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THE COMPLEX BEHAVIOR OF SIMPLE MACHINES 

Rona MACHLIN 
Relational Technology, Park 80 West Plaza 1, Saddle Brook, NJ 07662, USA 

and 
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This paper interprets work on understanding the actions of Turing machines operating on an initially blank tape. While 
this is impossible for arbitrary machines, complete characterizations of behavior are possible if the number of states is 
sufficiently constrained. The approach combines normalization to drastically reduce the number of machines considered, 
human-generated classification schemes, and computer-generated proofs of behavior. This approach can be applied to other 
computational systems, giving complete characterizations in sufficiently small domains. This is of interest in the area of 
emergent systems since the properties of such systems are often difficult to determine. By using computers to eliminate 
multitudes of machines with well understood behavior, some unanticipated exotic machines with complex behavior were 
discovered. These exotic machines show that it is quite difficult to estimate the number of states needed to produce a given 
behavior, and hence subjective estimates of complexity may be poor approximations of the true complexity. 

1. Introduction 

This exposi tory paper discusses work on under- 
s tanding  the possible actions of  a single simple 

machine  interacting with a simple input. The ma- 

chines are Tur ing  machines, defined below, which 

have only a few states, and the input  is an all-blank 

tape. Depend ing  on one 's  background,  this may  

either seem to be a very easy task, since the 
machines  have very simple descriptions, or an 

impossible task, since among computer  scientists 
it is well known  that one cannot  even decide 

whether  or  not  an arbitrary Turing machine will 

halt. We show that it is instead a possible, but  
difficult, task, as long as the number  of states is 

sui tably restricted. 
We  believe that the techniques used to under-  

s tand small Tur ing machines may  prove to be 

useful in unders tanding other "s imple"  systems, 

1Partially supported by Incentives for Excellence grant from 
Digital Equipment Corp. 

especially if one wants  to produce provably com- 

plete classifications of behavior  in suitably re- 
stricted classes. Since this work is largely unknown 
outside of  computer  science, and in fact is not  

even well known within computer  science, we have 

taken a mainly expository approach  in order  to 

reach a wider range of  researchers. This work may  

also revise notions of  interesting or desirable be- 

havior in Turing machines. Further,  while we are 

successful in characterizing sufficiently small Tur- 

ing machines, we show that a single Turing ma- 
chine can be viewed as an emergent system, and 

thus any at tempt  at an unrestricted classification 

of  the behavior  of  all emergent systems in any 

sufficiently powerful  class is doomed  to failure. 
This l imitation needs to be more  widely under- 

stood. 
Finally, we show that  the behavior  of  small 

Turing machines is far more  complicated than 
most  people would guess, and that exhaustive 

search can locate machines that are exceedingly 
difficult to create on one 's  own. Because such 
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machines are quite unexpected, people tend to 
significantly overestimate the number of states 
needed to produce their behavior. This creates a 
false impression of complexity, leading one to 
believe that a system has many more components 
that it really does, rather than understanding that 
the complexity can come from the repeated appli- 
cation and interaction of a few simple, carefully 
chosen rules. 

In section 2, we define Turing machines, and 
define the busy beaver and halting probability 
problems. These problems motivated work in clas- 
sifying the behavior of small Turing machines. In 
section 3 we introduce the notion of tree normal- 
ization, which is used to drastically reduce the 
number of cases that must be considered. In sec- 
tion 4 we show the techniques used to classify 
Turing machines that are in infinite loops, which 
completes the computation of small busy beaver 
numbers. Section 5 shows how to apply this work 
to estimate the halting probability, and in section 
6 we offer some concluding remarks. 

2. Background 

Turing machines are an attempt to formalize 
the notion of effective computation. While it is 
impossible to prove that one has correctly cap- 
tured the intuitive notion of effective computation, 
all other attempts have yielded systems that can 
compute only functions computable by Turing 
machines, and hence there is fairly widespread 
acceptance of the Church-Turing thesis that Tur- 
ing machines do indeed compute all functions that 
are effectively computable [14]. 

For our purposes, a (deterministic) Turing ma- 

chine has an input-output  alphabet of {0,1), 
which writes and reads from a 2-way infinite tape 
of squares. The O's and l 's  are called symbols, and 
each tape square contains exactly one symbol. The 
0 is thought of as being equivalent to blank. 

A Turing machine has some finite number, k, of 
internal states, labeled 1 . . . . .  k, and a read/write 
head connecting it to the tape. At each time unit 
the read/wri te  head is positioned under some 
square of the tape, and based on the symbol read 
and the current state, the Turing machine will 
write a (perhaps different) symbol at the square, 
move the read/write head left or right one square, 
and switch into a (perhaps different) state. See 
fig. 1. 

For each possible pair of current state and 
symbol read there is a unique instruction specify- 
ing the symbol printed, head movement, and new 
state. Such instructions will be given as 

(state, symbol, new symbol, 

head movement, new state), 

where L or R are used to indicate head movement 
to the left or right, respectively. We assume that 
the tape is initially all 0 (all blank), and that the 
Turing machine is initially in state 1. 

A Turing machine continues to execute its in- 
structions until it encounters an instruction speci- 
fying a new state of 0, in which case it prints the 
symbol, moves the head, and then halts. Fig. 2 
illustrates this action, which the subscripts on the 
tape indicate the state of the Turing machine and 
the location of the head. 

