6:(x), JG:(X, y)) for some tree %?I in q. We must work harder to remove the 
log n denominator in the exponent; to do this we must interpret %,, in JT. 

We begin by specifying formulas 0,(x, y) and nm(x, y) which will define 
equivalence relations on vertices of height 2. The formula f3k(x, y) says that for 
all children t,, . . . , t, of x with at least 1 but no more than m children, there are 
children ul, . . . , u, of y with at least 1 but no more than m children, such that 
vy(ti, ui) holds for 1 =S i G m, and ti=ti*ui=uj holds for l~i, jcm. The 
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formula q&(x, y) says that for all children ti, . . . , t,,, of x with more than m 
children, there are children ui, . . . , u, of y with more than m children, such that 
&“(ti, ui) holds for 1 s i G m, and tj = tj e ui = ui holds for 1 G i, j G m. Using 
the same argument as above we can say that 0,(x, y) is a prenex formula which is 
reset log-lin computable from n and equivalent to e&(x, y) A 8k(y, x), and 
similarly for qm(x, y). 

Since 8, and r,im define equivalence relations on the set of vertices of height 2 
we can speak of the &-type and q,-type of a vertex x of this height. Define vi(x) 
to be the minimum of m and the number of children of x with precisely i children. 
Define Y’(X) to be the minimum of m and the number of children of x with at 
least i children. The 8,-type of x is precisely determined by the values 

v*(x), . . . , v,(x) and the q,-type by the values vM+l(x), . . . , Y~,_~, Y&(X). We 
see then that the t&type. and the q,-type of a vertex are independent, and that 
there are mm+’ > 2” &,-types and the same number of q,-types. 

Let 6,(x) be a prenex formula that says x is a child of the root and vO(x) = 0. 
Let n,(x, y) be a prenex formula that say 6,(x) and 6,(y) hold and there is a 
child z of the root such that Y”(Z) > 1 and 0,(x, z) and qm(z, y) hold. 

It is easy to arrange that 6,(x) and n,,(x, y) are reset log-lin computable from 
n. Each binary relation on a set of size at most 2” is isomorphic to 
(6:(x), X:(X, y)) for some tree ?I in 3:“. 0 

Corollary 6.4. Let r 3 3. 2,. has a hereditary NTZME(exp,_,(cn)) lower bound. 

Corollary 6.5. Let r > 3 and 2 be a theory in a logic L. Zf there is an interpretation 

of the classes YF”ogn in Z: then 2 has a hereditary NTZME(exp,_,(cn)) lower 

bound. 

Remark. For each r 3 3 there is a constant d > 0 such that every tree in 9Fnog” 
has at most exp,_,(dn) vertices. Hence, we can view Corollary 6.5 as a significant 
improvement over Theorem 6.2 for obtaining NTZME(exp,_,(cn)) lower bounds: 
rather than interpreting all binary relations on sets of size exp,_,(cn) we need 
only interpret all trees of height r on sets of this size. In applications it is often 
much more natural to interpret trees than binary relations. See also Theorems 7.5 
and 7.8. 

We next prove results similar to Theorem 6.3 and Corollaries 6.4 and 6.5 for 
finite trees of unbounded height. 

Theorem 6.6. Let Ce, be the class of binary relations on a set of size exp,(n - 3). 
Then there is a prenex interpretation of the classes %,, in the first-order classes 52. 

Proof. Recall from the proof of Theorem 6.3 the formula ~7 which defines an 
equivalence relation on the set of all vertices in trees of depth r except the root. 
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In that proof r was fixed, so we could assume that I+!J~ was in prenex form, and m 
increased with n. In this proof we fix m = 2 and consider formulas I/$ We see 
now that I#; has an iterative definition. By induction on k, there can be as many 
as exp,(k) vi-types among vertices of height k < n in a tree in 92. 

We define 6, and JC~ in essentially the way as in Theorem 6.3. The only 
difference is that when a vertex z coded a pair (x, y) there, z could have up to 
four children of the same type. Here, in trees from Yz, we have at most two, so 
we refer to types of grandchildren rather than children. Thus, we interpret binary 
relations on sets of size exp,(n - 3) rather than exp,(n - 2). 0 

Corollary 6.7. JZ, has a hereditary NTZME(exp,(cn)) lower bound. 

Corollary 6.8. Zf there is an interpretation of the classes .Yi in a theory 2, then 2 
has a hereditary NTZME(exp,(cn)) lower bound. 

7. Tools for linear ATIME lower bounds 

The theorems in this section are counterparts of those in the last section. In 
order to obtain linear alternating time lower bounds for logical theories we must 
introduce a stronger form of interpretability which we call monadic inter- 
pretability. Theorems 7.2 and 7.3 tell how to obtain lower bounds by monadic 
interpretation of addition relations and binary relations. We then show, in 
Theorems 7.4 and 7.6 that binary relations have monadic interpretations in 
certain classes of trees of bounded height. From these results we obtain useful 
tools for establishing linear A TZME lower bounds, and lower bounds for monadic 
second-order theories of trees of bounded height. 

Suppose Z is a theory in a logic L’ and %,,, %?r, %$, . . . are classes of models for 
a monadic second-order logic ML whose vocabulary consists of relation symbols 

p1, . . . > Pk. Suppose that there are formulas 6,(x, u), ~k(xr, u), . . . , n&, u), 

and a,(~, t, u) in L’, reset log-lin computable from n, so that for each ‘L?I E Ce, 
there is a model ‘21’ of _X and elements m in %?I’ with 

isomorphic to VI and the sets 

E’(x, m) n o%, P, m) 

range over all subsets of 6:,(x, m) asp ranges over ‘?I’. The parameter sequence 
u is allowed to grow as a function of n but t must remain fixed. The sequence 

K I n L 0} where 

1, = (L Jr:, f * * , d, %> 

is called a monadic interpretation of the classes Ce, in Z. We define simple, 
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prenex, and iterative monadic interpretations similarly to definitions in the last 
section. We also define the notion of monadic interpretation of classes %,, in 
classes %L as in the last section. 

Evidently, a monadic interpretation of classes %,, is nothing more than an 
interpretation where the models in %,, are regarded as models for a monadic 
second-order logic. Note that if we have an interpretation of classes %,, in a 
theory 2 in some monadic second-order logic L’, then we can automatically 
extend to a monadic interpretation by taking a,(~, X) to be the formula x E X 
where X is a new set variable. 

The framework for obtaining linear alternating time lower bounds is essentially 
the same as before. Suppose we have a monadic interpretation of classes %,, in 
classes %‘k,, for some nonnegative integer k and that there is a prescribed set r of 
formulas over ML such that 

{Q, E r 1 q is realized in some 2l E %,, where 1 cpj = n) 

and inv*(ML) are ATZME( T(cn), cn)-inseparable for some c > 0. Now given 
formula Q, in ML we form qt as follows. Replace each monadic quantification VX 
or 3X with a quantification Vf, or St,, where fx is a variable sequence of the 
same length as t, uniquely determined by X, and not in conflict with the other 
variables in q. (We may need to change other indices to avoid conflicts.) 
Introduce a relation variable S and replace each atomic formula x E X by 
S(x, tx). We can easily arrange that there be a reset log-lin reduction taking Q.J to 
qt. Now map each formula q in r to the formula q’ given by 

[D(x) = 6,] [P,(x,) = Jr:] . * * [&(x/J = Jr:] [S(x, f) = on] (rp,“)’ 

where n = 1~1. As before, it is easy to arrange that Iv’] 2 kn. If Q, is realized in 
some model in Ce,, then rp’ is realized in some model in %;,; if Q, is true in no 
weak model, then rp’ is true in no model or weak model (depending on whether 
L’ is first-order or monadic second-order). When we have a prenex interpreta- 
tion, or an iterative interpretation and the definitions in q’ are replaced by the 
appropriate iterative definitions, the sentences q’ all belong to some prescribed 
set r’ of formulas over L’. We have now that 

{CJJ’ E r’ 1 q’ is realized in some ‘8’ E %L where Iv’1 = n} 

and inv*(L’) are ATZME(T(cn), cn)-inseparable for some c ~0. Then sat(Z) 

and inv(L’) are ATZME(T(cn), cn)-inseparable for some c > 0 so 2 has a 
hereditary A TZME( T(cn), cn) lower bound. 

As before we allow a more elaborate definition of monadic interpretations 
where formulas a,, JC:, . . . , JC~, and a, may contain free relation variables which 
also receive prenex or iterative definitions. 

We summarize these remarks in the following theorem which parallels 
Theorem 6.1. 
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Theorem 7.1. Let Y,,, Gel, %$, . . . be classes of models such that for some 
prescribed set Z of formulas over a monadic second-order logic L, 

{q,~L~q,isrealitedinsomeYl~%~where~q~=n} 

and inv*(L) are ATZME(T( cn cn inse ara e ), )- p bl f or some c >O. Let %A E %; c 
%e;s*** be classes of models of a theory 2 in a logic L’. Zf there is a prenex or 
iterative monadic interpretation of the classes %,, in the classes Se;,, for some 
nonnegative integer k, then the following are true. 

0:) Th 
e sets sat(z) and inv(z) are ATZME(T(cn), cn)-inseparable for some 

(ii) Zf for some d between 0 and 1, T(dn) = o(T(n)), then 2 has a hereditary 
ATZME(T(cn), cn) lower bound. 

(iii) For each 2’ c val(z), sat(JC’) and val(J5’) are both hard for the complexity 

class 

via reset log-lin reductions. 

(iv) For each 2” c val(z), sat(Y) and val(_X’) are both hard for the complexity 
class 

UoATZjWT(nc), nc) 

via polynomial time reductions. 
(v) There is a prescribed set r’ of sentences over L’ such that 

{ q~’ E T’ 1 cp’ is realized in some 3 E (e: where lcp’l= n) 

and inv*(L’) are ATZME(T(cn), cn)-inseparable for some c > 0. 

The following theorems are immediate consequences of the preceding theorem 
and Theorems 5.1, 5.2, and 5.4. 

Theorem 7.2. Let T(n) be a time resource bound such that for some d between 0 
and 1, T(dn) = o(T(n)). Let %,, be the class of addition relations on sets of size at 
most T(n) and J? a theory in a logic L. Zf there is a monadic interpretation of the 
classes %‘,, in 2, then 2 has a hereditary ATZME(T (cn), cn) lower bound. 

Theorem 7.3. The previous theorem holds with binary relations in place of 
addition relations. 

From the following theorem we obtain a useful tool for obtaining lower 
bounds, but not the best lower bounds for monadic second-order theories of trees 
of bounded height. 
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Theorem 7.4. Let %,, be the class of binary relations on a set of size exp,_,(n). 
Then there is an iterative monadic interpretation of the classes %‘,, in the monadic 

second-order classes .FF? when r > 2 and in the monadic second-order classes 3zb 
when r = 2. 

Proof. The proof is very similar to the proof of Theorem 6.3. First, consider the 

case r > 2. 
We iteratively define a relation Q ‘(X, Y) which says that 1x1 = 1 YI c 2”. Write 

Z =X W Y as an abbreviation for Z = X U Y A X tl Y = 0. Let p(X, Y) be the 
formula 

v(3Xr,X*, Y,, Y,)(x=x,wx,AY=Y,wY, 

A Q’V,, r,) A Q’W,, Y,)). 

The iterative definition [Q’(X, Y) = P]~+~ gives the desired relation. 
Now let &, y) be a formula, with free relation variable Q, which says that if 

X is a subset of the set of children of x, and Q(x,, x2) holds for all x1, x2 E X, 
then there is a set Y which is a subset of the set of children of y such that 
Q’(X, Y) holds, and Q(yr, y2) holds for all y,, y, E Y, and Q(xl, yJ holds for all 
x,EXandy,EY. 