• O 0  Io 01110 111 
~ head 

1 , 2 , . . . , k  ) 

]o o] • O 0  

Fig. 1. A Turing machine. 
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Turing machine instructions 

Symbol read 

State 0 1 

1 1R2 1L3 
2 1L1 1R2 
3 1L2 1R0 

n Tape status after n steps 

1 1 0 2 
2 I l I 
3 0 3 1 1 
4 0 2 1 1 1 
5 01 1 1 1 1 
6 1 12 1 1 1 
7 1 1 12 1 1 
8 1 1 1 12 1 
9 1 1 1 1 12 

10 1 1 1 1 1 0 2 
11 1 1 1 1 11 1 
12 1 1 1 13 1 1 
13 1 1 1 1 i o 1 

Subscripts denote machine state and position 
of read/wri te  head 

Fig. 2. Turing machine execution. 

As fig. 2 shows, even though the individual 
instructions have simple, precise definitions, the 
overall behavior of the Turing machine can be 
quite complicated and not readily apparent from 
the individual instructions. Thus a single Turing 
machine, viewed as a collection of cooperating 
individual instructions, is an emergent structure 
according to the definition in ref. [7]. 

shows that no effective algorithm of any form can 
solve the halting problem. It is also well known 
that there is a fairly simple machine U, the univer- 
sal Turing machine, such that it is impossible to 
provide an algorithm to decide if U halts on input 
T for arbitrary T. Similarly, the restricted halting 
problem, in which the machine varies but the 
initial tape is all blank, is also unsolvable. 

A related problem, which we call the halting 
probability problem, can be intuitively phrased as 
"What  is the probability that a random Turing 
machine will halt when started on an all-blank 
tape?" To formally define this probability, de- 
noted ~2, one must assign probabilities to Turing 
machines. Since there are infinitely many Turing 
machines it seems that no assignment is com- 
pletely natural, and we postpone such an assign- 
ment until section 3. However, one can show that 
for any nontrivial assignment I2 cannot be com- 
puted, where by an algorithm computing ~2 we 
mean that given any c > 0, the algorithm will 
return a rational number which is within c of I2. 

Apparently Chaitin was the first to formally 
define 12 [5], though his definition differs from that 
given in section 3. $2 has many interesting proper- 
ties [9], and recently Chaitin used it in his signifi- 
cant transformation of GSdel's incompleteness 
theorem into a statement about the solutions of a 
specific exponential Diophantine equation [6]. 

2.2. Busy beaver problems 

2.1. Halting problems and halting probability 

Many problems have been posed involving Tur- 
ing machines. The best known of these, the Halt- 
ing Problem, asks for an algorithm with input 
consisting of a Turing machine M and an initial 
tape T, and which outputs " t rue"  if M will even- 
tually halt when started on input T, and outputs 
"false" otherwise. This problem is well known to 
be impossible in the sense that no Turing machine 
can provide such an algorithm (see any standard 
text in computability, such as ref. [14]). Assuming 
that the Church-Turing thesis is correct, this 

Tibor Rado felt that the arguments used to 
prove the uncomputability of the halting problem 
were not sufficiently intuitive, and posed the Busy 
Beaver Problem as a more concrete variation. To 
define this, let H(k) denote the set of all k-state 
Turing machines which eventually halt when 
started on a blank tape. Note that H(k) is finite 
since it is a subset of the set of all k-state Turing 
machines, and there are exactly ( 2 - 2 .  (k + 1)) 2k 
different sets of instructions for k-state Turing 
machines, i.e. there are 2k instructions that need 
to be supplied, one for each (state, symbol) pair, 
and for each instruction there are 2 choices of new 
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symbol, 2 choices for head direction, and k + 1 
choices for new state. 

For  a Turing machine M in H(k), let o ( M )  
denote the number of l 's  left on the tape when M 
halts after starting on an all-blank tape, and let 
s(M) denote the number of steps performed by M 
before halting. For example, for the machine in 
fig. 2, a ( M ) =  6 and s(M)= 13. Rado [16] de- 
fined the k th  busy beaver number, denoted ~(k) ,  
by 

~ : ( k ) = m a x ( o ( M ) :  M ~ H ( k ) } ,  

that is, ~ ( k )  is the maximum number of l 's  left 
on the tape by any halting k-state Turing ma- 
chine. Similarly, he defined S(k)  by 

S(k )=max( s (M) :  M ~ H ( k ) } .  

The busy beaver problem is to give an algorithm 
which computes ~:(k) for all values of k. Note 
that for any k, this problem merely asks for the 
maximum among a finite set of values. 

Rado provided a nice proof that ~ could not be 
effectively computed by showing that if f is any 
function computable by a Turing machine, then 
there is a number n, depending on f ,  such that 
,~(n) > f ( n ) .  This also shows that S cannot be 
effectively computed since S(k) > Z(k) for all k. 
While Rado emphasized computing ,~, we will 
instead concentrate on the function S, for reasons 
which will become clearer in section 2.3. Work on 
computing S and Z is discussed in refs. [1-3, 7, 
10-13, 15-17]. 

2.3. Problem relationships 

The halting problem, halting probability prob- 
lem, and busy beaver problems are closely related, 
in that a solution to any one of them would yield a 
solution to each of the others (although the trans- 
formations may not have any practical usefulness). 
To illustrate this, suppose we have an algorithm 
which computes S, and want to solve the re- 

stricted halting problem. To decide if machine M 
halts on blank tape, merely count the numbers of 
states in M, call this k, and then simulate the 
running of M for S(k) steps. If M has not halted 
in S(k) steps then it must be that it will never 
halt, by the definition of S. Notice that X(k)  
would not have been as useful since it may be that 
M sometimes writes l 's  and sometimes erases 
them, making it difficult to guarantee that it will 
not suddenly erase all but ~:(k) or fewer l 's  and 
then halt. 

To see how the halting probability problem can 
be used to solve the restricted halting problem, let 
M be some specified Turing machine, and sup- 
pose it has probability p. (It suffices to merely 
know that p is a nonzero lower bound on the 
probability of M.) Using any effective enumera- 
tion of the Turing machines, simulate running the 
first Turing machine for one step, then simulate 
the first Turing machine for two steps, then the 
second Turing machine for two steps, then 
the first Turing machine for three steps, then the 
second Turing machine for three steps, then the 
third Turing machine for three steps, and so on. 
(This stimulation process is known as dove-tailing.) 
Whenever a machine halts, add its probability to a 
running total. Eventually, either M halts, or else 
the running total becomes large enough so that if 
p were added to it then the total would exceed the 
halting probability. In this latter case M cannot 
halt. 

All the other possible choices of using a solution 
of one problem to solve another can be done 
similarly, with the exception that it may not be 
obvious that an algorithm which computes ~:(k) 
can be used to compute S(k) (and hence to solve 
any of the other problems). Rado [16] noted that 
one could prove that 

S(k ) < (k + 1)-Y(5k)2 x('k) 

(much better bounds are possible), and any upper 
bound T for S(k) can be used to compute S(k). 
To do this, one merely runs all k-state Turing 
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machines for T steps. Any machine which runs for 
T steps without halting must be in an infinite 
loop, so the largest number of steps used by a 
machine which halts in T or fewer steps must be 

S(k). 
A solution to any of these problems would, at 

least theoretically, provide an effective means of 
solving mathematical  problems. For example, to 
solve Fermat ' s  last theorem, which asserts that 
there are no positive integers x, y, z, i such that 
i > 2 and x i + yi = z i, one could write a program 

which uses dove-tailing to try all possible choices 
of x, y, z, and i, and which halts if it ever finds 
equality. Therefore the solution to Fermat 's  last 

theorem is reduced to the restricted halting prob- 
lem for this program. 

A more general reduction of mathematics to 
halting problems can be obtained by noticing that 
a proof  is merely a finite sequence of symbols 
which can be generated, and verified, by a com- 
puter. Given any mathematical statement one is 
curious about, construct a program which gener- 
ates all possible proofs and then verifies if it is a 
proof  of the desired statement, halting whenever 
such a proof  is found. Using this procedure, the 
provabil i ty of any mathematical statement is "re-  
duced" to the problem of deciding if a specific 
Turing machine halts. This fact is central to the 

work in ref. [6]. 

3. Tree normalization 

Despite the fact that the halting probability and 
the busy beaver problem cannot be solved, one 
can ask about  partial solutions. For the halting 
probabil i ty problem one could ask for upper and 
lower bounds on the probability, and for the busy 

beaver problem one might determine exact values 
for some values of k, or bounds on the values. 
This approach was taken by Rado in his classes, 
and has been pursued by many others since [1, 2, 
7, 10-13,  17]. We will emphasize the approaches 
to the busy beaver problem since that is where 
most  of the work has been performed, though we 

were first attracted to working on the halting 
probabili ty problem. 

To evaluate ~J(k) or S(k) for small values of k, 
one immediately encounters the problem of hav- 
ing a large number  of possible machines. As was 
noted above, there are [4(k + 1)] 2k k-state Turing 
machines, which, for example, is 25 600000000 
when k = 4. However, many of these are equiva- 

lent or their behavior is readily apparent. Lin and 
Rado [12] noted that, since one starts in state 1 
reading a zero, if the instruction is to go to state 0 
then the machine will halt after only one step, 
while if the instruction is to go to state 1 then the 
program will be an infinite loop. This observation 
alone classifies the behavior of 10240000000 4- 
state machines. Therefore the only unknown be- 
havior is to go to a new state, and since the labels 
of the states are arbitrary we may as well call it 
state 2. Further, if the machine makes its first 
head movement  to the left it will just be a mirror 
image of an equivalent machine with left and right 
head movement  reversed for all instructions. 
Therefore one can assume that the first head 
movement  is to the right. 

Since Lin and Rado emphasized calculating 
~J(k), they could make a final reduction, namely 
that the first step prints a 1. This is because if it 
does not print a 1, imagine following the machine's 
operation until it first prints a 1, and starting it 
instead at the instruction that printed that 1. This 
new start will eventually halt if and only if the 
original one did, and both will produce the same 
number of l 's .  Thus Lin and Rado could assume 
that the original instruction was (1, 0, 1, R, 2). 
However, the new start will use fewer steps than 
the original, and hence this normalization may 
underestimate S (k )  by as much as k - 1. This can 
be corrected by first using the Lin and Rado 
normalization to obtain a lower bound S' of S(k) .  
Then, noting that S '  + k - 1 is an upper bound on 
S(k) ,  one can utilize the approach described in 
section 2.3 to use this upper bound to determine 
the exact value of S(k) .  

The Lin and Rado approach can be extended 
(though they did not do so) to the viewpoint that 
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start 3 

state 1, read 0 ? 

halt loop state 2, read 0 ? loop 

halt loop loop state 3, read 0 ? 

o 

Fig. 3. Tree-normal programs. 

one deals with incompletely specified Turing ma- 
chines, only filling in instructions as they are 
needed. For  example, if the initial instruction was 
(1, 0, 1, R, 2), then the machine will go to state 2 
and again encounter a 0, so now a new instruction 
is needed. For  this, either a 0 or 1 can be printed, 
the head can be moved either L or R, and either 
the machine halts (state 0), goes to a state already 
used (1 or 2), or goes to a new state, which we can 
relabel as 3. Thus there are 2 . 2 . 4  = 16 effectively 
different choices for being in state 2 and seeing a 
0, given the prior choice of instruction (1, 0, 1, R, 
2). Four  of these choices halt, four go into infinite 
loops (printing 0 or 1, moving R, and going to 
state 1 or 2), while the remaining eight each will 
then encounter a situation requiring that yet an- 
other instruction be generated. This approach was 
utilized in refs. [1, 2, 11]. 