Consider a tree in .7?. When k > 0, the iterative definition 

[Q<A Y) = Q+ Y) A ‘?‘(Yt x)]k 

defines an equivalence relation on the vertices of height less than k. For k = 1, Q 
is an equivalence relation making all leaves equivalent. Increasing k to 2, two 
vertices of height 1 are equivalent if they have the same number of children. (In 
Theorem 6.3 this was true only up to O(n/log n) children. This is the reason we 
get an additional level of exponentiation here.) For larger k extend to vertices of 
height k - 1 leaving the relation unchanged at lower heights. Two vertices of 
height k - 1 are equivalent if for each equivalence class represented among their 
children (on which the relation has already been defined), they either have the 
same number of children in the class or both have at least 2” children in the class. 
There is a reset log-lin reduction taking the iterative definition 

[Q@, Y) = dx, Y) A V’(Y, x)lr 

to an equivalent explicit definition 

[Q(x) Y) = MT Y)I. 

Moreover, since r is fixed this can be expressed as a simple definition. The rest of 
the theorem proceeds as in the proof of Theorem 6.3 except that t&! is used in 
place of @, yy is used in place of $F, and we automatically have a monadic 
interpretation since we are interpreting in a monadic second-order theory. 

Let us consider the case r = 2. Our formulas will now have parameters U, V, 
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W, and Z. Let @(x, y, U) and @(x, y, V) be defined as +‘;(x, y) above except 
that rather than comparing the number of children of vertices x and y of height 1, 
@(x, y, U) compares the number of children of x and y in U, and ez(x, y, V) 
compares the number of children of x and y in V. Now let 6,(x) be the formula 
x E Z. Let X,(X, y) be a prenex formula that asserts the following. 

(a) x E Z and y E Z. 
(b) If x #y there is a t $ Z such that f3i(x, y) holds and @(t, y) holds. 
(c) Ifx=y, thenxEW. 
Every binary relation on a set of size at most 2” is interpreted in some tree in 

pzb. For every pair (x, y) in the relation with x f y there is at least one t 4 Z such 
that 0,(x, t) and qm(t, y) hold. 0 

Corollary 7.5. Let r 2 2 and 2 be a theory in a logic L. Zf there is a monadic 
interpretation of the classes Yr in Z: then 2 has a hereditary 

ATZME(exp,_,(cn), cn) 

lower bound. 

Remark. For each r 2 2 there is a constant d > 0 such that every tree in $y has 
at most exp,_,(dn) vertices, so we can view Corollary 7.5 as an improvement over 
Theorem 7.3 for obtaining ATZME(exp,_,(cn), cn) lower bounds. It is instructive 
to compare this result with Corollary 6.5. It often happens that an interpretation 
of the classes YF”Ogn in a theory can be modified slightly to obtain a monadic 
interpretation of the classes ~21 1, even when the theory is first-order. This 
explains, in part, why NTZME lower bounds can often be pushed up to linear 
ATZME lower bounds. 

We now prove another theorem about monadic interpretations of classes of 
trees of bounded height. We shall see in Section 9 that this theorem gives the best 
lower bounds for monadic second-order theories of trees of bounded height. 

Theorem 7.6. Let %,, be the class of binary relations on a set of size 
exp,( [n/log n] ). Then there is a prenex monadic interpretation of the classes %,, in 
the monadic second-order classes ~~P2(Lnnogn1) when r > 1 and in the monadic 
second-order classes Fexp1(L2n”ogn’) when r = 1. r 

Proof. First, consider the case r > 1. 
Formulas will contain parameters X = XI, X2, . . . , X,, where m = 1 + 

[nllogn]. This is the first case we have encountered where the parameter 
sequence grows with n. Let Q’ be a binary relation variable and 0,(x, y) a 
prenex formula that says x and y are both leaves and 
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Q’ will be given by the prenex definition [Q’(x, y) = f3,]. Q’(x, y) is obviously an 
equivalence relation on the vertices of height 0. 

Now let cp(x, y) be a formula (with free relation variable Q) that says x is not a 
leaf and for every child t of x there is a child u of y such that Q(t, U) holds. Now 
the iterative definition 

[Q<x, Y) = Q’b Y) v (~(x, Y) A V(Y, x))L 

defines an equivalence relation on the vertices of heights less than k. For k = 1, Q 
is identical to the equivalence relation Q’. For larger k we extend the relation to 
vertices of height k - 1 by specifying that two such vertices are equivalent if 
precisely the same equivalence classes are represented among their children. 
When k = r we have an equivalence relation on the set of all vertices in a tree of 
depth r except the root. 

The iterative definition 

[Q@, Y) = Q’(x) Y) v (~6, Y) * ~P(Y, x))lr 
can be converted to a prenex definition 

[Q<x, Y) = r&(x, Y )I 

of fixed length since r is constant. By Theorem 3.1 the sequence 

[Q’<x, Y> = %l[Q<x, Y) = v& r)l 
of prenex definitions can be replaced by a single prenex definition 

lQ(x, Y) = Ck Y)I 
where vy(x, y) is reset log-lin computable from n. We will say that two vertices x 
and y in a tree of height r have the same I.,!$“-type if r#(x, y) holds. 

Now it is easy to show by induction on k that there is a tree of height r and 
sets X1,..,, X,,, of leaves in this tree such that there are at least 1 + 

exp,+,( ]n/logn]) vr-types among vertices of height k when k < r: every 
nonempty set of VT-types of vertices of height k - 1 determines a distinct 
WY-type for a vertex of height k. More is required to see that there is such a tree 
in J:X~~(~“““~~~). When k = 0 there is no problem. Consider the case k = 1. For 
i= 1,2,. . . , exp,( [n/log n]) let ri be the tree of height 1 with precisely i leaves. 
Each of these trees is in 9ypz(m). Without much trouble we can choose, from the 
leaves of each ri, sets X1, . . . , X, so that the roots of ri and Zj have different 
#?-types when i #j. Further, for tr, X1, . . . , X,,, can be chosen in at least two 
ways. Thus, there are at least 1 + exp,( [n/log n]) #?-types among vertices of 
height 1. 

From the set of trees {ri 1 1 s i c expz(m)} choose a nonempty subset and form 
a tree of height 2 by directing edges from a new vertex to the roots of trees in this 
subset. We can form at least 1 + exp,( ]n/log n] ) such trees, each one in 
~Pz(tnfl‘%nl) M . oreover, if we carry along the subsets X,, . . . , X,,, in each 
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subtree ri, each root has a distinct qy-type. Continue for each k < r, forming at 
least 1 + exp,+,( [nllogn]) trees in ~Pz(L”“ogn’), with subsets X1, . . . , X,, so 
that each root has a distinct r&!-type. 

The interpretation of binary relations on sets of size exp,( [n/log n]) now uses 
precisely the same construction used in the proofs of Theorems 6.3 and 7.4. 

Let us consider the case r = 1. Our formulas will now have parameters 
x=x1 )..., x,, Y=Yr )...) Y,, and Z and W. Define &,,(x, y) as above and 
n,,,(x, y) in the same way except that Y is used in place of X. These formulas 
define independent equivalence relations on leaves so we can speak of the 8,- 
and q,,,-type of a leaf. The relations are independent and of index at most 2”. 
The rest of the proof then follows as the in case r = 2 in Theorem 7.4. 0 

Corollary 7.7. Let r 2 1. A42, has a hereditary ATIME(exp,(cn/log n), cn) lower 

bound. 

Corollary 7.8. Let r 5 2 and 2 be a theory in a logic L. Zf there b a monadic 

interpretation of the classes J, ~expz(“i’ogn) in 2, then 2 has a hereditary 

ATZiVE(exp,(cn/log n), cn) 

lower bound. 

The case r = 1 is worth stating separately. Observe that trees of height 1 do not 
really have much structure. We can regard them as sets with one distinguished 
point, the root. Therefore, we state the result in terms of interpretations of sets 
rather than trees. 

Corollary 7.9. Let Ce, be the class of sets of size at most 2”‘Og” and 2 a theory in a 
logic L. Zf there is a monadic interpretation of the classes %,, in 2, then 2 has a 
hereditary ATZME(2”““0g”, cn) lower bound. 

This concludes our survey of tools for establishing lower bounds. The next 
section contains many examples of their application. 

8. Applications 

In this section we use the methods developed in earlier sections to give a 
representative sample of arguments for known lower bounds of theories. We 
believe that the details given here justify the claim that every known lower bound 
for a theory can be obtained in this way, with simpler, more conceptual proofs. In 
particular, there is no further need to code Turing machine computations. 
Moreover, in almost all cases our approach gives technical improvements on 
known results: we always obtain hereditary lower bounds; these bounds hold for 



A method for lower bounds on theories 49 

both sat(Z) and t&(2), in contrast to most published NTZME lower bounds 
which are for just sat(Z); and the reductions used are reset log-lin reductions 
rather than polynomial time, linearly bounded reductions. In a few cases we 
obtain qualitative improvements in the bounds. The most significant improvement 
is that we always obtain inseparability results. 

To simplify the statement of results and avoid repetition, when we say a theory 
Z has a hereditary NTZME(T(cn)) 1 ower bound, we intend each of the statements 
(i)-(iv) in Theorem 6.1. When we say a theory .Z has a hereditary 
ATZME(T(cn), cn) 1 ower bound, we intend each of the statements (i)-(iv) in 
Theorem 7.1. For convenience we will also use functional notation rather than 
relations in some examples. 

Example 8.1. The jirst-order theory of finite linear orders with an added unary 
predicate. 

We show that this theory has a hereditary lower bound of 

NTZME(exp,(cn)) 

by iteratively interpreting the classes 9: and applying Corollary 6.8. In fact, we 
interpret the classes & consisting of the finite trees of height IZ. 

We denote the linear order by s and the predecessor and successor of an 
element x by x - 1 and x + 1 (when they exist). Let x < y be the formula 
x s y A x # y and LAST(x) the formula asserting that x is the last element in 
the order. Let P be the unary relation symbol. We can identify each finite 
model ‘2l = (m, R) of this theory (where m = (0, . . . , m - 1)) with a string 
a+zi * * - LI,,,_~ of O’s and 1’s. We stipulate that Ui = 1 if and only if P(i) holds. 

Representing a finite tree as a string of O’s and l’s is straightforward. Now with 
each vertex x in a tree of height n associate a string that begins On-‘+il, where r is 
the depth of x, followed by the strings associated with each child y of x. The tree 
is represented by the string associated with the root. For example, the tree of Fig. 
1 is represented by the string 

0001001010100100101. 

Fig. 1. Tree example. 
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In general, r may have many representations, since the children of each vertex 
are ordered arbitrarily. Thus, the tree above is also represented by the string 

0001001001010010101. 

However, t can be easily interpreted within each of its representations ‘3. 
Let 6,(x) be the formula P(X) (indicating that x is a position where 1 occurs). 

Let 0(x, y) be the following formula with free relation variable Q: 

((x = 0 v P(X - 1)) A (y = 0 v P(y - 1))) 

v (+‘(x - 1) A +(y - 1) A Q(x - 1, y - 1)). 

Then [Qk Y) = %+, defines a relation Q(x, y) which holds precisely when the 
number of consecutive O’s preceding position x and the number of consecutive O’s 
preceding position y are equal and at most n. Let X,&X, y) be the formula 

X <Y A p(x) A p(Y) AlP(x - 1) A Q(x - 1, y) A vz (x <z <y*lQ(x, z)). 