The generation of instructions as they are needed 
yields a tree representation of the machines gener- 
ated, as illustrated in fig. 3. The machines gener- 
ated are said to be in tree-normal form. Notice 
that a single machine in tree-normal form may 
represent many  Turing machines. For example, 
the Turing machine with instructions (1, 0, 1, R, 2) 
and (2, 0, 1, R, 2) represents [4(k + 1)] 2 k - 2  k-state 

Turing machines, each of which will go into an 
infinite loop. 

3.1. Probabilities 

Tree-normal form can be used to assign proba- 
bilities to Turing machines. We say that the root 
of the tree has probabili ty 1, and whenever a node 
has children (i.e. when it eventually encounters a 
situation where a new instruction is needed) then 
its probability is evenly divided among all of its 
children. In general, if a node with probabili ty p 
represents a partial Turing machine where states 

1 . . . . .  i have been explicitly referenced so far (with 
the convention that the root explicitly references 

state 1), if a new instruction is needed then there 
are exactly 2 . 2 .  (i + 2) children, each of which 
has a probabili ty p/[4 .  (i + 2)]. 

This is the notion of Turing machine probabil- 
ity that we will use for the halting probability 
problem, so to determine ~2 we need to find the 
sum of the probabilities of all leaf nodes corre- 
sponding to a new instruction sending the ma- 
chine to state 0. Similarly one could define the 
infinite loop probability as the sum of the probabil- 
ities of all leaf nodes corresponding to machines 
in infinite loops. There is a slight technical ques- 
tion of whether the sum of these two probabilities 
is 1, since the tree has infinite height and one can 
show that there exist such trees, with probabilities 
assigned in the same manner, for which the sum of 
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the probabilities of the leaves is less than 1. How- 
ever, it is easy to show that in our case these two 
probabilities do indeed sum to 1. 

It is important  to note that our definition of 12 
differs somewhat from that in refs. [5, 6, 9], and 
that this definitional change alters the value. While 
the definition in refs. [5, 6, 9] has some properties 
that make it simpler to use for theoretical pur- 
poses, we believe our definition is somewhat more 
natural and easier to understand. 

3.2. Variations 

It was the problem of defining, and then esti- 
mating, the halting probability that lead us to tree 
normalization. However, we discovered that it had 
been used earlier by Brady [1] in his work on the 
busy beaver problem, and so his terminology was 
incorporated into the work reported in ref. [11] 
(written by the first author under her maiden 
name). The work in ref. [11] is an independent 
confirmation of Brady's results, which is impor- 
tant since the sheer volume of human and com- 
puter work involved raises the possibility of error. 
The work in ref. [1] was eventually published in 
ref. [2], while the work in ref. [11] has not been 
previously published. 

There are four differences between tree normal- 
ization used to find ~ ( k )  or S(k) and the version 
used to define 12. In each of these, the trees used 
for busy beaver problems are smaller than the tree 
for the halting probability. First, as was noted 
earlier, the initial instruction for finding ~ ( k )  can 
be taken to be (1, 0, 1, R, 2), ignoring the other 11 
possibilities. As was stated above, this may slightly 
underestimate S(k), but a post-mortum check can 
be used to correct it. Second, no node need be 
generated which sends the machine into a state 
labeled k + 1 or higher. Third, if a node repre- 
sents a partial machine in which only states 1 . . . . .  i 
have been explicitly referred to so far, and if 
2i - 1 instructions have already been defined, then 
the new instruction is the last instruction involving 
states 1 . . . . .  i. If the new instruction sends the 
machine to states 1 . . . . .  i then the machine will be 

Table 1 
Number  of Turing machines to be analyzed. 

k Tree-norm~ [4(k + 1)] 2* 

2 41 20736 
3 3 936 16 777 216 
4 603 712 25600000000 

an infinite loop, so to compute busy beaver num- 
bers one need only consider instructions sending 
the machine to states 0 or i + 1. Finally, fourth, 
the instructions sending the machine into the halt 
state need only print a 1 and move R, since any 
other options would produce the same value for 
S(k) and either the same or smaller values for 

~ (k ) .  
All counts of numbers of nodes will be in terms 

of the tree normalization used to find S(k),  though 
estimates for fg will use the correct tree normaliza- 
tion for it. All counts are taken from ref. [11], and 
when infinite loops are classified these counts dif- 
fer slightly from those in ref. [2]. These small 
differences are due to slight variations in the defi- 
nitions used, number of steps stimulated, and the 
order in which the tests were applied. 

Table 1 shows the number of tree-normal ma- 
chines generated for the busy beaver problems, as 
opposed to the number of Turing machines which 
are formally different. This clearly shows the sig- 
nificant reductions accomplished through the use 
of tree normalization. This table was made by a 
back-tracking program which simulated each node 
until it halted, was in an infinite loop, or reached a 
situation where another definition was needed, in 
which case the appropriate children were gener- 
ated. The task of determining when a program is 
in an infinite loop is discussed in section 4. 

4. Infinite loops 

The major effort in calculating busy beaver 
numbers and estimates for the halting probability 
lies in proving that large numbers of machines are 



92 R. Machlin and Q.F. Stout//Complex behavior of simple machines 

in infinite loops. The approach taken in refs. [1, 
11, 12] is to examine some of these machines by 
hand, elicit a common behavior which insures that 
a machine is in an infinite loop, and then write a 
program which examines candidate machines and 
proves that some of them do indeed have that 
behavior. This process tends to iterate, with the 
researcher constantly trying to reduce the number  
of unclassified machines by either generalizing 
types of behavior earlier searched for, or by dis- 
covering new types of behavior. 

In the end, a small enough number of machines 
remain so that they can be manually examined 
and verified to be in infinite loops. In ref. [12], 
only one type of behavior was needed in determin- 
ing 2:(3), with only 40 machines which needed to 
be verified by hand. In refs. [1, 11], four types of 
behavior  were used in determining X(4) and S(4), 
along with a couple of hundred machines which 
were verified by hand. 

One byproduct  of this approach is that, while 
the busy beaver and halting probability problems 
are defined in terms of machines that halt, the 
interesting work involves machines that do not 
halt. In a certain sense, this approach treats all 
halting programs as equivalent, only needing to 
record probabilities, number of ones produced, or 
number  of steps used, while the programs that do 
not halt must  be more carefully examined and 
characterized. 

The remainder of this section is based on the 
work in ref. [11], which was in turn based on ref. 

[1]. At each stage, machines not yet classified are 
called holdouts. Using tree normalization and al- 
lowing machines to run a couple of hundred steps 
produces 1364 3-state machines which halt, and 
2572 3-state holdouts, and 182604 4-state ma- 
chines which halt, along with 421 108 4-state hold- 
outs. The holdouts were run through a program to 
see if they could be proven to have a behavior 
known as a simple loop. The holdouts from the 
simple loop test were then put through a back- 
tracking analysis to see if it could be shown they 
were in infinite loops without determining which 
type of loop they were. (Actually, a fast test for 

Table 2 
Classification of tree-normal machines. 

3-state 4-state 

total 3936 603 712 
halted 1364 182 604 
infinite loop 2572 421 108 

simple loop 2495 404 733 
back-track 50 10 363 
Christmas tree 25 5 144 
shadow Christmas 241 
counter 2 417 
holdout 210 

simple loops was combined with the simulation 
program, and a more thorough simple loop test 
was run after back-tracking analysis, but logically 
there was no need to do so. The numbers reported 
are the sum of those found by the different simple 
loop tests, with the vast majority found by the fast 
test.) The remaining holdouts were run for a while, 

and based on the rate at which new tape squares 
were visited, they were tentatively classified as 
being a Christmas tree or a counter. For each of 
these classes, a program was developed which in 
most  cases could prove a candidate was of the 
indicated type and was indeed in an infinite loop. 
Finally, the remaining holdouts were examined by 
hand. 

The following subsections explain this process 
in more detail, and table 2 shows the number  of 
machines classified at different states. Given a 
Turing machine M, we use M c to denote the 

machine formed from M by changing all R moves 
to L, and vice versa. By a word we mean a 
(perhaps empty) finite string of O's and l 's.  For a 

word W and state r we use W• to mean that the 
machine is in state r examining the rightmost 
symbol of W; •W means that the machine is in 
state r examining the leftmost symbol of HI; W r 
means that the machine is in state r examining the 
first symbol to the right of IF, and • W means that 
the machine is in state r examining the first sym- 
bol to the left of W. We use 0* to mean infinite 
occurrences of 0, and W i to mean i concatenated 
copies of IF. 
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Symbol read Symbol read 

State 0 1 State 0 1 

1 1R2 1L3 1 
2 1R3 2 
3 0L1 0R1 3 

4 
1Q 11001 111111010 
110 11_001 1111110110 
1 ! 11101 111111011 
11 1111! 111111011 
! 1 1 1 1 0 0  111111001 

01 1111010 111111001 
__001 11110110 111111__001 
101 111101! 111111101 
11! 1111011 111111111 
1100 111100 ! 1111111100 
11010 1111001 11111111010 
110110 1111__001 111111110110 
11011 1111101 11111111011 
11011 111111! 111111110!1 
1100! 11111100 1111111100 ! 

Underlining indicates position of read/write head 

Fig. 4. A simple loop. 

4.1. Simple loops 

1R2 1L1 
0L1 1L3 
1R4 1L3 

0R2 

Fig. 5. A machine analyzable via back-tracking. 

recent occurrence of each state-symbol pair. After 
each step the table was consulted to see if a simple 
loop condition could be detected. Holdouts from 
the initial check were run through a second ver- 
sion which maintained a table of the conditions 
each time the Turing machine scanned a square at 
the edge of the critical portion of the tape (i.e. the 
nonzero portion). Of the initial 2572 3-state hold- 
outs, all but 77 were proven to be simple loops, 
while of the initial 421108 4-state holdouts, all but 
16 375 were simple loops. 

4.2. Back-tracking 

Fig. 4 shows a simple loop in operation. A 
Turing machine M is called a simple loop if either 
M or M c satisfy one of the following: 

(1) Some tape configuration is repeated in- 
finitely often. That is, there is a nonzero state s 
and words X and Y such that at some time step 
the tape configuration is 0* X s Y0*, and the same 
tape configuration is reached at some later time 
step. 

(2) M periodically moves to the fight, in that 
there is some nonzero state s, words X and Y and 
a nonempty word V, such that at one time the 
tape configuration is 0* Xs Y0*, at some later time 
the tape configuration is 0* VX~ YO*, and between 
these times M never moved left of the left edge of 
the initial X. 

It is clear from the definition that a machine 
classified as a simple loop is indeed in an infinite 
loop. 