Thus, JG,(X, y) holds precisely when there are l’s at positions x and y, x precedes 
y, there is exactly one more 0 preceding x then preceding y (but no more than n 
O’s preceding y), and there is no position between x and y which has as many O’s 
preceding as x has. Now a tree r of height n represented by a linear order !?I is 
isomorphic to (SE(x), nE(x, y)) when Q is given by the iterative definition 

[Q<x, Y) = %+l. 

Remark. Note that for some d > 0 each tree in 9: has at most exp,(dn) vertices 
so for some d’ >O each representation I?I of a tree in this class has at most 
exp,(d’n) elements. From Theorem 6.1 we see that we have a tool for obtaining 
further lower bounds. If there is a prenex or iterative interpretation of the 
classes %2,, consisting of linear orders of length at most exp,(n) with added 
unary predicates in a theory z, then 2 has a hereditary lower bound of 
NTZME(exp,(cn)). 

Example 8.2. The first-order theory of all linear orders. 
We show that this theory has a hereditary lower bound of 

NTZME(exp,(cn)) 

by a simple interpretation of the models in Example 8.1. 
Consider a finite linear order (n, S) together with a unaty relation R on n 

interpreting the predicate symbol P. We will represent (n, S, R) by a linear 
order I?I = (S, =z) formed by replacing each i E n with a copy of the closed unit 
interval [0, l] if i is not in R and with a single point followed by a copy of the 
closed unit interval [0, l] if i is in R; the order is extended in the obvious way, 

Now we interpret (n, G, R) in ‘2l as follows. Let 6(x) be the first-order 
formula saying that x has no immediate successor and x is either the least element 
or has an immediate predecessor. Clearly, S(x) picks out all the left endpoints of 
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the unit intervals in (S, s). There are precisely n elements in S’(X). Let X(X) be 
the first-order formula saying that x has not immediate successor but does have an 
immediate predecessor y such that either y has no immediate predecessor or is 
the least element. Thus, n(x) picks out the left endpoints of the unit intervals 
associated with elements i in R. Thus, (n, C, R) is isomorphic to (6%(x), scu 

(x7 YIP JG%N. 

Remark. Robertson [59] and Stockmeyer [68] showed independently that the 
first-order theory of finite linear orders with an added unary predicate is not 
elementary recursive. They obtained an 

NTIME(exp,(c log n)) 

lower bound, but not in the hereditary form. Stockmeyer obtained the same 
bound for the first-order theory of linear orders. 

Stockmeyer shows in the same paper that if (A, S) is any infinite linear order, 

then the theory of the models (A, C, R), where R is an added unary relation, is 
not elementary recursive. A simple interpretation of Example 8.1 in this theory 
shows that it has a hereditary NTZiVE(exp,(cn)) lower bound. 

Of course, from Example 8.1 also follows the result of Meyer [49] that the 
weak monadic second-order theory of the natural numbers with successor is not 
elementary recursive and, hence, the same result for other monadic second-order 
theories, including the monadic second-order theory of two successors studied by 
Rabin 1541. In all cases we have hereditary NTfME(exp,(cn)) lower bounds. 

Another result that can be immediately obtained in this way is the following 
strengthening of a result announced in Mayer [48]. 

Example 8.3. The first-order theory of ( (0, l}*, ro, r, , s), the binary tree formed 

by taking the prefix order =S on (0, l}*, together with successor functions r. and r,. 

(Thus, u s w precisely when there is a v such that uv = w, and To(w) = w0, 

rl(w) = wl.) 
We show that this theory has a hereditary lower bound of 

NTIME(exp,(cn)) 

by a simple interpretation of the classes in Example 8.1. 
Let %?I = ((0, l}*, r,, r,, S). We produce formulas 6(x, w), n(x, y, w), and 

n(x, w) such that 

(6% w), e, y, w), J+, w)) 

includes all models (n, C, R) in Example 8.1 as w ranges over (0, l}*. The 
formula 6(x, w) is x =z w A x # w. The formula n(x, y, w) is 

6(x, w) A 6(y, w) AX cy. 

The formula JG(X, w) is 6(x, w) A r*(x) s w. 
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Example 8.4. The first-order theory of finite unary functions. 
A unary function is a model (B, f) where f is a function from B to itself. We 

show that this theory has a hereditary lower bound of 

NTZME(exp,(cn)) 

by a simple interpretation of the classes Fi and applying Corollary 6.8. In fact, 
just as in Example 8.1, we interpret the classes Y,, consisting of the finite trees of 
height n. 

Let 6(x) be the formula x =x and q(x, y) be the formula 

x=f(y)/\xfy. 

Clearly, every finite tree is isomorphic to a model (6’(x), n%(x, y)) for some 
unary function ‘21. S!l is formed from the tree by mapping every vertex other than 
the root to its parent and the root to itself. 

Remark. A lower bound of NTIME(exp,(c log n)) for the first-order theory of 
unary functions was announced by Meyer [48], but no proof has ever been 
published. 

A simple interpretation in the opposite direction (interpreting unary functions 
in trees) appears in Korec and Rautenberg [40]. Thus, the theory of finite unary 
functions and the theory of finite trees have the same complexity up to a constant 
factor in the argument. 

Our next example gives another family of useful theories which are not 
elementary recursive: the theories of pairing functions. Lower bounds for these 
theories were first given by Rackoff [56] ( see Ferrante and Rackoff [24]). Their 
treatment shows that these theories are in fact hereditarily ‘not elementary 
recursive. (To obtain this from the result stated by Ferrante and Rackoff, we 
must use the fact that the theory of pairing functions is finitely axiomatizable.) 

Example 8.5. The theory of any pairing function. 
A pairing function is a model ‘II = (B, f) where f is a one-to-one binary 

function on B. We show that the theory of any pairing function has a hereditary 
lower bound of 

NTZME(exp,(cn)) 

by iteratively interpreting the classes %,, of linear orders of length exp,(n) with an 
added unary predicate. These classes were discussed in Example 8.1. 

The idea behind the interpretation is to have elements of ‘?I represent 
sequences of length exp,(n). One way to do this, say for an element a,, is to find 
a pair (a,, al) such that f (aO, al) = a,. (There is at most one such pair, since f is a 
pairing function.) Then find a quadruple (am, sol, alo, all) such that f (am, a& = 
a, and f (a,,,, all) = a, and repeat until we have a sequence (a,,, 1 w E (0, l}“), 
where m = exp,(n - 1). (The order on (0, 1)” is the lexicographic order.) We 
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could then say that a, represents this sequence. We may not be able to carry out 
this construction for every element a, because f may not be onto, but certainly 
every sequence of length exp,(n) is represented by some element, and every 
element represents at most one sequence of length exp,(n). 

We may regard this construction as giving a labeling of vertices in the full 
binary ordered tree of height m. The root is labeled aE, its left and right children 
are labeled a,, and al, respectively, and so on. Unfortunately, the construction 
has two limitations that make it unacceptable for our purposes: a branch in the 
tree may have several vertices with the same label; and two different branches 
may be labeled identically. We must modify the construction to overcome these 
difficulties. Rather than taking a,,,,, and a,,,, so that f(a,, a,l) = a,, we will take b 
and c so that f(b, c) = a, and then take a, and a,, so that f(a,, a,,) = c. That 
is, ati and a,l are chosen so that 3xf(x, f(alvo, a,,)) = a, holds. Clearly, a,, and 
a,l are uniquely determined by a,. It is still true that every element represents at 
most one sequence of length exp,(n), but now a sequence of length exp,(n) may 
be represented by many elements. 

We claim that with this modified construction, every sequence of length 
exp,(n) is represented by some element such that no branch in the associated tree 
has duplicate labels and no two branches are labeled identically. Consider a 

sequence 

where m = exp,(n - 1). We can find elements a, for each w E (0, l}” with k <m 

such that 3xf(x,f(a ,,,,,, a,,,,)) = a, always holds; whenever u is a prefix of w, 

a, #a,; and a, # a,l. The elements are selected in a bottom up fashion, i.e., 
working from the leaves of the tree up to the root. Suppose that elements a, are 
already known when w lexicographically precedes v and we wish to find a,,,. Since 
f is a pairing function, f(x, f(a&, a,l)) takes distinct values as x ranges over the 
model. Thus, we can choose x so that a, =f(x, f(a&, a,,J) is not equal to a, 
when w lexicographically precedes v since there are only finitely many such V. 
Following this procedure we eventually reach a, and all labels in the tree are 
distinct. 

Let LEFT(x, y) be the forula (3, u) f(t, f(y, u)) =x and RZGHT(x, y) be the 
formula (3, u) f(t, f(u, y)) =x. Th us, LEFT(x, y) holds when y is the left child 
of x in our tree, and similarly for RIGHT(x, y). Let SuCC(x, y) be the formula 
LEPT(x, y) v RZGHT(x, y). 

We wish to specify three first-order formulas. Formula 6,(x, u) should say that 
x in an element in a sequence of length exp,(n) which is represented by u; that 
the elements of this sequence are distinct; and that no branch in the associated 
tree has duplicate labels. Formula d,(x, y, u) should say that 6,(x, u) and 
6,(y, u) hold, and that either x = y or in the sequence represented by u, x occurs 
before y. Formula a,(~, x’, u, u’) should say that 6,(x, u) and 8,(x’, u’) both 
hold, and that x occupies the same position in the sequence represented by u as x’ 
does in the sequence represented by u’. 
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Now suppose that we already have relations 

Q&G u), Q,<x, Y, u), and Q&, x’, u, u’) 

that hold under the same conditions as 6,(x, u), A,(x, y, u), and a,,(~, x’, u, u’), 
only for sequences of length exp,(n - 1) rather than exp,(n). (If n = 0, take QO, 
Q,, and Q, to be empty relations.) 

Suppose n > 0. Using Q0 and Q,, we can say, in regard to a sequence of 
distinct elements of length exp,(n - 1) represented by V, that a particular 
element is first; also, that a particular element last; also, that one element occurs 
before another; and that one element occurs immediately before another. Hence, 
we can say that v represents a brunch of length exp,(n - 1) from an element u. 
By this we mean u represents a sequence of distinct elements of length 
exp,(n - 1) such that when x is the first element of the sequence, SUCC(u, x) 
holds, and when x occurs immediately before y in the sequence, SUCC(x, y) 
holds. 

Now define formulas 6, A, and (J in terms of QO, Q,, and Q2. The formula 
6(x, u) says that if Q, is empty, then x = u, and if Q0 is not empty, the following 
hold. 

(a) There is an element u representing a branch of length exp,(n - 1) from u 
with x as the last element. 

(b) For every element y occurring in a branch of length exp,(n - 1) from u, if 
y is not the last element in the branch, then there are distinct elements z and z’ 
such that LEFT(y, z) and RZGHT(y, z’) hold. This ensures that the binary tree 
is full and that no two branches in the tree are labeled identically. 

(c) If v and V’ represent different branches of length exp,(n - 1) from u, then 
the last elements of these two branches are distinct. (It is easy to tell if TV and u’ 
represent different branches; this happens if and only if there are lements y fy’ 
such that Q2(y, y’, u, v’) holds.) 

The formula A(x, y, u) says that if Q1 is empty, then x = y = u, and if Qr is not 
empty, then either x = y, or the following hold. 

(a) There are branches from u, represented by v and V’ and with last elemengs 
x and y, of length exp,(n - 1). 

(b) There is an element z such that if LEFT(z, t) and RIGHT@, t’) hold, then 
Q2(t, t’, u, v’) holds. This guarantees that the branch from u to x is to the left of 
branch from u to y. 