Initial checks for simple loops were done by 
maintaining a table containing the tape configura- 
tion, position, time step, and state of the most 

One straightforward way to prove that a pro- 
gram is in an infinite loop is to directly prove that 
it cannot reach the halt state. For example, con- 
sider the tree-normalized machine in fig. 5, which 
has only one unspecified instruction, namely being 
in state 4 while scanning a zero. This machine can 
halt only if it reaches this instruction, i.e. it must 
reach a local tape configuration of 04. To get there, 
it must have been in state 3 scanning a zero to the 
fight of this zero, i.e. it must have been in config- 
uration 030. The only instructions which move to 
state 3 are for state 2 input 0, or for state 3 input 
1, so the tape must have been in the configuration 
012 or 013. However, both of these would produce 
031, which is not what was needed. Therefore the 
configuration 04 can never be reached, and the 
machine must be in an infinite loop. 

While back-tracking can be useful, it cannot be 
guaranteed to always stop since otherwise it would 
supply a solution to the halting problem. As with 
all of the heuristics we discuss, one must make 
some decision as to how long to run this technique 



94 R. Machfin and Q.F. Stout / Complex behavior of simple machines 

Symbol read 

State 0 1 

1 1R2 1L1 
2 1L1 1R3 
3 1R1 

10 111110 11111111 
!1 111111 11111111 

011 111111 11111111 
111 111111 11111111 
11! 111111 11111111 
1110 111111 11111111 
11!1 0 1 1 1 1 1 1  011111111 
1 ! 1 1  1 1 1 1 1 1 1  111111111 
!111 1 1 ! 1 1 1 1  111111111 

01111 1 1 1 1 1 1 1  111111111 
11111 1 1 1 1 1 1 1  111111111 
11111 1 1 1 1 1 1 1  111111111 
11111 1 1 1 1 1 1 !  111111111 
1111 ! 11111110  111111111 

111111!1 11111111 ! 

Underlining indicates position of read/write head 

Fig. 6. A Christmas tree. 

before abandoning it. When applied with a 15-step 
limit to the 3-state holdouts only 27 holdouts were 
left. When applied with a 10-step limit on the 
4-state holdouts only 6012 remained as holdouts. 

4.3. Christmas trees 

When Lin and Rado analyzed 3-state Turing 
machines, they applied some of the initial stages 
of tree normalization, and wrote programs to de- 
tect simple loops. They ended up with 40 ma- 
chines that they analyzed by hand. Most of these 
exhibited the back-and-forth sweeping motion 
shown by the machine in fig. 6. Brady called this 
behavior a Christmas tree. While the behavior is 
more complex than that of a simple loop, it is still 
clearly repetitive and in an infinite loop. 

Formally, a Turing machine M is a Christmas 

tree if either M or M c satisfy the following condi- 
tions for some nonzero state s: 

(1) There are nonempty words U, V, and X 
such that the tape configuration at some time is 
0*U V~ 0", and at some later time is 0* U X  V~ 0". 

(2) The following conversions hold, where X, 
X', Y, Y', Z, V, V', V", U, and U' are nonempty 
words and q and r are nonzero states (the symbol 

means that M transforms the left-hand side 
into the fight-hand side after some numbers of 
steps): 

(a) XV~O* = X'V'0*;  q 
(b) Xq X' = q X' Y; 
(C) O * U q X ' = : > O * U ' Y ' r ;  

(d) Y' rY = Z Y' r; 
(e) Y' r V t  =:~ Z V "" S ' 

(3) U ' Z  iV"  = U X  i+1 V for all i>_ 1. 

While this definition is somewhat complicated, 
it just guarantees that the machine sweeps back 
and forth, growing a periodic middle part of the 
tape configuration. 

Again it can be proved that any Christmas tree 
must be in an infinite loop. To detect these, a 
program was written which ran a holdout for a 
couple of hundred steps to overcome startup ef- 
fects, and which then cut the nonblank part of the 
tape in half to obtain candidates for V and U. 
Then it ran the machine until a back-and-forth 
sweep was observed. If after the sweep the new 
tape had a right-hand portion that matched V and 
a left-hand that matched U, then the remainder in 
the middle was taken to be X. This process was 
continued to find values for X', Y, etc., and to 
verify the conditions. If the program ever ran too 
many steps without finding the desired behavior, 
or could not successfully determine appropriate 
words, then the machine remained a holdout. 

There are many variations of Christmas trees, 
so the initial program was modified to detect more 
of the variants. Brady called one variation an 
alternating Christmas tree, for it takes two back- 
and-forth sweeps to complete its cycle. Another 
variation, a shadow Christmas tree, illustrated in 
fig. 7, creates an increasing "shadow" at one edge, 
which it never scans past. 

After running the 3-state holdouts through the 
various Christmas tree programs, only 2 holdouts 
remained, while for the 4-state machines only 627 
holdouts remained. 
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Symbol read Symbol read 

State 0 1 State 0 1 

1 1R2 1L1 1 
2 0L1 0R3 2 
3 1R4 1R3 3 
4 0R2 

10 
10 1101-0 11101110-0  1111011110-0 11 
-1 11011-0 1110111_0  1111011110 -001 

_01 1101100_ 11101111_0 1111011111_0 _01 
1! 11011_0 1110111-1 1111011111 1-1 
10-0 110111_0 11101111 11110111_11 11_0 
101_0 110111  11101111 1111011111 111_0 
10100 1101_11 11101111 1111011111 11!1 
101_0 110_111 111_01111 1111011111 1!01 
1011_0 110111 1111_1111 1111_011111 !001 
101_1 111111 11110111 1111111111 -00001 
10!1 111011 11110111 1111101111 -0001 
1011 1 1 1 0 1 1  1111011_1 1111101_111 1-001 
1111 111011_0 11110111_0 1111101111 1101 
110_1 1110111_0 111101111_0 1111101111 -00101 

Underlining indicates position of read/write head 

Fig. 7. A shadow Christmas Tree. 

4.4. Counters 

The final class of loops for which programs 
were written were called counters by Brady. Fig. 8 
illustrates a counter, and it is obvious that it is 
indeed acting as a type of binary counter. 

Formally, a Turing machine M is a counter if 
either M or M c satisfies the following conditions: 

(1) There are nonempty words E, X, Y, Z, and 
Z', a nonzero state s, and a positive integer n such 
that at some time the tape configuration is 
O* E Y, Z'  Z" X O*. 

(2) The following conversions hold, for some 
nonempty word X': 

(a) Y,Z' = , Z ' Z ;  
(b) O'E, Z' = O*EX'q; 
(C) S t q X  =~ Y X ' q ;  
(d) X'qZ=*~Z'X;  
(e) X, qOIXl ~ z ' x  

where I XI denotes the length of X. 
In this definition, the X acts as a "one", and the 

Z acts as a "zero", in a binary counter. 
Using an approach similar to that used for 

Christmas trees, a counter detector program was 

1R2 
1L3 
0R1 

1R1 
OL3 

_0101 -0010001 
1101 _010001 
ii01 1-10001 
1111 11_OOOl 
11110 111001 
11111_0 111101 
111111 110101 
111101 100101 
111001 _0000101 
110001 _000101 
_100001 1_00101 

-00(0)O1 110101 
_000001 _0010101 
100001 010101 
_110001 11_0101 

Underlining indicates position of 

110101 
111101 
1111Q1 
111111_ 
1111110 
1111111_0 
11111111 
11111_101 
11111001 
11110001 
11!00001 
1100(O1 
10000001 

_000000001 
_00000001 

read/write head 

Fig. 8. A counter. 

developed. This program successfully classified the 
final two 3-state holdouts as counters, and when 
run on the 4-state machines left only 210 holdouts. 

4.5. Final holdouts 

The final 210 holdouts were examined by hand 
to verify that they were in infinite loops (ref. [2] 
reported 218 final holdouts). More than half were 
variations of counters, including base-3 and base-4 
counters. Also discovered were further Christmas 
tree variations, such as alternating shadow trees 
and triple and quadruple sweep trees. 

Brady noted an additional class of machines, 
which he called tail-eating dragons. They have a 
back-and-forth sweep, limited by the end of the 
"tail" tl~ey create. After each sweep they "bite 
off" a piece of the tail, and when it is completely 
consumed they create a new, larger tail. As with 
other classes, there are also variations on this 
behavior. Fig. 9 gives the instructions of a tail-eat- 
ing dragon. 
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State 

Symbol read Table 3 
Turing machine probabilities. 

0 1 
Probability of halting 

1 1R2 1L1 Probability of infinite loop 
2 1 R3 0R4 Uncertainty 
3 1L1 
4 0L1 1R4 

0.465 
0.529 
0.007 

Fig. 9. Instructions for a tail-eating dragon. 

5. Halting probability 

The known values of S can be used to estimate 
~2. Tree normalization appropriate for ~2 is used 
(see section 3.2) to generate a portion of the tree. 
A node corresponding to a machine of k states is 
simulated for at most S ( k )  steps. If it does not 
halt in this many  steps then it is in an infinite loop 

and its probabil i ty is added to a running total of 
infinite loop probabilities. If it reaches a point 
were a new instruction is needed, then the proba- 
bilities of all children which halt immediately (i.e. 

those in which the new instruction has a new state 
of 0) are added to a running total for the halting 
probability,  and the remaining children are simu- 
lated. 

For  a node corresponding to a machine with a 
number  of states for which the S value is un- 
known the machine is simulated for some prede- 
termined number  of steps. If the machine does not 
halt or need a new instruction, then it is aban- 
doned, and its probability is part  of the uncer- 
tainty in the knowledge of the halting probability. 
Because no node is simulated for more than the 
predetermined upper limit (counting all the steps 
leading to the node), only a finite portion of the 
tree is explored. However, to reduce the stack 
requirements, one may also abandon nodes which 
have more than some (significantly smaller) prede- 
termined number  of defined instructions. While 
such nodes add to the uncertainty, they have 
relatively small probabili ty since the probability of 
a single node decreases rapidly with a number of 
defined instructions. 

As in the use of the tree for finding busy beaver 
numbers,  some additional simplifications can be 

incorporated. For example, suppose a node corre- 
sponds to a machine with k states, and all instruc- 
tions but one have been defined. If  the node 
reaches a point where this instruction is needed 
then any definitions which do not go to a new 
state (or 0) must yield an infinite loop, and hence 
their probabilities can be immediately added to 
the infinite loop probability. One can also use the 
classification routines discussed in section 4 to 

prove that machines are infinite loops, rather than 
just adding their probability to the uncertainty 

total. 
Using the above techniques, including the 

knowledge of S ( k )  for k < 4, but not using the 
classification routines on machines of more than 
four states, yielded the results in table 3. 