The formula a(x, x’, u, u’) says that if Q2 is empty then x = u and x’ = u’, and 
if Q2 is not empty, then the following hold. 

(a) There is a branch from u, represented by u and with last element x. There 
is another from u’, represented by V’ and with last element x’, of length 
exp,(n - 1). 

(b) If Q,(z, z’, 21, v’) holds, z occurs immediately before t in the branch 
represented by v, and z’ occurs immediately before t’ in the branch represented 
by u’, then LEFT(z, t) holds just in case LEFT(z’, t’) holds. This says that the 
same sequence of lefts and rights leads from u to x as from u’ to x’. 
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Clearly, 6, A, and o are first-order expressible in terms of Q,, Q1, and Q2. The 
simultaneous iterative definition 

gives the desired formulas a,, A, and a,,. By Theorem 3.3, this simultaneous 
iterative definition can be replaced by just an iterative definition.. 

For some element U, (6%(x, u), A’(x, y, u)) is a linear order of length exp,(n). 
Then as U’ ranges over the elements in ?I, 6%(x, U) rl6%(x, u’) ranges over all 
unary predicates on 6%(x, u). Thus, we can interpret every linear order of length 
exp,(n) with an added unary predicate. 

This is the first example we have encountered where the relations being 
iteratively defined do not occur positively in the operator formulas. Hence, 
according to the remark following Theorem 3.1, we cannot guarantee that the 
lower bounds obtained here hold if only the connectives A, v , and -I are allowed 
in formulas. However, with slightly more effort we can overcome this difficulty 
and use only formulas where the defined relation symbols occur only positively. 
We have not done so to simplify exposition. 

Remark. It is a long-standing open question whether the first-order theory of the 
free group Fk on k > 2 generators is decidable. Semenov [65] observed that this 
theory is at least not elementary recursive. He showed that it is possible to give a 
first-order definition of a pairing function on Fk, from which it follows that the 
theory of Fk has a hereditary NTIME(exp,(cn)) lower bound. 

This use of pairing functions is a quick way to show that many decidable 
theories are hereditarily no elementary recursive. For example, consider the 
first-order theory of the model (N, +, 2”), where N is the set of nonnegative 
integers. Semenov [66] showed that this theory is decidable. Observe that the 
function 

f(x, y) = 2& + 22y+1 

is a pairing function on this model, so the theory has a hereditary exp,(cn) lower 
bound. Variations on the same argument apply to the other models (N, +, g(x)) 
treated by Semenov [66] when g(x) grows rapidly enough. In particular, when 
g(x + 1) > 2g(x), the argument gives a hereditary exp,(cn) lower bound. 

This completes our discussion of theories which are not elementary recursive. 
Note that in all cases treated here, there is an iterative interpretation of the 
classes 9: in the theory treated. (Sometimes, there is an iterative interpretation 
of the classes 9: into classes %‘” and another iterative interpretation of the classes 
%” in the theory; the chain of interpretations may be even longer. Nonetheless, 
these situations still quality as interpretations of T$) It seems likely that almost 
all ‘natural’ theories that are hereditarily not elementary recursive interpret finite 
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trees (in the same sense that almost all ‘natural’ theories that are undecidable 
interpret finite binary relations). Of course, an interpretation of trees can be 
traced back, in Theorem 6.3, to an interpretation of binary relations on sets of 
size exp,(n), and thence, in Theorem 4.1, to a coding of Turing machines with a 
exp,(n) time resource bound. However, the Turing machine encodings lie very 
far below the surface and are extremely complicated compared to the original 
interpretation of trees. 

We now treat various elementary recursive theories for which sharp lower 
bounds are known. 

Example 8.6. The first-order theory of models (N, S, P), where N is the 
nonnegative integers, S is the successor function on N, and P is an arbitrary unary 
relation. 

We show that this theory has a hereditary lower bound of 

NTZME(exp,(cn)) 

by iteratively interpreting the classes z$‘~~” and applying Corollary 6.5. 
We use the same coding of trees into strings of O’s and l’s that was used in 

Example 8.1. Given a tree t E 9inogn, let aOal . . - a,_, be a string that represents 
it and P a unary relation on N such that P(i) holds if and only if either i < m and 
ai = 1, or i is m or m + 1. We want to recover r in (N, S, P). The problem is that 
we have only a successor function rather than the linear order we had in Example 
8.1. When we examine the role played by the linear order there, however, we see 
that we did not need the full linear order. We needed only enough of the order to 
say x < y when y is a child of X, and that there is no position between x and y 
which has as many O’s preceding as x has when y is a child of X. Moreover, we did 
not need to make either statement when x is the root because there are no other 
positions in the coding which have as many O’s preceding as x has. Thus, we 
needed only to determine if x 6 y when x and y belong to the same primary 
subtree. For r E Yi’logn every primary subtree is in 5i”lnogn. It is not difficult to see 
that for some d, the trees in Yi’logn are all represented by strings of length at 

most 2d”. Thus, if we can define a relation which holds when x s y and y - x s 2d” 
we are done. Let 8 be the formula x =y v S(x) =y v 3.z (Q(x, z) A Q(z, y)). 
The iterative definition [Q(x, y)] = [@I& gives the desired relation. 

Remark. This proof shows that if there is a prenex or iterative interpretation of 
the classes %,, consisting of successor relations of length at most exp,(n) with 
added unary predicates in a theory 2, then 2 has a hereditary lower bound of 
NTZME(exp,(cn)). The same argument shows that if there is a prenex or iterative 
interpretation of the classes %A consisting of successor relations of length at most 
2” with added unary predicates in a theory 2, then J5 has a hereditary lower 
bound of NTZME(2=“). 
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Example 8.7. The theory of one-to-one unary functions. 
We show that this theory has a hereditary lower bound of 

NTZME(2”) 

by iteratively interpreting successor relations of length at most 2” with an added 
unary predicate (as discussed in the preceding remark). 

Let Y,, be the class of finite one-to-one unary functions (B, f) such that the 
cycle decomposition has, for each k with 1 G k c 2”, at least one and not more 
than two cycles of length k. We regard each such model as coding a unary 
prediate P on (1, 2, . . . , 2”}, the presence of a single k-cycle indicating that 
lP(k) holds and the presence of two k-cycles indicating that P(k) holds. 

Define the distance between elements x and y on the same cycle to be the least i 
such that f ‘(x) = y. For elements X, y, and z on the same k-cycle, we say that y is 
between x and z if the distance from x to z is the sum of the distances from x to y 
and y to z. Now it is a simple exercise to give a simultaneous iterative definition 

[ 
Q,(x, Y, z) = 01 

Q,(x, Y, x’, Y ‘) = 02 1 n 

such that Qi(x, y, z) holds precisely when the distance from x to y and the 
distance from y to z are at most 2” and y is between x and z, and Q&V, y, x’, y’) 
holds precisely when the distance from x to y is the same as the distance from x’ 
to y’ but not more than 2”. 

Assume that no cycle has length more than 2”. For Q1 and Q2 as given above, 
let r~~(x, y) be the formula Q2(f (x), x, f (y), y) .It is easy to see that n,, defines an 
equivalence relation that holds precisely when x and y lie on cycles of the same 
length. Let n,(x) be the formula 

3z (lQ,(f (XL z> x) A Q4f 61, x, f(z), z)). 

Thus, nn(x) holds precisely when there are at least two cycles with the same 
length as the cycle containing x. Let a,(~, y) be the formula 

Qz(f(x), x,f(f(Y)), Y). 

We see that 0,(x, y) holds precisely when x lies on a cycle of length one less than 
the cycle containing y. These formulas interpret successor relations on set of size 
at most 2” with an added unary predicate. The interpretation differs from 
interpretations discussed previously, however, in that we must take a quotient by 
the equivalence relation nn, rather than interpret the domain as a subset. 

Remark. The theories in Examples 8.6 and 8.7 are treated by Ferrante and 
Rackoff [24]. They give a matching upper bound for the former and an upper 
bound of ZVTZME(2d”‘) for the latter. (Example 8.7 first appeared in Ferrante 
[23].) The inseparability, hereditary, and hardness results presented here are 
new. 
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Example 8.8. TheJirst-order theory of ((0, l}*, r,, ri), the binary tree on (0, l}* 
together with successor functions r. and rl (described in Example 8.3). 

We show that this theory has a hereditary lower bound of 

A TZME(2’“, cn) 

by a monadic interpretation of the classes .5$” and applying Corollary 7.5. Each 
tree in J:” has at most 2d” vertices, for some d > 0; therefore, each such tree can 
be represented by a linear order of length 2k” with added unary predicate, as in 
Example 8.1. 

Thus, we need only give a monadic interpretation of models 

in (W, I>*, r,, rI). (The unary predicate comes automatically, since we have a 
monadic interpretation.) Specifying this monadic interpretation is straightfor- 
ward: an integer 1 in (1, . . . , 2k”} is represented by the equivalence class of 
strings of length 1; < is given by the prefix order; and subsets of (1, . . . , 2k”} are 
represented by strings w via 

{I ) for some u of length I, rI(v) is a prefix of w}. 

To complete the construction it suffices to give iterative definitions for formulas 
&(u, v) saying that for some I< 2kn, u and v both have length 1, and formulas 
n”(u, v) saying that for some 16 2k”, u has length 1 and is a prefix of 21. This is 
done analogously to the iterative definition of linear order on intervals of length 
2d” in Example 8.6. We leave the details to the reader. 

Remark. Example 8.8 was first treated by Vogel [76]. He also showed that for 
some d > 0, ATZME(2d”, n) is an upper bound for this theory. The hereditary 
lower bound can be derived from Vogel’s result because the theory is finitely 
axiomatizable. 

In Examples 8.7 and 8.8 the equality relation is interpreted by an equivalence 
relation rather than true equality. Correspondingly, models 5?I are interpreted by 
quotients of defined substructures, rather than the substructures themselves. This 
kind of interpretation is common in undecidability proofs (see examples in Rabin 
[53] and ErSov, Lavrov, Taimanov, and Taitslin [21]) and requires no changes in 
the proofs in Sections 6 and 7. In Example 8.8 the equivalence relation could be 
avoided by representing an integer I by an string of I 0’s. However, in Example 
8.7 the use of an equivalence relation in place of equality seem unavoidable. 

Example 8.9. Any extension 2, with an infinite model, of the first-order theory of 
Boolean algebras. 

We show that 2 has a hereditary lower bound of 

ATZME(22”““gn, cn) 
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by giving a monadic prenex interpretation of sets of size up to 2cn’logn and 
applying Corollary 7.9. 

Fix !I3, an infinite model of 2. Let m = [n/log n] and 1 G 2”. Define 6,(x, u) to 
be a prenex formula with parameters u = ul, . . . , u, that says x in an atom 
relative to u. By this we mean that for each i such that 1 s i s m, either x E ui or 
x fl ui = 0, and x is a maximal element with this property (with respect to the 
relation G on !8). Clearly we may take 6(x, u) to be reset log-lin computable. By 
appropriately choosing elements a in 58, we can arrange that SF@, a) has 
precisely I elements. Let a,(~, u, V) be the formula 6,(x, u) A x E u. As b ranges 
over the elements of 8, a:(~, a, b) ranges over all subsets of 6%(x, a). 

Remark. Lower and upper bounds for the theories of Boolean algebras were first 
obtained by Kozen [41]. Note that the apparent discrepancy between Kozen’s 
results and the results presented here arises because Kozen regards all variables 
as having unit length, while we take the length of subscripts into account. 

Example 8.10. The pure logic L having infinitely many monadic predicates. 
We show that this theory has a hereditary lower bound of 

NTIME( 2cnnog “) . 