6. Final comments 

As the Emergent Computations conference 
demonstrated,  there is a significant interest in the 
general problem of understanding the behavior of 
simple systems. Further, researchers working on 
such problems have a wide range of backgrounds. 
Because of this, we felt it useful to describe work 
that led to the complete characterization of Turing 
machines of four or fewer states, and which has 
also produced results such as provable bounds on 
the halting probability. We note that a single 
Turing machine is an emergent system, in that it 
satisfies all of the conditions set forth in ref. [8] for 
an emergent system, and it can indeed have a very 
complex observed behavior as it moves through 
time and space (along the tape). Thus this work 
shows that complete, provable characterization of 
a suitably restricted nontrivial class of emergent 
systems has been achieved. 
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This work is completely rigourous, as opposed 
to, say, mere statistical sampling. Further, by mak- 
ing extensive use of computers to prove that cer- 
tain machines have well-understood behavior, the 
researchers were able to focus their attention on 
the final holdouts, discovering unexpected behav- 
ior such as base-4 counters and tail-eating 
dragons. Most people would be hard pressed to 
develop a 4-state machine with such behavior, just 
as they would be unlikely to develop a 4-state 
machine which moves for 107 steps before halting. 
The 210 final holdouts exhibit significant diversity, 
and such machines would probably not be found 
other than through careful use of computers to sift 
out machines with known behavior. The holdouts 
represent only about 0.3% of the tree-normal 4- 
state machines, and only about 0.0002% of the 
unnormalized 4-state machines. This approach 
may prove to be generally useful for researchers 
seeking simple emergent systems with unusual 
properties. Further, the success in "decompiling" 
all 4-state machines and provably deciding their 
behavior may make it an attractive approach for 
other researchers trying to "decompile" simple 
systems to obtain an understanding of their behav- 
ior. 

One crucial step in reducing the computational 
workload was the introduction of tree normaliza- 
tion. Tree normalization is a form of "lazy evalua- 
tion" which adds just those instructions which are 
needed, simulating the effects of a collection of 
instructions until a situation is encountered where 
a new instruction is needed. Classes of emergent 
systems other than Turing machines may also be 
numerically reduced through normalizations. 

One way in which emergent systems research 
can impact upon work on Turing machines is by 
intensifying interest in the behavior of infinite 
loops. Computer scientists usually try to produce 
programs that rapidly complete their task and 
finish, rather than continue forever. (Operating 
systems are an important exception.) However, 
emergent systems research is most concerned with 
systems that have infinite, or very long, lifespans. 
Systems with short lifespans are usually easier to 
understand, just as it is trivial to see that a Turing 

machine which just moves right 10 steps and then 
halts (when given all-blank input) must have at 
least 10 states. It is much more complicated to 
understand or design infinite behavior, such as 
finding a minimal state Turing machine that has 
visited O(t 1/5) tape squares after t steps. Even the 
work in refs. [1, 2, 11] did not completely classify 
all 4-state infinite loops, but rather resulted in 
hand analysis of a few holdouts. This analysis 
satisfied the authors that the machines were in- 
deed in infinite loops, and they noted some in- 
teresting behavior, but they did not carefully 
describe all behaviors encountered, nor the num- 
ber of machines with each behavior. 

One caution for emergent systems researchers is 
that, while we believe formal approaches can be 
applied to other emergent systems models, we 
must emphasize that there are limits as to when 
exhaustive, provable characterization can be per- 
formed. Such characterizations must be tried with 
care and within appropriate parameter con- 
straints. For example, as was noted previously, it 
is impossible to write a program which determines 
S(k) for arbitrary k, and it is even impossible for 
any program to provide an upper bound for in- 
finitely many k. Therefore the classification of all 
k-state Turing machines cannot be completed for 
arbitrary k, and similar statements can be made 
for almost all sufficiently general models. 

This leaves, however, the interesting question of 
determining how far formal approaches can be 
pushed within emergent systems research. While 
one can easily prove that many problems involv- 
ing infinite domain are unsolvable, it is not easy to 
delimit subdomains of solvable or feasible sub- 
problems. For example, it is interesting to predict 
how far S will be determined. Such predictions are 
perilous, since, for example, in 1962 Rado felt that 
no known approach would yield S(3), and that 
S(4) was "entirely hopeless at present" [15]. Only 
two years later he and Lin published the solution 
for S(3) [12], and by 1974 Brady had determined 
S(4) [11. 

In 1983 the largest known lower bound for S(5) 
(i.e. the largest number of steps taken by a halting 
5-state machine yet discovered) was 7707, and the 
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(a) 

(b) 

Symbol read 

State 0 1 

1 1R2 1R1 
2 1L3 1L2 
3 1R1 1L4 
4 1R1 1L5 
5 1L0 0L3 

Symbol read 

State 0 1 

1 1R2 0L4 
2 1L3 1R4 
3 ILl  1L3 
4 1R0 1R5 
5 1R1 0R2 

Fig. 10. Busy 5-state machines. (a) A machine that leaves 4098 
l's. Discovered by Marxen and Buntrock [4]. (b) A machine 
that performs 23554768 steps before halting. Discovered by 
Marxen and Buntrock [4]. 

largest known lower bound for S(6) was 13 488 [2]. 
In 1985, Uhling showed S(5)> 2358063, and 
2~(5) > 1915 [7]. In 1989 Buntrock and Marxen [4] 
discovered that S(5) > 23 554 768 and ~(5) > 4098 
(see fig. 10). Based on Uhling's results, Brady [3] 
predicted that there will never be a proof of the 
values of ~(5) and S(5). We are just slightly more 
optimistic, and are lead to recast a parable due to 
ErdSs (who spoke in the context of determining 
Ramsey numbers): suppose a vastly superior alien 
force lands and announces that they will destroy 
the planet unless we provide a value of the S 

function, along with a proof of its correctness. If 
they ask for S(5) we should put all of our mathe- 
maticians, computer scientists, and computers to 
the task, but if they ask for S(6) we should imme- 
diately attack because the task is hopeless. 
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