Unlike the other bounds given in this section, this bound is obtained by direct 
interpretation of binary relations. Also, this is the only NTZA4E lower bound we 
consider which somehow involves the expression n/log n. We can show that there 
is a prenex interpretation of binary relations on sets of size 2cnflogn and then apply 
Theorem 6.2. The interpretation is essentially the same as the interpretation in 
Theorem 7.6 for the case r = 1. The only difference is that we no longer have a 
monadic interpretation because we cannot quantify over the monadic predicates. 

Remark. This result was proved by Meyer and Rackoff (see Rackoff [I%]) and a 
matching upper bound was given by Lewis [43]. 

We now turn to discussion of the fundamental lower bound results obtained by 
Fischer and Rabin [26] and improved somewhat by Bruss and Meyer [12] and 
Berman [7]. 

Example 8.11. The first-order theory of real addition. 
This is the first-order theory of the model ([w, +), where R is the set of real 

numbers. We obtain a herediary lower bound of 

A TZME(2”, cn) 

by giving a monadic iterative interpretation of sets of size 2” with an addition 
relation and applying Theorem 7.2. Fischer and Rabin give a simultaneous 
iterative definition of formulas P~(x, y, z), nn(x, y, z). Formula P~(x, y, z) holds 
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precisely when x is nonnegative integer less than 2” and x - y = z; formula 
JG,(X, y, z) holds precisely when X, y”, and z are nonnegative integers less than 2’” 
and yx = z. 

From these formulas we can define directly formulas a,,(~, U) that hold when x 
is a nonnegative integer less than 2”, u is a nonnegative integer less than 22’, and 
the (x + 1)st bit in the binary representation of u is 1. Thus, as a ranges over 
elements of R, a,“(~; a) includes all subsets of (0, . . . , 2” - l}. We thereby 
obtain a monadic interpretation of ( (0, . . . , 2” - l}, + ). 

Remark. The same argument will work if the theory of real addition is replaced 
by any extension of the theory of semigroups that has, for each n, a model (B, 0) 
with an element a whose powers a’, a’, . . . , a” are distinct. Any such theory has 
an A TZME(2”, cn) hereditary lower bound. 

Example 8.12. Presburger arithmetic, the first-order theory of addition on the 
natural numbers. 

This is the first-order theory of the model (N, +), where N is the set of 
nonnegative integers. We obtain a hereditary lower bound of 

A TZME(22c’, cn) 

by giving a monadic iterative interpretation of sets of size 22” with an addition 
relation and applying Theorem 7.2. As in Fischer and Rabin [26], we use 
divisibility to push the definition of the multiplication and exponentiation 
relations z+, y, z) and JG,(X, y, z) in the previous example up to intervals of 
length g(n), where g(n) 2 exp,(dn); this estimate comes from the Prime Number 
Theorem. We then obtain a monadic interpretation as in the previous example. 

Remark. Evidently, the basic ideas used in Examples 8.11 and 8.12 are already 
found in Fischer and Rabin [26]. However, we obtain several benefits from our 
approach. First, by using the machinery of the previous sections we avoid 
technicalities concerning coding sequences and Turing machine computations 
which Fischer and Rabin needed to address. Second, by emphasizing in- 
separability instead of just complexity, we obtain hereditary lower bounds. 
Finally, by observing that monadic quantification is implicit in the interpretations, 
we see why the appropriate lower bounds are ATZME bounds rather than an 
NTZME bounds. 

The linear alternating time lower bounds in Example 8.11 and 8.12 were 
proved by Berman [7]. A slightly weaker hereditary NTZME(2”) lower bound for 
real addition was obtained by Ferrante and Rackoff’ [24], and a hereditary 
NTZME(22c”) lowr bound for Presburger arithmetic was obtained by Young [78]. 

The full strength of the Prime Number Theorem is not needed in Example 
8.12. A much simpler result, due to Tchebychef, suffices; see Theorem 7 of Hardy 
and Wright [36]. This illustrates a common phenomenon in lower bound results 
for a theories. Crude arguments often suffice. Sophisticated mathematics and an 
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intimate knowledge of the theory under consideration are rarely needed. In this 
respect, upper bound results may be much more difficult. 

Note that since we have monadic quantification on sets of size 2”’ in a model of 
real addition (or any extension of the theory of semigroups as described in the 
remark after Example 8.11) we have a monadic interpretation of the classes pZ” 
from the same representation of trees used Example 8.1. Similarly, since we have 
monadic quantification on sets of size 22c” in a model of Presburger arithmetic, we 
have a monadic interpretation of the classes 3T. These facts will be useful in the 
next two examples. 

Fischer and Rabin [26] announced two other lower bounds: a lower bound of 
NTIME(exp,(cn)) for the first-order theory of integer multiplication; and a lower 
bound of iV7’1jVUZ(22c”) for the theory of finite Abelian groups. They did not 
supply proofs (but mentioned the key idea of encoding sequences of integers as 
exponents in a prime decomposition). To our knowledge, no proofs have ever 
been published. In the next two examples we sketch proofs of the stronger 
ATZME versions of these results. 

Example 8.13. The first-order theory of multiplication on the positive integers. 
This is the first-order theory of the model (I, -), where 0 is the set of positive 

integers. We obtain a hereditary lower bound of 

ATZME(exp3(cn), cn) 

by giving a monadic iterative interpretation of the classes Yr and applying 
Corollary 7.5. 

Let pi be the ith prime number. Observe that (0, a) is isomorphic to a direct 
sum of countably many copies of (N, + ) by the mapping that takes the sequence 

( aI, a2,. . . ), where ai is 0 for all large i, to py’ * pl’ * . . . Moreover, each direct 
summand (i.e., set of powers of some prime pi) can be defined. But we saw in 
Example 8.12 and the previous remark that there is a monadic interpretation of 
the classes Yy in (N, + ) . The idea here is that we interpret a tree from 9: in 
(I, -) by directing edges from a new root to the roots of trees interpreted in each 
direct summand. 

Clearly, we can specify a first-order formula a(x, y, z, t) that says t is a prime, 
X, y, and z are powers of t, and x . y = z. Let 6,(x, u ‘), n,, (x, y, u ‘), and 
a,(~, u’, v’) be the formulas giving a monadic iterative interpretation of Yy in 
(N, +). We saw in Example 8.12 that such formulas exist. (If we substitute 
(u(x, y, z, t) for all occurrences of x + y = z we obtain formulas 6&~, t, u’), 

JG&, y, t, u’), and a& t, u’, v’) in the language of (0, -) .) For each fixed prime 
t, these formulas give a monadic iterative interpretation of 37 in (0, a). For 
6:(x, t, u’) to be satisfied, it is necessary that x and U’ be powers of t. Thus, 
except possibly for 1, which is a power of every prime, there are no elements 
common to the interpretations of 6A(x, t, u’) and a;(~, t’, u”) when t and t’ are 
distinct primes. 
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Let q(t, u’, u) be a formula that says t is a prime and u’ is the largest power of t 

dividing u. Define 6:(x, u) to be the formula 

X = 1 v 3, u’ (7j(t, u’, u) A cqx, t, u’)). 

Define &(x, y, u) to be the formula 

(x = 1 A 3, u’ (q(t, u’, u) A &(y, t, u’) A vz 7c;(z, y, t, u’))) 

v (S u’ (s(t, u’, u) A 4(% Y7 t, u’))) 

The first disjunct gives an edge from 1, the root of the tree, to the root of each 
primary subtree; the second disjunct gives the edges in the primary subtrees. 
Using SE and nz we can interpret each tree from p4” by taking a disjoint 
collection of trees in ~7 and 1 as a new root-we need only choose u suitably. 
Define a:(~, u, u, w) to be the formula 

(X = 1 A W = 1) V 3t, U’, 21’ (Tj(t, U’, U) A q(t, V’, V) A 0:(X, t, U’, ?I’)). 

By varying v and w we obtain all subsets of 6:r(x, u), so we have a monadic 
interpretation. 

Remark. An upper bound of ATIME(exp,(dn), dn) for the first-order theory of 
integer multiplication can be obtained from the treatment of this theory in 
Ferrante and Rackoff [24]. The original reference for an upper bound on the 
first-order theory of integer multiplication is Rackoff [56]. 

As our last example we consider the first-order theory of finite Abelian groups. 
Lo [44] has given an extensive treatment of upper bounds for theories of Abelian 
groups. He states there bounds in terms of the classes SPACI?(~*‘~), but it is clear 
that his analysis gives ATZZt4E(22d”, dn) upper bounds. We derive a matching 
lower bound, not just for the theory of finite Abelian groups, but also for the 
theory of finite cycle groups. 

Example 8.14. The first-order theory of finite cyclic groups. 
We obtain a hereditary lower bound of 

A TZME(22c’, cn) 

by giving a monadic iterative interpretation of the classes YT and applying 
Theorem 7.5. We use a device similar to the one used in Example 8.13. Now 
rather than regarding the positive integers with multiplication as a direct sum of 
copies of (N, +), we regard a finite cyclic group as a direct sum of cyclic groups 
whose orders are prime powers. 

Let C(f) be the cyclic group of order 1. We know from the remarks following 
Example 8.12 that there is a d > 0 such that when 13 2*““, there is a monadic 
iterative interpretation of 9: in C(Z). More precisely, there are formulas 

6,(x, t’, u’), n,(x, y, t’, u’), and a,(~, t’, u’, v) given by iterative definitions such 
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that if U’ is a generator of C(Z), then each tree in 9? is isomorphic to 
(@“(X, t’, U’), JrGp”(X, y, t’, u’)) for some t’ in C(Z), and a~“‘(~, t’, u’, IJ’) 
includes all subsets of 8:“’ (x, t’, 24’) as v’ ranges over elements of C(Z). (We 
need to mention the generator u of C(Z) explicitly in these formulas because there 
is no preferred generator; this necessitates only a minor modification of the 
formulas in Example 8.11.) 

Let ply p2, . . . , pk be the prime numbers less than 22d”+’ and mi the largest 
power of pi less than 22d”+‘. Then since pi - mi 3 22*” and pi < mi, we know that 
q 2 (2”“)1 = 29 so that there is a monadic iterative interpretation of 9” in 
each C(mJ as described above. 

By Tchebychef’s theorem (Theorem 7 of Hardy and Wright [36]) we know that 
k, the number of primes less than 22”f’, is at least 22d” for sufficiently large n. By 
taking d large enough, we can insure that k is greater than the maximum number 
of primary subtrees in each tree of 9:. Now take m = ml * m2. - - mk so that 
C(m) = C(m,) G3 C(m,) @ - * - @ C(mk). We see that m 2 (22d”)k 2 z2+. We need 
to show that we can combine the monadic iterative interpretations of $F in the 
direct summands C(mi) to obtain a monadic iterative interpretation of $” in 
C(m). To do this, we will show that we can define the decomposition of C(m) 
into the factor subgroups C(mJ. 

Let B(x, y, t, u) be the following formula with free relation variable Q: 

(x=oAy=o)v(X= t A Y = u) v (3% x2, x3, x4, Yl7 Y29 Y3r Y4) 

<Qh, ~1, 6 u) A Q(x2, ~29 XI> Y,) A Qh ~3, t, u) 

~Q(x4,~4,t,u)~(~=~2+~3+~4)~(y=y2+y3+y4))- 

Then by induction on n the relation Q(x, y, t, u) given by the iterative definition 

i&(x, Y, t, u) = Bin 

is true precisely when there is an integer j in the range 0 <j < 22’-’ such that x = jt 
and y = ju. Notice that we are using an idea first exploited by Fischer and Rabin 
[26] in their proof of a lower bound for Example 8.11: each integer j < 22’ can be 
written j = jlj2 + j3 + j4, where jr, j2, j3, j4 < 22’-‘. 

For the remainder of the proof we will assume that Q(x, y, t, u) is given by the 
iterative definition 

[Q@, Y, 6 u) = Plcin+z- 

Fix a generator u of C(m). We can specify that x =ju for some integer j in the 
interval 

z= {j) oq<22d”+‘} 

by writing Q(x, x, u, u). Since m > 222dn, the values ju are distinct for j E I. Let us 
identify Z with the set of elements ju such that j E I. The group operation 
restricted to Z defines integer addition. We can also define multiplication: if 
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x1 =jru and x2 = j2u then y = jr j2u precisely when Q(y, x1, x2, U) holds. There- 
fore, we can say that s E Z is prime and also that s E Z is a prime power. 

Let a(x, y, z, s, u) be a first-order formula that says s E Z is the largest power of 
some prime in Z, X, y, and z are annihilated by s (i.e., Q(0, s, X, u), Q(0, s, y, u), 
and Q(0, s, z, U) hold), and x + y = z. Hence, if (u(x, y, z, s, U) holds, then s = mi 
for some is k and x, y, z E C(mi). In other words, a(x, y, z, s, U) defines 
addition on the direct summands C(mi). 

Now every element t in C(m) can be uniquely expressed as a sum 

Cl + t2 + * * . + tk 

where each ti is an element of C(m;). We can specify a formula ~(s, t’, t, u) that 
says t’ = ti when s is mi. We say simply that t’ is annihilated by s and t - t’ is 
divisible by s: 

Q(0, s, t’, u) A 3z Q(t - t’, s, z, u). 

Thus, we can define the decomposition of C(m) into its factor subgroups. In 
particular, since u can be expressed as a sum u1 + u2 + - - * + uk, where ui is a 
generator of C(m,), the formula ~(s, u’, U, U) picks a unique generator for each 
factor subgroup as s ranges over maximal prime powers in I. 

The rest of the proof proceeds as in Example 8.13. For example, we form 
6:(x, s, t’, u’, u) by substituting (u(x, y, z, s, u) for each occurrence of x + y = z 
in 6,(x, t’, u’). Then 61(x, t, u) is the formula 

x = 0 v 3s, t’, u’ (q(s, t’, I, u) A q(s, U’, u, u) A qx, s, t’, u’, u)). 

We define nz(x, y, t, u) and a:(~, t, u, v, w) similarly. 

9. Upper bounds 

In this section we give upper bounds that show that most of the lower bounds 
obtained in Sections 4-7 are the best possible. 

First we give upper bounds for sat,(L,), s&dL,), and satF(L,). Recall from 
Theorem 4.3 that when T(dn) = o(T(n)) f or some d between 0 and 1, these sets 
are not in NTZME( r(cn)) for some c > 0. 

Proposition 9.1. Let T be a time resource bound. Then 

sat,(L,) E NTZME( T(n)“+2), 

satP,(LO) E NTZME(T(n) (l+E)““ogn), for each E > 0, 

sat;(LO) E NTZA4E(nT(n)“+2). 

Proof. To determine whether a sentence Q, from Lo is in sat,(L,), 
nondeterministically generate a finite binary relation. We give a nondeterministic 
recursive procedure that determines whether Q, is true in this relation. 
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If v E sat,(L,), then it holds in some binary relation !?l on a set of size at most 
T(n). The representation of this relation requires at most 7’(n)’ bits. We will 
show that our recursive procedure halts within time cT(~)~+~ on ?I. 

The procedure tests the subformulas of Q, and combines results to produce an 
answer. We may assume that all negations have been pushed inward so that only 
atomic formulas are negated. It is clear how the procedure works if rp is a 
conjunction or disjunction. If Q, begins with an existential quantifier, an element 
of 3 is nondeterministically assigned as the value of the quantified variable and 
the enclosed formula is checked. If Q, begins with a universal quantifier, then each 
element of Yl is assigned in turn to the quantified variable and the enclosed 
formula is checked. When an atomic formula is reached it can be determined in 
time 0(T(n)2) whether it is true in ?I for the assignment values at this point. 
Since for each of at most 12 universal quantifiers, T(n) values are generated, the 
total time is O(T(n)2T(n)“), as claimed. 

Suppose Q, is in prenex normal form. For each E > 0, whenever r] is sufficiently 
large there are at most (1 + .s)n/log IZ universal quantifiers in q, so determining 
whether a prenex formula is in satPA(L,) is in NTZ~E(T(n)(l+‘)“““g”). If Q, is in 
L,*, then the same sort of procedure is used, except that when a relation variable 
is encountered, it is necessary to jump to its definition (this may take n moves), 
compute its value by calling our recursive procedure, and return. Total time, 
then, is o(~T(n)~T(n)“) b ecause the tree of recursive procedure calls has height 
at most n and branches at most it times at each vertex; at the leaves, there is a 
cost of T(n)2 moves to evaluate atomic formulas; at the vertices corresponding to 
relation variable references there is a cost of O(n) moves to find definition. 

For all three bounds we must use the Linear Speed Up Theorem (see Hopcroft 
and Ullman [37]) to eliminate constants in front of the time bounds. 0 

We see that if T(,)n+2 = O(T(dn)) for some d > 0, then sat,(LO) E 
NTZME( T(dn)), so we have essentially the same upper and lower bounds. 
Similar remarks pertain in the other cases. 

Proposition 9.2. Let T be a time resource bound. Then 

satT(MLO), satp~it4L0), and satF(ML,) 

are in ATZME(T(n)2, n). 

Proof. Given a sentence Q, of length IZ in ML,, nondeterministically generate a 
binary relation. We use alternation to determine whether q holds in the relation. 
If Q, E sat,(ML,), then it holds in some binary relation %?I on a set of size at most 
T(n). For each set quantifier encountered it is necessary to generate T(n) bits to 
assign a value to the quantified variable. There are O(n) such variables so this 
part of the computation takes time O(nT(n)). This time is dominated by the 
0(T(n)2) time needed to generate %?l and verify atomic formulas. If QJ is a 
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sentence in ML,*, we use the same procedure except that when a subformula with 
a relation variable is encountered, the value of the subformula is guessed and 
verified using alternation. 0 

Notice that if T(n) = O(T(cn)t) for some c > 0, then for some d > 0, 
sat,(ML,) E ATZME(T(dn), n), so again we have essentially the same upper and 
lower bounds. 

We now turn to upper bounds for theories of finite trees. To determine if a 
sentence q of length IZ is in sat(&), we will show that it suffices to nondeterminis- 
tically generate a tree in y, where m log m 2 n, and verify that Q, holds in this 
tree. In fact, we prove a somewhat stronger result: given a tree of height r or less, 
there is a tree in JT satisfying precisely the same sentences of length n or less. 
Our proof uses Ehrenfeucht games. Observe that a sentence of length n can have 
at most m distinct variables (i.e., variables with different subscripts). Therefore, 
we will use the formulation of Ehrenfeucht games for logics with a bounded 
number of variables. These games were introduced for infinitary logics by 
Barwise [3] and later used by Immerman [38] to obtain lower bounds for queries 
on finite relational structures. 

Given two structures ?I and !X? for a first-order logic L, write ‘21-Z 93 to 
indicate that ‘21 and ‘23 satisfy precisely the same sentences from L to quantifier 
rank at most it and with at most m distinct variables. The game used to 
characterize -7 is played for n moves between players I and II on a pair of 
structures !?I and 2% Each player begins with m pebbles. On the first move player 
I places a pebble on an element of 2l (or 93) and player II responds by placing a 
corresponding pebble on an elemnt of ‘23 (respectively, a). On each remaining 
move player I has two options: he may place an unplayed pebble on an element 
of $?I (or ‘23), in which case player II places a corresponding pebble on an element 
of ‘23 (respectively, VI); or he may remove one of the pebbles on ‘?I (or %J) and 
replay it (not necessarily on the same structure), in which case player II removes 
the corresponding pebble from ‘23 (respectively ‘21) and replays it in response to 
the move of player I. Player II wins if the mapping from the set of elements of ‘?I 
covered by pebbles at the end of the game to corresponding elements in ‘8 is an 
isomorphism between substructures of ‘21 and ‘?8; otherwise, player I wins. 

The basic result concerning this game is that player II has a winning strategy if 
and only if !?I -r !XJ. We use this fact to prove two simple lemmas. 

We will assume henceforth that in addition to the binary edge relation, trees 
also have a unary relation that is true only at the root. This is a technical 
convenience to force player II to pebble a root whenever player I pebbles a root. 

For a tree $!I and a vertex x in 8, let %?IX be the subtree of VI whose set of 
vertices consists of x and all of its descendents. 

Lemma 9.3. Suppose ‘8 is a tree and x k a vertex of ‘21. Let ‘2l’ be the result of 
replacing I!& in ‘21 by another tree !l3. Zf ‘2Xx -7 23 then ‘8 -r 3’. 
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Proof. We know the player II has a winning strategy for the m pebble game of 
length II on ‘21, and 8. Player II uses this as part of a winning strategy for the m 
pebble game of length it on YJ and %?I’. Whenever player I pebbles an element in 
!?l - 3X or ‘21’ - 8, player II responds by pebbling the same element; whenever 
player I pebbles an element in 3x or 93, player II responds by pebbling the 
element dictated by the strategy for ‘u, and 93. Notice that if player I pebbles the 
root of ‘$I*, player II pebbles the root of 93 (and vice versa) so that adjacency to 
element in %Y - !?lX will be the same. This is a winning strategy for player II so 
!?l=::Vl’. 0 

Lemma 9.4. Let 3 and B be trees. Suppose that for each isomorphism type, the 
set of primary subtrees of ‘?I and the set of primary subtrees of ‘23 either contain the 
same number of trees of that type, or both contain at least m trees of that type. 
Then ‘u -z 93 for every n > 0. 

Proof. It is easy to determine a winning strategy for player II. If player I pebbles 
the root of $?l (or !8), player II pebbles the root of 5!3 (respectively, 3). If player I 
pebbles an element in a primary subtree 5% of ‘8 and no other elements of VI’ 
have been pebbled, player II responds by pebbling the corresponding element in 
a primary subtree B’ = “8 of !J3 where no other elements have been pebbled. 
Player II responds similarly if player I pebbles an element in a primary subtree !J3’ 
of 5?3 and no other elements of 5.8’ have been pebbled. If player I chooses an 
element in a primary subtree ?I’ of Vl where some elements have already been 
pebbled, these elements correspond to elements already pebbled in some primary 
subtree 58’ = a’ of ‘93. The isomorphism determines the response of player II. 
Player II responds similarly if player I chooses from a primary subtree of % where 
elements have already been pebbled. Because no more than m elements in a 
structure are pebbled at any time, it is easy to see that this strategy can always be 
carried out for ‘?I and !J3 satisfying the hypotheses of the lemma. 0 

Theorem 9.5. Given a finite tree %?I of height at most r, there is a tree 93 E Yy such 
that ‘8 -,” ‘93 for all n 2 0. 

Proof. Modify % in the following manner. For each nonleaf vertex x of depth 
r - 1, consider all children y of x and subtrees ‘?I Y; for each isomorphism type, if 
more than m subtrees VIY are isomorphic, delete enough of them so that there are 
precisely m. Continue this modification procedure for vertices of depth r - 2, 
r - 3, and so on, up to the root. Call the resulting tree ‘& It is clear from the two 
preceding lemmas that every time we delete subtrees in this process, we obtain a 
tree in the same =:-class as 2l. Thus, VI-7 ‘93. It is evident that ‘93 E 97. 0 

Remark. With slight modifications, this proof shows that for any tree ‘8 of height 
r or less, there is a tree ‘?8 E 37 such that ‘8 -T !XJ for all m 2 0. 
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We have, as an immediate consequence of the preceding theorem, upper 
bounds for theories of finite trees. 

Corollary 9.6. For r > 3, there is a d > 0 such that 

sat(zr) E NTZME(exp,_,(dn)). 

Also, sat(&) E NTZME(2d”2) for some d > 0. 

Proof. When r z= 3 and m is the least integer such that m log m 2 n, each tree in 
~7 has at most exp,_,(cn) vertices. Thus, the time required to nondeterminis- 
tically generate a tree in Yy and determine whether a sentence ~1 of length 12 
holds in this tree is exp,_2(cn)n. This function is dominated by exp,_,(dn) for 
some d > 0 when r > 3 and by exp,_,(dn’) when r = 3. 0 

Remark. This theorem gives matching upper bounds for the lower bounds 
obtained in Corollary 6.4 except for the case r = 3. There the lower bound is 
NTZME(2’“) and the upper bound is NTZA4~(2d”Z). Ferrante and Rackoff [24] get 
precisely the same bounds for the theory of one-to-one functions (cf. Examples 
8.7). It is more satisfying to say that sat(&) is a complete problem for 

NEXPTZME = kiO NTZME(2”*) 

via polynomial time reductions, according to Theorem 6.l(iv). 
Both sat(z,) and sat(&) are in PSPACE since the number of vertices in trees 

in JT and ~7 is polynomially bounded in it, where m is the least integer such 
that m log m 3 n. (Recall that by Theorem 9.5 for every finite tree ‘!?I of height at 
most r, there is a tree ‘%J E 37 such that % -7 93.) Every first-order theory with a 
model of power greater than 1 is hard for PSPACE (via log space reductions), so 
we know fairly precisely the complexity of these theories. 

Write ‘?I -z 93 to indicate that % and 93 satisfy the same monadic second-order 
sentences of quantifier rank n with at most m variables. To obtain upper bounds 
for monadic second-order theories of finite trees we must introduce Ehrenfeucht 
games characterizing the relation %r. 

In such a game, players I and II play for n moves on structures ‘?l and 93. Let 

Pi, P2, . * * , P,,, be unary relation symbols not in the language of ?I and 93. During 
each move of the game one of the symbols Pi will be assigned a pair of sets. This 
pair contains a subset of $!I and a subset of %. Initially, each of these symbols is 
assigned the empty set for !!I and the empty set for 93. On each move player I 
picks a relation symbol e. The previous assignment to 4 is forgotten. Player I 
assigns a subset of $?l (or 8). Player II responds by assigning a subset of %3 
(respectively ‘II) to 4. Whenever player I picks a singleton set, player II must 
respond with a singleton set. (Singleton set moves correspond to element 
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quantifiers.) Now suppose that at the end of the game symbols Pr, Pz, . . . , P,,, are 
assigned subsets RI, R2, . . . , R, of 5?l and subsets Sr, S,, . . . , S, of 58. If the set 

{(x, y) 1 for some i, Rj = {x} and Si = {y}} 

is an isomorphism between substructures of 

(3, RI,. . . , R,) and (%&,...,&) 

then player II wins; otherwise, player I wins. 
The basic result concerning this game is that player II has a winning strategy if 

and only if ‘?I Z: %J. 
We will sometimes say that an Ehrenfeucht game is played on structures 

(a, RI,. . . , R,) and (93, S1, . . . , S,), where R,, . . . , R, are subsets of !?l and 

S 1,. . . , S, are subsets of %. By this we mean that the symbols PI, . . . , P,,, 

initially have RI, . . . , R, and S,, . . . , S,,, assigned to them. The game then 
proceeds as before. We will say that (YI, RI, . . . , R,) and (8, S1, . . . , S,,,) are 
n-equivalent if player II has a winning strategy for games of length n on this pair 
of structures. Clearly, n-equivalence is an equivalence relation. 

Using monadic second-order Ehrenfeucht games we can show that -r can be 

replaced by SF in Lemma 9.3. In fact, we can show more. 

Lemma 9.7. Suppose that ‘1x is a finite tree with subsets RI, . . . , R,. Let x be a 

vertex of I?l and (VI’, R;, . . . , RL) the structure obtained by replacing the 

substructure ( %?Ix, RI fl a,, . . . , R, fl ax) of (3, R 1, . . . , R, ) by another struc- 
ture (‘93, S1, . . . , S,,, ) , where 93 is a tree. If 

(‘$I,, RInVIx,. . . , R,f121x) and (B,S,,. . . ,S,) 

are n-equivalent, then so are (‘?I, RI, . . . , R,) and (‘93, R;, . . . , Rk). 

We would also like to prove a result like Lemma 9.4, but this is not so simple. 
We must prove results like Lemma 9.4 and Theorem 9.5 simultaneously. To do 
this we need more complicated sets of trees. 

Definition. Define functions f (m, n, r) and g(m, n, r) as follows. 

f (m, n, 0) = 2”, g(m, n, 0) = 2”+l, g(m, 0, r) = 2 
and 

f (m, n, r + 1) = zm(g(m, n, r) + l)f’“*“~” 

g(m, n + 1, r) =f (m, n, r)g(m, n, r). 

Functions f and g are defined for all integers m, n, r a0 because we can 
repeatedly use the last equation to obtain 

g(m, n, r + 1) =f( m,n-1,r+l)f(m,n-2,r+1)~~~f(m,O,r+1) 

and then replace each factor f (m, i, r + 1) by 2”(g(m, i, r) + l)f(m,i,r). 
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Now define classes 0117” of trees of height at most r. %r*” contains all trees of 
height 0. Ou:;:;? consists of all trees whose primary subtrees come from 4!~7”, no 
more than g(m, n, r) primary subtrees coming from the same isomorphism class. 
Define classes Yfr,” of structures (8, RI, . . . , R,), where !?l is a tree of height at 
most r and each Ri is a subset of 2l. 7frj” contains all structures 

(a, RI,. . . , Rn), where Vl is a tree of height 0. ‘Vy;; consists of all structures 

(3, RI,. . . , R,) such that substructures formed by restricting to primary 
subtrees of ‘?I all come from Y’F”, no more than g(m, n, P) such substructures 
coming from the same isomorphism class. Notice that IV:+1 =f(m, n, r). 

Theorem 9.8. Given a finite tree ‘?J of height at most r and an integer n > 0, there 
is a tree 93 E Qua” such that ‘u ~7 ‘$3. 

Proof. We prove a more general assertion. Given a structure (‘3, RI, . . . , R,), 
where ‘21 is a tree of height at most r and RI, . . . , R, are subsets of ‘3, there 
is a structure (‘Z3,&, . . . ,S,,,)E?~~~” such that (%,R1,.. . ,R,) and 

(% 4, *. * J S, ) are n-equivalent. 
The proof is by induction on r. For r = 0, the assertion is obvious. Assume that 

$?l has height r > 0 and that the assertion holds for trees of lesser height. Consider 
the substructures of (%?I, RI, . . . , R,) formed by restricting to primary subtrees. 
By the induction hypothesis, each such substructure is n-equivalent to some 
structure in ‘V?;; for each n-equivalence class replace the substructures in that 
class by a structure from 7-2; in the same class with the provision that if 
there are more than g(m, n, r - 1) substructures in the class we first eliminate 
enough of them to make their number precisely g(m, n, r - 1). In this way we 
form a structure (93, S,, . . . , S,) E Y(Y. We show that (3, RI, . . . , R,) and 

(% &, . . ., S, ) are n-equivalent. 
Fix an n-equivalence type r. Let (‘?I’, RI, . . . , Rk) be the union of substruc- 

tures of (3, RI, . . . , R,) of type t formed by restricting to primary subtrees of 
3. Define the substructure (‘23’, S;, . . . , SA) of (‘23, Si, . . . , S,,,) similarly. Thus, 
2I’ and 93’ are forests, and each substructure of (a’, RI, . . . , Rk) or 
(!Z’, S;, . . . , Sk) formed by restricting to a tree in the forest is of type r. 
Moreover, 2l’ and 23’ either contain the same number of trees or both contain at 

least g(m, n, r - 1) trees. We claim that (S’, RI, . . . , RL) and 

(93’) s;, . . . ) Sk) are n-equivalent. From this claim it follows easily that 

(a, RI,. . . > R,) and (‘23, S1,. . . , S, ) are n-equivalent because player II can 
combine the winning strategies on the pairs of substructures. 

We establish the claim by induction on n. The case n = 0 is clear. (Notice, 
however, that it is crucial that g(m, 0, r - 1) = 2 because S,! must be assigned a 
nonsingleton set whenever R[ is assigned a nonsingleton set.) Suppose that n > 0 
and that the claim is true for smaller values. 

Player I will begin by assigning a subset of one of the forests-say subset Rlof 
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?I’-to a relation symbol 8. This gives a new structure (a’, R’;, . . . , RL), where 
R;= RI when i #j. By the induction hypothesis (for the induction on r), every 
substructure formed by restricting this structure to a tree in ?I’ is (n - l)- 
equivalent to some structure in VF;-‘. Hence, there can be at most f(m, n - 

1, r - 1) (n - l)- e q uivalence classes represented among such substructures. Pla- 
yer II responds by assigning a subset of Sg of 93’ to P;: to obtain a structure 

(93’, s;, . . . ) s;>, where Sy= S,! when i #j. She does this in such a way that for 
every (rr - 1)-equivalence type r’, (!?I’, R;, . . . , Rk) and (B’, Sy, . . . , Sk) 

either have the same number of substructures of type t’ formed by restricting to 
trees in !X’ and 93’, or both have at least g(m, IZ - 1, r - 1) such substructures of 
type r’. Player II can always make such a response because 5% and 93’ either have 
the same number of trees or both have at least g(m, it, r - 1) =f(m, IZ - 1, r - 
l)g(m, n - 1, r - 1) trees. 

By the induction hypothesis (for the induction on n) 

(‘?I’, R’;, . . . , RL) and (B’, S;, . . . , SL) 

are (n - 1)-equivalent so (?I’, R;, . . . , Rk) and (93’, S;, . . . , Sk} are n- 
equivalent. Cl 

Theorem 9.9. For each r > 1 there LY a d > 0 such that 

sat(iK$) E ATZME(exp,(dn/log n), n). 

Proof. It is easy to show by induction that for each r 2 1 there is a c > 0 such that 

f(m, IZ, r) s exp,+,(c(m + log n)), 

g(m, II, r) c exp,+i(c(m + log n)). 

If we let h(m, n, r) be the maximum number of vertices of any structure in %r,” 
(or ‘Vrr”), we see that 

h(m, n, 0) = 1, 

h(m, rz, r + 1) = h(m, n, r)f(m, n, r) g(m, n, r) + 1. 

For each r 2 2 there is a c > 0 such that h(m, II, r) c exp,(c(m + log n)). 
When r 2 2 we can determine if a sentence cp from ML, is in sat(Ml$) by 

nondeterministically generating a tree in 4!4?“, where m log m 5 II, and using 
alternation to verify that Q, holds in this tree. This can be done in 
ATZME(exp,(dn/log n), n). 

When r = 1 we must be a little more careful because a tree in %ul;,” may have 
O(2’7 vertices. However a tree of height 1 has almost no structure. Suppose we 
have chosen m subsets RI, . . . , R, from a tree ?l of height 1. Let + Ri be Ri and 
-Ri be the complement of Ri. For d = (d,, . . . , d,) E { +, -}” let d . R = 
dlRl n d2R2 II. . - fl d,,,R,. We need only keep track of which sets Ri contain the 
root of Vl and the values (d - R( for each d E {+, -}. Thus, (‘?I, RI, . . . , R,) can 
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be represented in space 0(2m log n). Using this kind of representation, the 
argument above shows that s&(44&) E ATZM??(2d”““g n, n). Cl 

10. Open problems 

We close with a list of problems, mostly concerned with lower bounds for 
theories arising in algebra. We have selected only a small number of problems 
from the large number of theories whose complexities deserve to be investigated. 

Problem 10.1. Determine the complexify of first-order theories offinite fields. 

The first-order theory of finite fields, and several related theories, were shown 
to be decidable by Ax [l] in a paper which has proved to be of great 
mathematical inlluence . Later Fried and Sacerdote [28] gave a primitive 
recursive decision procedure, but it is not known if any of these theories is 
elementary recursive. 

It is not difficult to show that these theories have a hereditary lower bound of 
ATZiME(exp,(cn), cn). The method is to give a monadic interpretation of the 
classes of binary relations on sets of size at most exp,(n), and then apply 
Theorem 7.3. We give a brief sketch of the argument. Let 9 be any infinite field 
which is a model of the theory of finite fields and in which one has the coding of 
finite sets used by Duret [17]. That is, given any two disjoint finite sets A, B E 9, 
there is an element w E 9 such that if a E A then a + w is a square in 9 and if 
b E B then 6 + w is not a square in 9. Construct by iteration formulas a,&~, u) 
such that for each IZ there is a choice of parameters u so that an@, u) is true in 9 
of exp,(n) values of x. For example, if 9 has characteristic 0, then (U,(X) can be 
,constructed as in Fisher and Rabin [26] so that a,,(x) holds in 9 exactly when x is 
one of the integers 0, . . . , exp,(n) - 1. Alternatively, one could use formulas 
(u,(x, y) asserting that x is an exp,(n)th root of y. Now consider the formulas 

P&, t, u) given by 

3y, z ((yn(y, u) A (u,(z, u) A x = y + zt). 

For an appropriate choice of t in 9, the mapping (y, z) my + zt in one-to-one on 
IY:(X, u). This together with the coding of finite sets gives every binary relation 
on sets of size at most exp,(n). The coding of finite sets also gives every subset of 
the universe so we have the required monadic interpretation. 

Problem 10.2. Determine the complexity of the first-order theory of linearly 
ordered Abelian groups. 

This theory was shown to be decidable by Gurevich [32], with later improve- 
ments in Gurevich [33]. There is a simple interpetation of the first-order theory of 
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linear orders in this theory, so it has a hereditary NZ’ZME(exp,(cn)) lower 
bound. (See Example 8.2.) On the other hand, a primitive recursive decision 
procedure for the theory was given by Gurevich [33]. It would be interesting to 
improve either of these bounds. 

Problem 10.3. Determine the complexity of first-order theories of valued jiela!s. 

Ax and Kochen [2] and ErSov [20] proved the decidability of various first-order 
theories of valued fields, including some power series fields and the fields of 
p-adic numbers Q,. Brown [ll] obtained an elementary recursive upper bound 
for the first-order theory of ‘almost all’ of the fields U&,-that is, the set of 
sentences true in Q, for all but finitely many p. Very little is known about lower 
bounds for this theory or about the other related theories covered by the 
Ax-Kochen-ErSov work. 

Problem 10.4. Determine the complexity of the first-order theory of Boolean 
algebras with several distinguished filters. 

ErSov [19] proved decidability of the first-order theory of Boolean algebras 
with a distinguished filter. A recent paper by Touraille [71] presents some results 
on the elimination of quantifiers for this theory, but does not show decidability. 
Rabin [54] showed decidability of the theory of Boolean algebras with quantifica- 
tion over filters by giving an interpretation in the monadic second order theory of 
two successors. This gives an upper bound of NTZME(exp,(dn)), but nothing is 
known about lower bounds. 

Problem 10.5. Determine the complexity of the first-order theory of the lattice of 
closed subsets of the Cantor set. 

Rabin [54] proved that this theory is decidable by interpreting it in the monadic 
second-order theory of two successors. As in the previous problem, this gives an 
upper bound of NTZME(exp,(dn)). It is not known if this theory is elementary 
recursive and no nontrivial lower bounds are known. A more explicit analysis of 
this theory has been given by Gurevich [34]. 

Problem 10.6. Determine the complexity of the first-order theory of I,, the ring of 
bounded sequences of real numbers. 

Cherlin [15] gave a very explicit and difficult decision procedure for this theory, 
but its complexity has not been analyzed. It should be possible to extract an 
upper bound from Cherlin’s work. While it seems unlikely to us that this theory is 
elementary recursive, there are no good lower bounds known. 
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Problem 10.7. Determine the complexity of the theory of pairs of torsion-free 
abelian groups, and of the theory of a vector space V with k distinguished 

subspaces (k = 1, 2, 3, 4). 

The theory of pairs of torsion-free abelian groups was proved decidable by 
Kozlov and Kokorin [42]; see also Schmitt [63]. For k 2 5, the theory Tk of vector 
spaces with k distinguished subspaces (over some fixed field 9) is undecidable; 
see Baur [4] or Slobodskoi and Fridman [67]. Here the vector space is equipped 
with + and a fmaily of unary scalar multiplication functions, one for each element 
of 9. If k c 4, however, the theory Tk was shown to be decidable by Baur [5]. See 
Prest [52] for a discussion of how these theories are related to the representation 
theory of finite dimensional algebras over 9. The theories Tk are stable and hence 
the undecidability of T, could not be proved by the usual means of interpreting 
arithmetic or finite graphs. There does not seem to be any corresponding a priori 
impediment to using the methods of this paper to obtain lower bounds on the 
complexity of T,, T2, T3, or T4. 

Problem 10.8. Determine the complexity of the first-order theory of real closed 
fiela!s and the theory of the first-order theory of algebraic closed fields. 

These theories are, respectively, the first-order theory of the real numbers and 
the first-order theory of the complex numbers. Good upper and lower bounds are 
known for these theories, but the gap has not been completely closed. Berman’s 
ATZME(2”, n) lower bound for real addition is the best bound known for the 
theory of real closed fields. We discussed this bound in Example 8.11. By the 
remarks following the example, we have the same lower bound for the theory of 
algebraic closed fields. The best upper bound at present for the theory of real 
closed fields is SPACE(2d”); this was proved by Ben-Or, Kozen, and Reif [6]. 
This bound holds as well for the theory of algebraic closed fields since there is a 
simple interpretation of the complex number in the real numbers. For the same 
reason, any lower bound for the theory of algebraic closed fields would hold for 
the theory of real closed fields. 

Robinson [61] showed that if A is the field of real algebraic numbers, then the 
first-order theory of ([w , +, -, A) is also decidable. It would be interesting to 
know if this theory has a somewhat higher complexity than the theory of real 
closed fields. 

Problem 10.9. Determine the complexity of the first-order theory of differentially 
closed jieldr. 

Robinson [60] proved the decidability of this theory, but essentially nothing 
more is known about its complexity. See Wood [77] for a fuller discussion of this 
mathematically interesting theory. 
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Problem 10.10. Is elementary recursiveness of a theory preserved under product 
and sheaf constructions? 

Decidability of first-order theories is preserved by many general constructions, 
such as products (Feferman and Vaught [22]) and sheaf constructions (Macintyre 
[47]). Some upper bound results for weak products are presented in Ferrante and 
Rackoff [24], where the question is raised whether, for every model ‘21 whose 
first-order theory is elementary recursive, the first-order theory of the weak direct 
product 3” is also elementary recursive. The same type of question for other 
product and sheaf constructions is also open and worth investigating. (See 
Chapter 5 of Ferrante and Rackoff [24].) 

Problem 10.11. Give nontrival lower bounds for mathematically interesting 
theories whose decidability is still open. 

Examples include the first-order theories of the field of rational functions over 
the complex numbers; the real exponential field (R, +, -, exp) ; the field of 
meromorphic functions; and many others. It may be possible to show that some 
of these theories are not elementary recursive, just as Semenov [65] did for the 
theory of free groups. (See the remarks following Example 8.5.) 

Problem 10.12. Is there a ‘natural’ decidable theory which is not primitive 

recursive? 

Problem 10.13. Is there a ‘natural’ decidable theory with a lower bound of the 

form NTZ~E(exp,(f (n)) where f (n) is not linearly bounded? 

Problem 10.14. Determine the complexities of fragments of theories with given 

prefix structures. 

There has been some interesting work done in this area. (See, for example, 
Robertson [59], Reddy and Loveland [58], Fiirer [30], and Scarpellini [62].) 

In certain cases the methods of this paper should give results under these 
restrictions. This is not likely to be true where iterative interpretations are used, 
since iterative, definitions almost always introduce an unbounded number of 
alternations of quantifiers. However, where prenex interpretations are used in 
conjunction with Theorem 6.1 and Corollary 6.1, it seems clear that complexity 
results for sentences with specific limitations on prefix structure can be obtained. 

Other syntactic limitations can also be imposed on decision problems and have 
been widely studied in the setting of the decidable/undecidable distinction. For 
example, in algebraic theories, one may pay attention to the degree and number 
of variables of occurring polynomials. 
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In decision problems (and, more generally, complexity problem) the refine- 
ment mentioned above, especially limitations to a simpler and more intelligible 
prefix structure, often reflect restriction to mathematically more interesting and 
significant problems (as has been emphasized to us by G. Kreisel). Thus, the 
undecidability of Hilbert’s tenth problem is far more interesting than the 
undecidability of arithmetic; the undecidability of the word problem for finitely 
presented groups is far more interesting than the undecidability of the theory of 
groups. One can hope for and expect to see a similar kind of increasing matrurity 
in the study of complexity of decidable problems, not only at the level of 
NP-complete or PSPACE-complete problems (where it already exists to some 
extent), but also at higher levels of complexity. 

Problem 10.15. Characterize the PSPACE-complete theories. 

We noted in Section 1 that every theory with a model of power greater than 1 is 
PSPACE-hard. Thus, the PSPACE-complete theories are, in some sense, the 
simplest nontrivial theories. A number of different theories have been shown to 
be PSPACE-complete. (See Stockmeyer [69], Ferrante and Rackoff [24], and 
Grandjean [31].) It would be interesting to have model theoretic characterization 
of these theories. 

Problem 10.16. Zf one substitutes ‘tree’ for ‘binary relation’ in the definitions of 

sat,(&) and sat,(ML,), do Theorems 6.1 and 7.1 still hold for T(n) 6 exp,(cn)? 

An affirmative answer would give a generalization of Corollaries 6.5, 7.5, and 
7.8. 

Problem 10.17. Use the techniques of this paper to derive a lower bound for the 
emptiness problem for *-free regular expressions. 

The proof that this problem is not elementary recursive is one of the more 
difficult results in Stockmeyer [68]. McNaughton and Paper-t [50] show that the 
first-order theory of finite linear orders with an added unary predicate (Example 
8.1) can be reduced to this problem, but it is not clear that an elementary 
recursive reduction can be found. Ftirer [29] give a lower bound of 

NTZME(exp,(cn/log* n)‘)) 

for the emptiness problem for *-free regular expressions. It would be interesting 
to know if this could be strengthened to a lower bound of 

NTZME(exp,(cn)). 
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